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Abstract
For any positive integer k, the reconfiguration graph for all k-colorings of a graph G,

denoted by Rk(G), is the graph where vertices represent the k-colorings of G, and two
k-colorings are joined by an edge if they differ in color on exactly one vertex. Bonamy
et al. established that for any 2-chromatic P5-free graph G, Rk(G) is connected for each
k ⩾ 3. On the other hand, Feghali and Merkel proved the existence of a 7p-chromatic
P5-free graph G for every positive integer p, such that R8p(G) is disconnected.

In this paper, we offer a detailed classification of the connectivity of Rk(G) concern-
ing t-chromatic P5-free graphs G for cases t = 3, and t ⩾ 4 with t + 1 ⩽ k ⩽

(
t
2

)
. We

demonstrate that Rk(G) remains connected for each 3-chromatic P5-free graph G and
each k ⩾ 4. Furthermore, for each t ⩾ 4 and t + 1 ⩽ k ⩽

(
t
2

)
, we provide a construc-

tion of a t-chromatic P5-free graph G with Rk(G) being disconnected. This resolves a
question posed by Feghali and Merkel.
Keywords: reconfiguration graphs; P5-free graphs; frozen colorings; k-mixing

1 Introduction

Reconfiguration problems, spanning various fields, involve transforming solutions to a source
problem into one another through elementary steps. These problems have been studied

1



across various topics in graph theory, including vertex colorings, perfect matchings, inde-
pendent sets, dominating sets, and more. For further details, readers are referred to surveys
by Nishimura [28] and van den Heuvel [25].

In this paper, we study reconfigurations for vertex colorings of graphs. All graphs
under consideration are finite and simple. For undefined notation and terminology, we
refer readers to [8]. Let G = (V (G), E(G)) be a graph, and k be a positive integer. A
proper k-coloring of G is a mapping ϕ : V (G) → {1, 2, . . . , k} such that ϕ(u) ̸= ϕ(v) for
any two adjacent vertices u, v ∈ V (G). We simply write k-coloring for proper k-coloring
in this paper, since all colorings under consideration are proper. Additionally, G is called
k-colorable if it admits a proper k-coloring. The chromatic number of G, denoted by χ(G),
is the smallest integer k such that G is k-colorable. In particular, G is called k-chromatic
if χ(G) = k. The reconfiguration graph for all k-colorings of G, also called the k-recoloring
graph, denoted by Rk(G), is the graph whose vertices are the k-colorings of G and two
colorings are joined by an edge if they differ in color on exactly one vertex.

As a major problem in this filed, the connectivity of Rk(G) has attracted widespread
interest. A result of Jerrum [26] implies the existence of k for each graph G, such that Rk(G)

is connected. Precisely, he proved that Rk(G) is connected for each integer k ⩾ ∆(G) + 2.
So it is of particular interest to investigate, for a given class G of graphs, which values of
k make Rk(G) connected for each graph G in G. Notably, it is observed that there exists
no direct correlation between the connectivities of graphs Ri(G) and Rj(G) for a given
graph G, where i and j are two integers with i > j ⩾ χ(G) (see Proposition 2.1). Many
related results have been proved in some special graphs classes, including degenerate graphs
[2, 9–12, 23], planar graphs [1, 14, 16–20, 22], and perfect graphs [7, 13, 23, 24, 27]. In this
paper, we focus on Pℓ-free graphs, which contain no induced path of length ℓ− 1.

Bonamy and Bousquet [6] proved that, for each t ⩾ 1 and k ⩾ t+1, Rk(G) is connected
for each t-chromatic P4-free graph G. It is worth noting that the lower bound of k is optimal,
because any t-coloring of Kt is an isolated vertex in Rt(Kt), where Kt is the complete graph
of order t. A natural question arises: Does the analogue hold for Pℓ-free graphs for ℓ ⩾ 5?
This property is trivially satisfied by 1-chromatic Pℓ-free graphs. But, unfortunately, based
on a result of Cereceda, van den Heuvel, and Johnson [13], Bonamy and Bousquet [6]
observed that it is not the case for 2-chromatic P6-free graphs.

Proposition 1.1 ([6, 13]). For any k ⩾ 3, there exists a 2-chromatic P6-free graph G with
Rk(G) being disconnected.

Actually, the above proposition can be simply generalized to t-chromatic P6-free graphs
for all t ⩾ 3. This completes the classification of the connectivity of Rk(G) for t-chromatic
P6-free graphs G. A directed proof of the following proposition is presented in Section 2.
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Proposition 1.2. For any t ⩾ 2, k ⩾ t + 1 and ℓ ⩾ 6, there exists a t-chromatic Pℓ-free
graph G with Rk(G) being disconnected.

Concerning the class of P5-free graphs, some related results exist for certain subclasses
[3–5, 7, 23, 24], but few encompass the entire class of graphs. In [7], Bonamy et al. proved
the following theorem.

Theorem 1.3 ([7]). If G is a 2-chromatic P5-free graph, then Rk(G) is connected for each
k ⩾ 3.

However, by a result of Feghali and Merkel [24], the analogue of Theorem 1.3 on the
class of t-chromatic P5-free graphs may not be true for some values of t.

Theorem 1.4 ([24]). For every positive integer p, there exists a 7p-chromatic P5-free graph
such that R8p(G) is disconnected.

In addition, they also proposed the following open problem.

Problem 1.5 ([24]). For any 3 ⩽ k ⩽ 6, whether Rk+1(G) is connected for any k-colorable
P5-free graph G.

We shall resolve Problem 1.5 in this paper. In fact, we prove a stronger result as follows,
which offers a detailed classification of the connectivity of Rk(G) concerning t-chromatic
P5-free graphs G for cases t = 3, and t ⩾ 4 with t+ 1 ⩽ k ⩽

(
t
2

)
.

Theorem 1.6. If G is a 3-chromatic P5-free graph, then Rk(G) is connected for each k ⩾ 4.

Theorem 1.7. For any t ⩾ 4 and t+ 1 ⩽ k ⩽
(
t
2

)
, there exists a t-chromatic P5-free graph

G with Rk(G) being disconnected.

The organization of this paper is as follows. Preliminaries are presented in the next
section. In Sections 3 and 4, we will prove Theorem 1.6 and Theorem 1.7, respectively. An
open problem is proposed in a subsequent section.

2 Preliminaries

Given a graph G = (V (G), E(G)), we use |V (G)| to denote the number of vertices, δ(G)
the minimum degree and diam(G) the diameter of G, respectively. For any x ∈ V (G), let
dG(x) and NG(x) denote the degree and neighborhood of x in G, respectively. Sometimes
we omit the sign G if there is no conflict occurs, such as using d(x) and N(x) instead of
dG(x) and NG(x). Let NG[x] = NG(x) ∪ {x}. By convenience, we use x ∼ y to denote
that x is adjacent to y and x ̸∼ y to denote that x is not adjacent to y. A clique of G
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is a set of mutually adjacent vertices, and that the maximum size of a clique, the clique
number of G, is denoted by ω(G). An ordered vertex pair (x, y) is a false twin if x ̸∼ y and
NG(x) ⊆ NG(y). For any two subsets X and Y of V (G), we denote by [X,Y ]G the set of
edges that has one end in X and the other in Y . We say that X is complete to Y or [X,Y ]G

is complete if every vertex in X is adjacent to every vertex in Y . The subgraph of G induced
by X is denoted by G[X]. For convenience, we simply write G−X for G[V (G) \X]. A set
X is called a homogeneous set if each vertex in V (G) \ X is either complete to X or has
no neighbor in X. Two graphs G and H are isomorphic, denoted by G ∼= H, if there are
bijections θ : V (G) → V (H) and ϕ : E(G) → E(H) such that ψG(e) = uv if and only if
ψH(ϕ(e)) = θ(u)θ(v).

Let Cn denote the cycle on n vertices. A graph is Pℓ-free if it does not contain Pℓ as
an induced graph, where ℓ is a positive integer. A gem is a graph consisting of a vertex v

and an induced path of lengh 3 such that the vertex v is complete to the vertex set of the
path. An expansion of a graph H is any graph G such that V (G) can be partitioned into
|V (H)| nonempty sets Qv, where v ∈ V (H), such that [Qu, Qv]G is complete if uv ∈ E(H),
and [Qu, Qv]G = ∅ if uv ̸∈ E(H). Note that H is an expansion of itself. An expansion of H
is a P4-free expansion if each Qv induces a P4-free graph.

For convenience, G is called k-mixing if Rk(G) is connected. For two k-colorings ϕ1
and ϕ2 of G, ϕ1 can be transformed to ϕ2 if there is a path from ϕ1 to ϕ2 in Rk(G). A
k-coloring of G is frozen if it forms an isolated vertex in Rk(G), in other words, if every
vertex of G whose closed neighborhood contains all k colors, then it is a frozen k-coloring
of G. Note that the existence of a frozen k-coloring of a graph immediately implies that
the graph is not k-mixing.

Let Hk be the complete bipartite graph on 2k vertices with two equal parts, and Mk

be a graph obtained from Hk by removing a perfect matching. By construction of Mk,
there exists a k-coloring such that every color appears exactly once in each part of Mk. In
addition, such a k-coloring is frozen. The following proposition was proved in [13].

Proposition 2.1 ([13]). For k ⩾ 3, the graph Mk is a bipartite graph that is i-mixing for
3 ⩽ i ⩽ k − 1 and i ⩾ k + 1, but not k-mixing.

Note that Mk is P6-free, χ(Mk) = ω(Mk) = 2, and Mk has a frozen k-coloring. So we
can derive Proposition 1.2 directly from Proposition 2.2.

Proposition 2.2. Let ℓ ⩾ 3, t ⩾ 2 and k ⩾ t + 1. If G is a Pℓ-free graph satisfying
χ(G) = ω(G) = t and G has a frozen k-coloring, then for any s ⩾ 1, there exists a Pℓ-free
graph G′ satisfying χ(G′) = ω(G′) = t+ s and G has a frozen (k + s)-coloring.

Proof. Let G be a Pℓ-free graph satisfying χ(G) = ω(G) = t and G has a frozen k-coloring.
Let c be a frozen k-coloring of G. Without out loss of generality, we assume that v1 is
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contained in a maximum clique and c(v1) = 1. Let A = {v1, v2, . . . vq} denote the vertex
set with color 1 under c and B = V (G) \ A. It is worth noting that A is a dominating
set of G. Let G1 be the graph obtained from G by adding a new independent vertex set
C = {u1, u2, . . . , uq} such that for any i ∈ {1, 2, . . . , q}, ui is adjacent to all vertices in
NG[vi].

Note that G1 is a (t+ 1)-partite graph and G1[u1 ∪NG[v1]] contains a clique with size
t + 1. So χ(G1) = t + 1. Now we give a (k + 1)-coloring c′ of G1 as follows: c′(u) = k + 1

for u ∈ C and c′(v) = c(v) for any v ∈ V (G). Since c is a frozen k-coloring and A is a
dominating set of G, we know that c′ is a frozen (k+1)-coloring of G1. It remains to prove
that G1 is Pℓ-free. Suppose that G1 contains an induced Pℓ. Let P denote an induced Pℓ of
G1. Since G is Pℓ-free, P contains at least one vertex of C. For any i ∈ {1, 2, . . . , q}, if P
contains ui, then P contains no vi otherwise P is not an induced path as NG(ui) = NG(vi).
Then G contains an induced Pℓ as we replace all vertices in P that belong to C with the
corresponding vertices in A, a contradiction.

Note that G1 is a Pℓ-free graph, satisfying that χ(G1) = ω(G1) = t + 1 and G1 has
a frozen (k + 1)-coloring. So we can perform the same operation on G1 as mentioned
above for G. Repeat the operation s times, we get a Pℓ-free graph Gs, satisfying that
χ(Gs) = ω(Gs) = t+ s and Gs has a frozen (k + s)-coloring.

3 Proof of Theorem 1.6

In this section, for convenience of the induction hypothesis, we prove the following
stronger version of Theorem 1.6.

Theorem 3.1. If G is a 3-colorable P5-free graph, then Rk(G) is connected for each k ⩾ 4.

3.1 Prerequisites

To complete the proof of Theorem 3.1, we need a result proved in [23] as follows.

Theorem 3.2 ([23]). If G is a 3-chromatic (P5, C5, P5)-free graph, then Rk(G) is connected
for each k ⩾ 4.

We also need the following useful fact.

Observation 3.3. The graph, obtained from C5 by expanding each of two vertices to K2,
has chromatic number at least 4.

Proof. If two adjacent vertices of C5 are each expanded to K2, then the new graph contains
a K4, so it’s chromatic number is at least 4. Suppose that C5 = x1x2x3x4x5x1 and two
nonadjacent vertices are each expanded to K2. Without loss of generality we assume that
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x1 and x3 are expanded. Let F denote the new graph with five nonempty sets Qxi , i ∈
{1, 2, . . . , 5}. Let yi ∈ Qxi for i ∈ {1, 2, . . . , 5} and let y1 ∼ y′1, y3 ∼ y′3, where y′1 ∈ Qx1

and y′3 ∈ Qx3 . Let c be a k-coloring of F . Since y4 ∼ y5, we have that c(y2) ̸= c(y5) or
c(y2) ̸= c(y4). If k ⩽ 3, then we have c(y1) = c(y′1) when c(y2) ̸= c(y5) and c(y3) = c(y′3)

when c(y2) ̸= c(y4), a contradiction. So χ(F ) ⩾ 4.

Before the formal proof of Theorem 3.1, we give a characterization of (P5, gem)-free
graphs with an induced C5 proved in [15].

Lemma 3.4 ([15]). Let G be a connected (P5,gem)-free graph that contains an induced C5.
Then either G ∈ H or G is a P4-free expansion of either G1, G2,. . ., G9 or G10, where
G1, G2, . . . , G10 are graphs shown in Figure 1, and the graph class H defined as follows: for
any H ∈ H, H is a connected (P5, gem)-free graph and V (H) can be partitioned into seven
nonempty sets A1, A2, . . . , A7 such that:

• Each Ai induces a P4-free graph.
• [A1, A2 ∪A5 ∪A6] is complete and [A1, A3 ∪A4 ∪A7] = ∅.
• [A3, A2 ∪A4 ∪A6] is complete and [A3, A5 ∪A7] = ∅.
• [A4, A5 ∪A6] is complete and [A4, A2 ∪A7] = ∅.
• [A2, A5 ∪A6 ∪A7] = ∅ and [A5, A6 ∪A7] = ∅.
• The vertex set of each component of G[A7] is a homogeneous set.
• Every vertex in A7 has a neighbor in A6.

Based on Lemma 3.4, we present some structural properties of 3-colorable (P5, gem)-
free graphs with an induced C5 below. Let G1 be the family of graphs, consisting of G1

and all graphs obtained from G1 by expanding one vertex to a disjoint union of K2, G4

be the family of graphs obtained from G4 by expanding x5 to a disjoint union of K2, and
G10 = {G10}.

Lemma 3.5. If G be a 3-colorable (P5, gem)-free graph with an induced C5, then G has a
false twin or G ∈ G1 ∪ G4 ∪ G10.

Proof. By Lemma 3.4, we have that G ∈ H or G is a P4-free expansion of either G1, G2,. . .,
G9 or G10. Suppose G ∈ H. Let xi ∈ Ai for i ∈ {1, 2, . . . , 5}. Note that G[{x1, x2, . . . , x5}]
is an induced C5. Since G is 3-colorable, at least one of A2 and A5 is an independent set
by Observation 3.3. Therefore G contains a false twin (x, y) with x ∈ A2 ∪A5 and y ∈ A6.

Now we assume that G is a P4-free expansion of G1, G2, . . . , G9 or G10. In this case, if
there exists a false twin, then we are done. So we suppose that there is no false twin in G.
For any i ∈ {1, 2, . . . , 10}, since G is 3-colorable and gem-free, any vertex of Gi can only be
expanded to a 2-colorable P4-free graph. We have the following.

Claim 1. Any connected 2-colorable P4-free graph except K1 and K2 contains a false twin.
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Figure 1: Basic graphs.

Proof. Let H be a connected 2-colorable P4-free graph and H /∈ {K1,K2}. Then we can
find an induced path P of length 2 in H. Let P = xzy. Suppose that x has a neighbor
w other than z, then w /∈ N(z) because H is 2-colorable. So w is adjacent to y, otherwise
H[{w, x, z, y}] is an induced P4 in H, a contradiction. So N(x) ⊆ N(y) and (x, y) is a false
twin.

Claim 2. For any i ∈ {1, 2, . . . , 10}, a vertex of Gi can only be expanded to K1 or a disjoint
union of K2.

Proof. Suppose that a vertex of Gi is expanded to H, where i ∈ {1, 2, . . . , 10}. By the
definition of expansion, we know that if x, y ∈ V (H) and NH(x) ⊆ NH(y), then NGi(x) ⊆
NGi(y). So we have that each component of H is K1 or K2 by Claim 1. If H contains
a K1, then H ∼= K1, otherwise the neighborhood of the vertex in K1 is included in the
neighborhood of any other vertex in H.

Since G contains no false twin, for any i ∈ {1, 2, . . . , 10}, if there exists a false twin
(x, y) in Gi, then x has to be expanded to a disjoint union of K2. Thus, for some i ∈
{1, 2, . . . , 10}, if Gi contains two false twins (x, y) and (u, v) such that x and u are on
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an induced C5 (we use [Gi : (x, y), (u, v)] to denote the special false twin pair), then by
Observation 3.3 and Claim 2, G is not a P4-free expansion of Gi. Therefore G is not
a P4-free expansion of G2, G3, G5, G6, G8, G9, as these special false twin pairs are [G2 :

(x5, x6), (x2, x6)], [G3 : (x5, x6), (x7, x3)], [G5 : (x5, x7), (x8, x2)], [G6 : (x5, x6), (x8, x1)], [G8 :

(x2, x7), (x3, x8)], [G9 : (x2, x7), (x3, x8)], respectively. In G7, since (x8, x5) and (x7, x2)

are two false twins, x8 and x7 must be expanded to a disjoint union of K2. Note that
G7[{x1, x2, x3}] and G7[{x4, x5, x6}] are two triangles. Since G contains no K4, any vertex
in {x1, x2, . . . �x6} cannot be expanded to a disjoint union of K2 by Claim 2. If G is the graph
obtained from G7 by expanding each of x8 and x7 to a disjoint union of K2, then for any
3-coloring c of G, we have c(x2) = c(x4) and c(x1) = c(x5). Thus, we have c(x3) = c(x6), a
contradiction. Hence, G is not a P4-free expansion of G7.

Now we consider G1, G4 and G10. Since G1 is an induced C5, Observation 3.3 and
Claim 2 imply that at most one vertex of G1 can be expanded to a disjoint union of K2.
So G ∈ G1. In G4, since (x5, x7) is a false twin, x5 must be expanded to a disjoint union of
K2. Note that any vertex of G4 other than x5 is in a triangle. Since G contains no K4, we
have G ∈ G4 by Claim 2. Finally for G10, since any vertex of G10 is in a triangle, G ∈ G10.

This completes the proof of Lemma 3.5.

3.2 Proof of Theorem 3.1

By way of contradiction, suppose that there exists k with k ⩾ 4 such that G is a 3-colorable
P5-free graph that is not k-mixng. Among all 3-colorable P5-free graphs that is not k-mixng,
we choose G so that |V (G)| is minimum.

Claim 3. δ(G) ⩾ 3.

Proof. Suppose that G contains a vertex x with d(x) ⩽ 2. Let α and β be two k-colorings
of G. Let α′ and β′ be the restrictions of α and β to G′ = G − {x}. By the minimality of
G, there exists a sequence S ′ of recolorings that transforms α′ into β′. We extend S ′ to a
sequence S of recolorings in G. To form S in G, we can perform each recoloring step from
S ′, except when a neighbor y of x is to be recolored with the current color of x. In that
case, we need to recolor x before recoloring its neighbor y. The number of colors unused
on N [x] is at least k− (d(x) + 1) ⩾ 1. We recolor x with one of these colors that is not the
target color in the next recoloring of a neighbor of x. Finally, if need, we recolor x to β(x).
Thus, we get that G is k-mixing, a contradiction.

Claim 4. G has no false twin.

Proof. Suppose that G contains a flase twin (x, y). Let α and β be any two k-colorings of
G where k ⩾ 4. Let α′ and β′ be the restrictions of α and β to G′ = G − {x}. By the

8



minimality of G, there exists a sequence S ′ of recolorings that transforms α′ into β′. To
extend S ′ to a sequence S of recolorings in G, we first recolor x to α(y), this is possible as
x ̸∼ y. Then we perform each recoloring step from S ′ except when y is recolored. Every
time, after recoloring y, we need to recolor x to the current color of y. Finally, if need, we
recolor x to β(x). Since N(x) ⊆ N(y), S is a sequence of recolorings that transforms α into
β. Thus, we get that G is k-mixing, a contradiction.

Claim 5. G has no induced gem.

Proof. Suppose that G has an induced gem, see Figure 2(a). Let α be a 3-coloring of G with
α(u) = 3, α(u1) = α(u3) = 1, α(u2) = α(u4) = 2. By Claim 4, we have N(u1) \N(u3) ̸= ∅
and N(u4) \N(u2) ̸= ∅. Here we have the following property (P1).

(P1) For any x ∈ N(u1) \N(u3), we have α(x) = 3 and N(x) ∩ {u1, u2, u3, u4} = {u1, u2, u4}.

Proof. If α(x) ̸= 3 or N(x) ∩ {u1, u2, u3, u4} = {u1}, then xu1u2u3u4 is an induced P5,
contradicting the fact that G is P5-free. Suppose N(x) ∩ {u1, u2, u3, u4} = {u1, u2}. Let
y ∈ N(u4) \ N(u2). Note that x ̸= y. Then xu2uu4y is an induced P5, a contradiction.
Suppose NG(x) ∩ {u1, u2, u3, u4} = {u1, u4}. By Claim 4, there exists a vertex z such that
z ∈ N(x)\N(u). Then zxu1uu3 is an induced P5 when α(z) = 1 and zxu4uu2 is an induced
P5 when α(z) = 2, a contradiction. Therefore, α(x) = 3 and N(x) ∩ {u1, u2, u3, u4} =

{u1, u2, u4}.

Let x ∈ N(u1)\N(u3) and y ∈ N(u4)\N(u2). By (P1) and the symmetry of u1 and u4,
we have x ̸= y, α(y) = 3 and N(y)∩{u1, u2, u3, u4} = {u1, u3, u4}. For i ∈ {1, 2}, let N i(x)

(resp. N i(y)) be the set of neighbors of x (resp. y) colored i under α except u1, u2, u3, u4.
Note that for i ∈ {1, 2}, N i(x) or N i(y) might be empty. We have the following property
(P2).

(P2) For any x1 ∈ N1(x), we have x1 ∼ u and x1 ∼ y. For any y2 ∈ N2(y), we have y2 ∼ u

and y2 ∼ x.

Proof. By the symmetry of x1 and y2, it suffices to prove x1 ∼ u and x1 ∼ y. If x1 ̸∼ u,
then x1xu1uu3 is an induced P5, a contradiction. If x1 ̸∼ y, then xx1uu3y is an induced P5,
a contradiction. Therefore, x1 ∼ u and x1 ∼ y.

Since x ̸∼ u and y ̸∼ u, Claim 4 and (P2) imply that N2(x) \ N(u) ̸= ∅ and N1(y) \
N(u) ̸= ∅. We have the following property (P3).

(P3)For any x∗2 ∈ N2(x) \N(u) and y∗1 ∈ N1(y) \N(u), we have x∗2 ̸∼ y, y1∗ ̸∼ x, x∗2 ∼ y∗1,
x∗2 ∼ u1, x∗2 ∼ u3, y∗1 ∼ u2, y∗1 ∼ u4.
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Figure 2: Structural properties of gems.

Proof. Since x∗2 ̸∈ N(u) and y∗1 ̸∈ N(u), we have x∗2 ̸∼ y and y∗1 ̸∼ x, otherwise, x∗2yu4uu2
and y∗1xu1uu3 are two induced P5, a contradiction. If x∗2 ̸∼ y∗1, then x∗2xu2y∗1y is an induced
P5, a contradiction. If x∗2 ̸∼ u3, then x∗2xu2u3y is an induced P5, a contradiction. If x∗2 ̸∼ u1,
then y∗1x2

∗u3uu1 is an induced P5, a contradiction. Thus x∗2 ∼ y∗1, x∗2 ∼ u1 and x∗2 ∼ u3.
Similarly, we have y∗1 ∼ u2 and y∗1 ∼ u4.

Let x∗2 ∈ N2(x)\N(u) and y∗1 ∈ N1(y)\N(u). Since α(x∗2) = α(u2) and α(y∗1) = α(u3),
we have x∗2 ̸∼ u2 and y∗1 ̸∼ u3. The induced subgraph H = G[{u, u1, u2, u3, u4, x, y, x∗2, y∗1}]
is shown in Figure 2(b). Note that G[{u1, u, u2, x, x∗2}] and G[{u4, u, u3, y, y∗1}] are two
induced gems. We first consider G[{u1, u, u2, x, x∗2}]. The following discussion is similar to
the foregoing discussion for the structure of gem. Since x∗2 ̸∼ u2, by Claim 4 there exists a
vertex z such that z ∈ N(x∗2) \N(u2). By (P1), we know that z ∼ x, z ∼ u and α(z) = 1.
By the adjacency relationship, we have z ̸= u3, y

∗
1, which means that z ̸∈ V (H). Since

z ∈ N1(x), we have z ∼ y by (P2). Since α(z) = α(u1) = 1, we have z ̸∼ u1. Then Claim 4
and (P2) imply that there exists a vertex z∗3 ∈ N(z) \N(u1) and α(z∗3) = 3. Since y ∼ u1,
we have z∗3 ̸= y. Thus, z∗3 ̸∈ V (H). Note that u3 ∈ N(u) \ N(u1), u4 ∈ N(u3) \ N(u1)

and u4 ̸∼ u1. Then by (P3), we have z∗3 ∼ x∗2, z∗3 ∼ u2 and z∗3 ∼ u4. Now we consider the
induced gem G[{u4, u, u3, y, y∗1}]. By symmetry, there exist two vertices w,w∗

3 ̸∈ V (H) such
that w ∈ N(y∗1) \ N(u4), α(w) = 2 and w∗

3 ∈ N(w) \ N(u4), α(w∗
3) = 3, w∗

3 ∼ u1. Then
w∗
3u1uu4z3

∗ is an induced P5, which is shown in Figure 2(c), a contradiction.

Claim 6. G has no induced C5.

Proof. Suppose that G has an induced C5. By Claim 5, we know that G is a 3-colorable
(P5, gem)-free graph with an induced C5. Then by Lemma 3.5, we have G ∈ G1 ∪ G4 ∪ G10.
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Note that any graph in G1 ∪G4 ∪G10 has no false twin. Since any graph in G1 has minimum
degree 2, Claim 3 implies that G /∈ G1. Now we consider G ∈ G4 ∪ G10. We first give a
subclaim as follows.

Subclaim 6.1. Let x, y be two nonadjacent vertices of G and G′ be the graph obtained from
G by identifying x and y and deleting parallel edges. If G′ is a k-colorable P5-free graph,
then there exists a k-coloring α of G such that α cannot be transformed to any k-coloring
α′ of G with α′(x) = α′(y).

Proof. Let α and β be any two k-colorings of G. Suppose that α and β can be transformed to
two k-colorings α′ and β′ of G such that α′(x) = α′(y) and β′(x) = β′(y), respectively. Let z
denote the new vertex in G′ after identifying x and y in G. Let α′′ and β′′ be two k-colorings
of G′ satisfying that α′′(z) = α′(x), β′′(z) = β′(x) and α′′(w) = α′(w), β′′(w) = β′(w) for
any w ∈ V (G′) \ {z}. Since G′ is P5-free and k-colorable, α′′ can be transformed into β′′

by the minimality of G. This implies that α′ can be transformed into β′. Thus, α can be
transformed into β by α into α′, α′ into β′, β′ into β. Hence, by arbitrary of α and β, G is
k-mixing, a contradiction.

The following discussion is split into two cases below.
Case 1. G ∈ G4. See Figure 3(a).
Let G′ be the graph obtained from G by identifying x1 and x6 and deleting parallel

edges as shown in Figure 3(b). It is worth noting that G′ is P5-free. A 3-coloring of G′ is
shown in Figure 3(c). So G′ is P5-free and 3-colorable. Now we claim that any k-coloring α
of G can be transformed to a k-coloring α′ of G such that α′(x1) = α′(x6). If α(x1) = α(x6),
then we are done. So we assume α(x1) ̸= α(x6). Without loss of generality, we assume that
α(x1) = 1 and α(x6) = 2. Let U = V (G) \ {x1, x2, x3, x6}. Then for any x ∈ U , since x is
the common neighbor of x1 and x6, we have α(x) ∈ {3, 4, . . . , k}. If α(x2) ̸= 2, then we can
recolor x1 by color 2 and we are done, so we assume α(x2) = 2. By symmetry, we assume
α(x3) = 1. Note that k ⩾ 4. Let a ∈ {3, 4, . . . , k} \ α(x4). We recolor x3, x6 by colors
a, 1 in order, which yields a k-coloring α′ of G such that α′(x1) = α′(x6), contradicting
Subclaim 6.1.

x6

x4 x3

x1 x2

x7

(a) G ∈ G4

x3

x4

z x2

x7

(b) G′: identify x1 and x6 to z in G

3
2

2

3

3
2

3

2

1 2

3

(c) a 3-coloring of G′

Figure 3: Some related graphs in the proof of Case 1.
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Case 2. G ∈ G10. See Figure 4(a).
First, we redraw G10 as Figure 4(a). Let G′ be the graph obtained from G by identifying

x2 and x6 and deleting parallel edges. Let z denote the new vertex in G′. As shown in
Figure 4(b). Figure 4(c) gives a 3-coloring of G′, so G′ is 3-colorable. If G′ contains an
induced P5, then it must contain the edge x4z because G − {x6} is P5-free. In addition,
G′ cannot contain both x8 and x3, because they are the common neighbors of z and x4.
However, the graph G′−{x3, x8} is obviously P5-free, a contradiction. Hence, G′ is P5-free.

x4

x5

x3

x7

x2

x8

x1

x6

x9

(a) G = G10

x4

x5

x3

x7

z

x8

x1

x9

(b) G′: identify x2 and x6 to z in G

3

1

1

2

2

1

3

3

(c) a 3-coloring of G′

Figure 4: Some related graphs in the proof of Case 2.

Next, we claim that any k-coloring α of G can be transformed to a k-coloring α′ of G
such that α′(x2) = α′(x6). If α(x2) = α(x6), then we are done. So we assume α(x2) ̸= α(x6).
Without loss of generality, we assume that α(x2) = 1 and α(x6) = 2. If α(x3) ̸= 2 or
α(x4) ̸= 1, then recolor x2 by color 2 or x6 by color 1, which yields a k-coloring α′ of G with
α′(x2) = α′(x6). So we suppose that α(x3) = 2 and α(x4) = 1. If {α(x5), α(x8)} ̸= {3, 4},
then recolor x4 by a color in {3, 4} \ {α(x5), α(x8)} and x6 by color 1 in order, which yields
a k-coloring α′ of G with α′(x2) = α′(x6) = 1. If {α(x5), α(x8)} = {3, 4}, then α(x7) = 1.
Recolor x3 by a color in {3, 4}\{α(x9)} and x2 by color 2 in order, which yields a k-coloring
α′ of G with α′(x2) = α′(x6) = 2, contradicting Subclaim 6.1.

Claim 7. G has no induced P5.

Proof. We first give a subclaim. Let [{x, y}, x1x2x3x4] denote the graph structure consisting
of an induced P4 = x1x2x3x4 and two vertices x and y such that {x1, x2} ⊆ N(x)∩N(y) (see
Figure 5(a)). Note that the adjacency relationship between x and y, and between {x, y}
and {x3, x4} is uncertain. Let FG = {[{x, y}, x1x2x3x4]|G contains the graph structure
[{x, y}, x1x2x3x4]}.

Subclaim 7.1. FG is an empty set.

Proof. Suppose that G contains a graph structure [{x, y}, x1x2x3x4] ∈ FG. Since G is
3-colorable, x ̸∼ y. By Claim 5, we have that |N(x) ∩ {x1, x2, x3, x4}| ̸= 4 and |N(y) ∩
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{x1, x2, x3, x4}| ̸= 4. Suppose N(x)∩{x1, x2, x3, x4} = N(y)∩{x1, x2, x3, x4}. Since x ̸∼ y,
Claim 4 implies that there exist x′ ∈ N(x) \ N(y) and y′ ∈ N(y) \ N(x). Then x′ ∼ x1

or y′ ∼ x1, otherwise x′xx1yy
′ is an induced P5 or C5. Without loss of generality, we

assume x′ ∼ x1. Since G is 3-colorable, x′ ̸∼ x2. Then x1x
′xx2y forms an induced gem,

a contradiction. So N(x) ∩ {x1, x2, x3, x4} ̸= N(y) ∩ {x1, x2, x3, x4}. By the symmetry of
x and y, it suffices to consider the following cases. If N(x) ∩ {x1, x2, x3, x4} = {x1, x2},
then xx1yx3x4 is an induced P5 when N(y) ∩ {x1, x2, x3, x4} = {x1, x2, x3} and xx1yx4x3

is an induced P5 when NG(y) ∩ {x1, x2, x3, x4} = {x1, x2, x4}, a contradiction. If N(x) ∩
{x1, x2, x3, x4} = {x1, x2, x3} and N(y) ∩ {x1, x2, x3, x4} = {x1, x2, x4}, then x2yx1xx3 is
an induced gem, a contradiction. Hence FG is an empty set.

x4

x3

x2

x1

x y

(a) [{x, y}, x1x2x3x4]

u4

u3

u2

u1

u

(b) P5

u4

u3

u2

u1

u

v

(c) v ̸∼ u1

u4

u3

u2

u1

u

v

(d) v ∼ u1

Figure 5: Some related graphs in the proof of Claim 7.

Now suppose that G has an induced P5 shown in Figure 5(b), where u1u2u3u4 is an
induced P4 and u is adjacent to u1, u2, u4. Since u4 ̸∼ u2, Claim 4 implies that there exists
a vertex v ∈ N(u4) \ N(u2). Note that v ∼ u3, otherwise u1u2u3u4v is an induced P5 or
C5. We need to handle the following two cases.

Case 1. v ̸∼ u1. See Figure 5(c).
Since δ(G) ⩾ 3, there exists a vertex x ∈ N(u1) \ {u, u2}. By Subclaim 7.1, x ̸∼ u2,

otherwise [{u, x}, u1u2u3u4] ∈ FG. Then x ∼ u3, otherwise xu1u2u3u4 is an induced P5

or C5. It follows that x ̸∼ u4, otherwise [{v, x}, u4u3u2u1] ∈ FG. Then x ∼ u, otherwise
u1xu3u4u is an induced C5. Now [{u2, x}, u1uu4u3] ∈ FG, contrary to Subclaim 7.1.

Case 2. v ∼ u1. See Figure 5(d).
Note that u ̸∼ v, otherwise uu2u1vu4 is an induced gem. Then the graph shown in

Figure 5(d) is an induced graph of G, let G1 denote the graph. If G = G1, then do the
same argument as Case 1 of Claim 6, we have that G is k-mixing, a contradiction. So
V (G) \ V (G1) ̸= ∅. Since all vertices of G1 are symmetry, without loss of generality, we
assume that w ∈ V (G)\V (G1) and w ∼ v. Note that uu2u3v is an induced P4. It follows that
w ̸∼ u3, otherwise [{w, u4}, vu3u2u] ∈ FG. Then w ∼ u2, otherwise uu2u3vw is an induced
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P5 or C5. Additionally, we have w ̸∼ u and w ̸∼ u4, otherwise [{w, u1}, uu2u3u4] ∈ FG and
[{w, u3}, u4vu1u] ∈ FG. Then we get that uu2wvu4 is an induced C5, a contradiction.

Now we get that G is 3-colorable {P5, P5, C5}-free. Then by Lemma 3.2, G is k-mixing,
contradicting our assumption. This completes the proof of Theorem 1.6.

4 Proof of Theorem 1.7

In this section, for any t ⩾ 4 and t + 1 ⩽ k ⩽
(
t
2

)
, we construct a P5-free graph with

chromatic number t that has a frozen k-coloring.
Let S = {u1, u2, . . . , u2k}. Let T = {{a, b}, a, b ∈ {1, 2, . . . , t}, a ̸= b}, which has

(
t
2

)
elements. Let P = {{1, 2}, {2, 3}, . . . , {t − 1, t}, {t, 1}}. Note that P ⊆ T . Let ϕ : S →
{1, 2, . . . , k} be a mapping such that ϕ(u2i−1) = ϕ(u2i) = i for each i ∈ {1, 2, . . . , k}. Let
α : S → {1, 2, . . . , t} be a mapping such that {α(u2i−1), α(u2i)} ∈ P for i ∈ {1, 2, . . . , t},
{α(u2i−1), α(u2i)} ∈ T \P for i ∈ {t+1, . . . , k}, and {α(u2i−1), α(u2i)} ̸= {α(u2j−1), α(u2j)}
for any i, j ∈ {1, . . . , k} and i ̸= j. Note that it is possible because t + 1 ⩽ k ⩽

(
t
2

)
. Now

we construct a graph Gt,k with the vertex set S and any two vertices ui, uj ∈ S is an edge
of G if and only if ϕ(ui) ̸= ϕ(uj) and α(ui) ̸= α(uj). Note that ϕ is a k-coloring and α is
a t-coloring of Gt,k. So Gt,k is t-colorable. Since Gt,k[{u1, u3, . . . , u2t−1}] is a clique with
size t, we have χ(Gt,k) = t. Next we show that Gt,k is P5-free and ϕ is a frozen coloring
of Gt,k. The graph G4,5 shown in Figure 6, where the label on ui represents the color pair
(ϕ(ui), α(ui)) for i ∈ {1, 2, . . . , 10}.

u1(1,1)

u2(1,2)

u3
(2,2)

u4
(2,3)

u5
(3,3)

u6
(3,4)

u7
(4,4)

u8
(4,1)

u9(5,1)

u10(5,3)

Figure 6: The graph G4,5.

Claim 8. ϕ is a frozen k-coloring of Gt,k.
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Proof. We need to prove {ϕ(v) : v ∈ N(u)} = {1, 2, . . . , k} \ {ϕ(u)} for u ∈ S. Without
loss of generality, we prove that it holds for u1. In other words, we need to prove for any
2 ⩽ j ⩽ k, u1 is adjacent to at least one vertex in {u2j−1, u2j}. Let j ∈ {2, . . . , k}. Note that
ϕ(u1) ̸= ϕ(u2j−1) and ϕ(u1) ̸= ϕ(u2j). Then by the construction of Gt,k, it suffices to prove
α(u1) ̸= α(u2j−1) or α(u1) ̸= α(u2j). This is established because α(u2j−1) ̸= α(u2j).

Claim 9. Gt,k is P5-free.

Proof. Suppose that Gt,k contains an induced P5, then we denote the induced P5 by P =

x1x2x3x4x5. Let θ denote the mapping ϕ or α.
We first claim that for any two adjacent vertices xi and xj of P , if xk ̸∼ xi and xk ̸∼ xj ,

then θ(xk) = θ(xi) or θ(xk) = θ(xj), where i, j, k ∈ {1, 2, . . . , 5}. Suppose that θ = ϕ and
ϕ(xk) ≠ ϕ(xi), ϕ(xk) ̸= ϕ(xj). Since α(xi) ≠ α(xj), α(xk) ̸= α(xi) or α(xk) ̸= α(xj). Then
xk ∼ xi when α(xk) ̸= α(xi) and xk ∼ xj when α(xk) ̸= α(xj), a contradiction. Hence,
ϕ(xk) = ϕ(xi) or ϕ(xk) = ϕ(xj). Similarly, we can prove that it holds for α.

So we can obtain that θ(x4) ∈ {θ(x1), θ(x2)} and θ(x5) ∈ {θ(x1), θ(x2)}∩{θ(x2), θ(x3)}.
Note that θ(x5) = θ(x2) when θ(x1), θ(x2), θ(x3) are distinct. Let θ(x1) = a and θ(x2) = b,
where a ̸= b. If θ(x3) = a, then θ(x4) = b and θ(x5) = a. If θ(x3) ̸= a, then let θ(x3) = c,
where a, b, c are pairwise distinct. It follows that θ(x5) = b and θ(x4) = a. So P has only
two types of coloring ababa or abcab under θ. Since each color appears exactly twice under
ϕ, the type of coloring of P can only be abcab under ϕ. Note that α(xi) ̸= α(xj) when
ϕ(xi) = ϕ(xj). So the types of coloring of P under ϕ and α are distinct. Hence, the type
of coloring of P can only be ababa under α. Note that ϕ(x1) = ϕ(x4), ϕ(x2) = ϕ(x5) and
ϕ(x1) ̸= ϕ(x2). By the definitions of ϕ and α, we have {α(x1), α(x4)} ̸= {α(x2), α(x5)}, a
contradiction. Therefore, Gt,k is P5-free.

5 Conclusion

Combining Theorems 1.6 and 1.7, the connectivity of Rk(G) concerning t-chromatic P5-free
graphs G is still unclear for some values of k and t, so we propose the following problem.

Problem 5.1. For any t ⩾ 4 and k ⩾
(
t
2

)
+ 1, does there exist a t-chromatic P5-free graph

G such that Rk(G) is disconnected?

Proposition 2.2 might be useful for providing an affirmative answer to Problem 5.1.
Specifically, if there exists a t-chromatic P5-free graph G with ω(G) = t that has a frozen
k-coloring, where k ⩾ t+ 1 ⩾ 5, then for any s ⩾ 1, there exists a (t+ s)-chromatic P5-free
graph G with ω(G) = t+ s that has a frozen (k+ s)-coloring. Consequently, if such graphs
exist for t = 4 with each k ⩾ t+1, then Problem 5.1 has an affirmative answer. It is worth
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noting that, we can not apply Proposition 2.2 to improve the upper bound of k in Theorem
1.7, since

(
t−1
2

)
+ 1 ⩽

(
t
2

)
for each t ⩾ 4.
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