Reconfiguration graphs for vertex colorings of P_5 -free graphs

Hui Lei¹, Yulai Ma², Zhengke Miao³, Yongtang Shi⁴, Susu Wang⁴

¹ School of Statistics and Data Science, LPMC and KLMDASR Nankai University, Tianjin 300071, China

 2 Department of Mathematics

Paderborn University, Warburger Str. 100, Paderborn 33098, Germany

³ School of Mathematics and Statistics

& Key Laboratory of Analytical Mathematics and Applications (Ministry of Education)

Fujian Normal University, Fuzhou, Fujian 350007, China

 4 Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, China

Email: hlei@nankai.edu.cn; yulai.ma@upb.de;

 $zkmiao@jsnu.edu.cn;\ shi@nankai.edu.cn;\ susuwang@mail.nankai.edu.cn$

May 24, 2024

Abstract

For any positive integer k, the reconfiguration graph for all k-colorings of a graph G, denoted by $\mathcal{R}_k(G)$, is the graph where vertices represent the k-colorings of G, and two k-colorings are joined by an edge if they differ in color on exactly one vertex. Bonamy et al. established that for any 2-chromatic P_5 -free graph G, $\mathcal{R}_k(G)$ is connected for each $k \ge 3$. On the other hand, Feghali and Merkel proved the existence of a 7*p*-chromatic P_5 -free graph G for every positive integer p, such that $\mathcal{R}_{8p}(G)$ is disconnected.

In this paper, we offer a detailed classification of the connectivity of $\mathcal{R}_k(G)$ concerning t-chromatic P_5 -free graphs G for cases t = 3, and $t \ge 4$ with $t + 1 \le k \le {t \choose 2}$. We demonstrate that $\mathcal{R}_k(G)$ remains connected for each 3-chromatic P_5 -free graph G and each $k \ge 4$. Furthermore, for each $t \ge 4$ and $t + 1 \le k \le {t \choose 2}$, we provide a construction of a t-chromatic P_5 -free graph G with $\mathcal{R}_k(G)$ being disconnected. This resolves a question posed by Feghali and Merkel.

Keywords: reconfiguration graphs; P_5 -free graphs; frozen colorings; k-mixing

1 Introduction

Reconfiguration problems, spanning various fields, involve transforming solutions to a source problem into one another through elementary steps. These problems have been studied across various topics in graph theory, including vertex colorings, perfect matchings, independent sets, dominating sets, and more. For further details, readers are referred to surveys by Nishimura [28] and van den Heuvel [25].

In this paper, we study reconfigurations for vertex colorings of graphs. All graphs under consideration are finite and simple. For undefined notation and terminology, we refer readers to [8]. Let G = (V(G), E(G)) be a graph, and k be a positive integer. A proper k-coloring of G is a mapping $\phi : V(G) \rightarrow \{1, 2, \ldots, k\}$ such that $\phi(u) \neq \phi(v)$ for any two adjacent vertices $u, v \in V(G)$. We simply write k-coloring for proper k-coloring in this paper, since all colorings under consideration are proper. Additionally, G is called k-colorable if it admits a proper k-coloring. The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable. In particular, G is called k-chromatic if $\chi(G) = k$. The reconfiguration graph for all k-colorings of G, also called the k-recoloring graph, denoted by $\mathcal{R}_k(G)$, is the graph whose vertices are the k-colorings of G and two colorings are joined by an edge if they differ in color on exactly one vertex.

As a major problem in this filed, the connectivity of $\mathcal{R}_k(G)$ has attracted widespread interest. A result of Jerrum [26] implies the existence of k for each graph G, such that $\mathcal{R}_k(G)$ is connected. Precisely, he proved that $\mathcal{R}_k(G)$ is connected for each integer $k \ge \Delta(G) + 2$. So it is of particular interest to investigate, for a given class \mathcal{G} of graphs, which values of k make $\mathcal{R}_k(G)$ connected for each graph G in \mathcal{G} . Notably, it is observed that there exists no direct correlation between the connectivities of graphs $\mathcal{R}_i(G)$ and $\mathcal{R}_j(G)$ for a given graph G, where i and j are two integers with $i > j \ge \chi(G)$ (see Proposition 2.1). Many related results have been proved in some special graphs classes, including degenerate graphs [2, 9–12, 23], planar graphs [1, 14, 16–20, 22], and perfect graphs [7, 13, 23, 24, 27]. In this paper, we focus on P_ℓ -free graphs, which contain no induced path of length $\ell - 1$.

Bonamy and Bousquet [6] proved that, for each $t \ge 1$ and $k \ge t+1$, $\mathcal{R}_k(G)$ is connected for each t-chromatic P_4 -free graph G. It is worth noting that the lower bound of k is optimal, because any t-coloring of K_t is an isolated vertex in $\mathcal{R}_t(K_t)$, where K_t is the complete graph of order t. A natural question arises: Does the analogue hold for P_ℓ -free graphs for $\ell \ge 5$? This property is trivially satisfied by 1-chromatic P_ℓ -free graphs. But, unfortunately, based on a result of Cereceda, van den Heuvel, and Johnson [13], Bonamy and Bousquet [6] observed that it is not the case for 2-chromatic P_6 -free graphs.

Proposition 1.1 ([6, 13]). For any $k \ge 3$, there exists a 2-chromatic P_6 -free graph G with $\mathcal{R}_k(G)$ being disconnected.

Actually, the above proposition can be simply generalized to t-chromatic P_6 -free graphs for all $t \ge 3$. This completes the classification of the connectivity of $R_k(G)$ for t-chromatic P_6 -free graphs G. A directed proof of the following proposition is presented in Section 2. **Proposition 1.2.** For any $t \ge 2$, $k \ge t+1$ and $\ell \ge 6$, there exists a t-chromatic P_{ℓ} -free graph G with $\mathcal{R}_k(G)$ being disconnected.

Concerning the class of P_5 -free graphs, some related results exist for certain subclasses [3–5, 7, 23, 24], but few encompass the entire class of graphs. In [7], Bonamy et al. proved the following theorem.

Theorem 1.3 ([7]). If G is a 2-chromatic P_5 -free graph, then $\mathcal{R}_k(G)$ is connected for each $k \ge 3$.

However, by a result of Feghali and Merkel [24], the analogue of Theorem 1.3 on the class of t-chromatic P_5 -free graphs may not be true for some values of t.

Theorem 1.4 ([24]). For every positive integer p, there exists a 7p-chromatic P_5 -free graph such that $\mathcal{R}_{8p}(G)$ is disconnected.

In addition, they also proposed the following open problem.

Problem 1.5 ([24]). For any $3 \leq k \leq 6$, whether $\mathcal{R}_{k+1}(G)$ is connected for any k-colorable P_5 -free graph G.

We shall resolve Problem 1.5 in this paper. In fact, we prove a stronger result as follows, which offers a detailed classification of the connectivity of $R_k(G)$ concerning *t*-chromatic P_5 -free graphs G for cases t = 3, and $t \ge 4$ with $t + 1 \le k \le {t \choose 2}$.

Theorem 1.6. If G is a 3-chromatic P_5 -free graph, then $\mathcal{R}_k(G)$ is connected for each $k \ge 4$.

Theorem 1.7. For any $t \ge 4$ and $t + 1 \le k \le {t \choose 2}$, there exists a t-chromatic P_5 -free graph G with $\mathcal{R}_k(G)$ being disconnected.

The organization of this paper is as follows. Preliminaries are presented in the next section. In Sections 3 and 4, we will prove Theorem 1.6 and Theorem 1.7, respectively. An open problem is proposed in a subsequent section.

2 Preliminaries

Given a graph G = (V(G), E(G)), we use |V(G)| to denote the number of vertices, $\delta(G)$ the minimum degree and diam(G) the diameter of G, respectively. For any $x \in V(G)$, let $d_G(x)$ and $N_G(x)$ denote the degree and neighborhood of x in G, respectively. Sometimes we omit the sign G if there is no conflict occurs, such as using d(x) and N(x) instead of $d_G(x)$ and $N_G(x)$. Let $N_G[x] = N_G(x) \cup \{x\}$. By convenience, we use $x \sim y$ to denote that x is adjacent to y and $x \not\sim y$ to denote that x is not adjacent to y. A clique of G is a set of mutually adjacent vertices, and that the maximum size of a clique, the *clique* number of G, is denoted by $\omega(G)$. An ordered vertex pair (x, y) is a false twin if $x \not\sim y$ and $N_G(x) \subseteq N_G(y)$. For any two subsets X and Y of V(G), we denote by $[X, Y]_G$ the set of edges that has one end in X and the other in Y. We say that X is complete to Y or $[X, Y]_G$ is complete if every vertex in X is adjacent to every vertex in Y. The subgraph of G induced by X is denoted by G[X]. For convenience, we simply write G - X for $G[V(G) \setminus X]$. A set X is called a homogeneous set if each vertex in $V(G) \setminus X$ is either complete to X or has no neighbor in X. Two graphs G and H are isomorphic, denoted by $G \cong H$, if there are bijections $\theta : V(G) \to V(H)$ and $\phi : E(G) \to E(H)$ such that $\psi_G(e) = uv$ if and only if $\psi_H(\phi(e)) = \theta(u)\theta(v)$.

Let C_n denote the cycle on n vertices. A graph is P_{ℓ} -free if it does not contain P_{ℓ} as an induced graph, where ℓ is a positive integer. A gem is a graph consisting of a vertex vand an induced path of lengh 3 such that the vertex v is complete to the vertex set of the path. An expansion of a graph H is any graph G such that V(G) can be partitioned into |V(H)| nonempty sets Q_v , where $v \in V(H)$, such that $[Q_u, Q_v]_G$ is complete if $uv \in E(H)$, and $[Q_u, Q_v]_G = \emptyset$ if $uv \notin E(H)$. Note that H is an expansion of itself. An expansion of His a P_4 -free expansion if each Q_v induces a P_4 -free graph.

For convenience, G is called k-mixing if $\mathcal{R}_k(G)$ is connected. For two k-colorings ϕ_1 and ϕ_2 of G, ϕ_1 can be transformed to ϕ_2 if there is a path from ϕ_1 to ϕ_2 in $\mathcal{R}_k(G)$. A k-coloring of G is frozen if it forms an isolated vertex in $\mathcal{R}_k(G)$, in other words, if every vertex of G whose closed neighborhood contains all k colors, then it is a frozen k-coloring of G. Note that the existence of a frozen k-coloring of a graph immediately implies that the graph is not k-mixing.

Let H_k be the complete bipartite graph on 2k vertices with two equal parts, and M_k be a graph obtained from H_k by removing a perfect matching. By construction of M_k , there exists a k-coloring such that every color appears exactly once in each part of M_k . In addition, such a k-coloring is frozen. The following proposition was proved in [13].

Proposition 2.1 ([13]). For $k \ge 3$, the graph M_k is a bipartite graph that is i-mixing for $3 \le i \le k-1$ and $i \ge k+1$, but not k-mixing.

Note that M_k is P_6 -free, $\chi(M_k) = \omega(M_k) = 2$, and M_k has a frozen k-coloring. So we can derive Proposition 1.2 directly from Proposition 2.2.

Proposition 2.2. Let $\ell \ge 3$, $t \ge 2$ and $k \ge t+1$. If G is a P_{ℓ} -free graph satisfying $\chi(G) = \omega(G) = t$ and G has a frozen k-coloring, then for any $s \ge 1$, there exists a P_{ℓ} -free graph G' satisfying $\chi(G') = \omega(G') = t + s$ and G has a frozen (k+s)-coloring.

Proof. Let G be a P_{ℓ} -free graph satisfying $\chi(G) = \omega(G) = t$ and G has a frozen k-coloring. Let c be a frozen k-coloring of G. Without out loss of generality, we assume that v_1 is contained in a maximum clique and $c(v_1) = 1$. Let $A = \{v_1, v_2, \ldots, v_q\}$ denote the vertex set with color 1 under c and $B = V(G) \setminus A$. It is worth noting that A is a dominating set of G. Let G_1 be the graph obtained from G by adding a new independent vertex set $C = \{u_1, u_2, \ldots, u_q\}$ such that for any $i \in \{1, 2, \ldots, q\}$, u_i is adjacent to all vertices in $N_G[v_i]$.

Note that G_1 is a (t+1)-partite graph and $G_1[u_1 \cup N_G[v_1]]$ contains a clique with size t+1. So $\chi(G_1) = t+1$. Now we give a (k+1)-coloring c' of G_1 as follows: c'(u) = k+1 for $u \in C$ and c'(v) = c(v) for any $v \in V(G)$. Since c is a frozen k-coloring and A is a dominating set of G, we know that c' is a frozen (k+1)-coloring of G_1 . It remains to prove that G_1 is P_ℓ -free. Suppose that G_1 contains an induced P_ℓ . Let P denote an induced P_ℓ of G_1 . Since G is P_ℓ -free, P contains at least one vertex of C. For any $i \in \{1, 2, \ldots, q\}$, if P contains u_i , then P contains no v_i otherwise P is not an induced path as $N_G(u_i) = N_G(v_i)$. Then G contains an induced P_ℓ as we replace all vertices in P that belong to C with the corresponding vertices in A, a contradiction.

Note that G_1 is a P_{ℓ} -free graph, satisfying that $\chi(G_1) = \omega(G_1) = t + 1$ and G_1 has a frozen (k + 1)-coloring. So we can perform the same operation on G_1 as mentioned above for G. Repeat the operation s times, we get a P_{ℓ} -free graph G_s , satisfying that $\chi(G_s) = \omega(G_s) = t + s$ and G_s has a frozen (k + s)-coloring. \Box

3 Proof of Theorem 1.6

In this section, for convenience of the induction hypothesis, we prove the following stronger version of Theorem 1.6.

Theorem 3.1. If G is a 3-colorable P_5 -free graph, then $\mathcal{R}_k(G)$ is connected for each $k \ge 4$.

3.1 Prerequisites

To complete the proof of Theorem 3.1, we need a result proved in [23] as follows.

Theorem 3.2 ([23]). If G is a 3-chromatic $(P_5, C_5, \overline{P_5})$ -free graph, then $\mathcal{R}_k(G)$ is connected for each $k \ge 4$.

We also need the following useful fact.

Observation 3.3. The graph, obtained from C_5 by expanding each of two vertices to K_2 , has chromatic number at least 4.

Proof. If two adjacent vertices of C_5 are each expanded to K_2 , then the new graph contains a K_4 , so it's chromatic number is at least 4. Suppose that $C_5 = x_1 x_2 x_3 x_4 x_5 x_1$ and two nonadjacent vertices are each expanded to K_2 . Without loss of generality we assume that x_1 and x_3 are expanded. Let F denote the new graph with five nonempty sets $Q_{x_i}, i \in \{1, 2, \ldots, 5\}$. Let $y_i \in Q_{x_i}$ for $i \in \{1, 2, \ldots, 5\}$ and let $y_1 \sim y'_1, y_3 \sim y'_3$, where $y'_1 \in Q_{x_1}$ and $y'_3 \in Q_{x_3}$. Let c be a k-coloring of F. Since $y_4 \sim y_5$, we have that $c(y_2) \neq c(y_5)$ or $c(y_2) \neq c(y_4)$. If $k \leq 3$, then we have $c(y_1) = c(y'_1)$ when $c(y_2) \neq c(y_5)$ and $c(y_3) = c(y'_3)$ when $c(y_2) \neq c(y_4)$, a contradiction. So $\chi(F) \geq 4$.

Before the formal proof of Theorem 3.1, we give a characterization of $(P_5, \text{ gem})$ -free graphs with an induced C_5 proved in [15].

Lemma 3.4 ([15]). Let G be a connected (P_5, gem) -free graph that contains an induced C_5 . Then either $G \in \mathcal{H}$ or G is a P_4 -free expansion of either G_1, G_2, \ldots, G_9 or G_{10} , where G_1, G_2, \ldots, G_{10} are graphs shown in Figure 1, and the graph class \mathcal{H} defined as follows: for any $H \in \mathcal{H}$, H is a connected (P_5, gem) -free graph and V(H) can be partitioned into seven nonempty sets A_1, A_2, \ldots, A_7 such that:

- Each A_i induces a P_4 -free graph.
- $[A_1, A_2 \cup A_5 \cup A_6]$ is complete and $[A_1, A_3 \cup A_4 \cup A_7] = \emptyset$.
- $[A_3, A_2 \cup A_4 \cup A_6]$ is complete and $[A_3, A_5 \cup A_7] = \emptyset$.
- $[A_4, A_5 \cup A_6]$ is complete and $[A_4, A_2 \cup A_7] = \emptyset$.
- $[A_2, A_5 \cup A_6 \cup A_7] = \emptyset$ and $[A_5, A_6 \cup A_7] = \emptyset$.
- The vertex set of each component of $G[A_7]$ is a homogeneous set.
- Every vertex in A_7 has a neighbor in A_6 .

Based on Lemma 3.4, we present some structural properties of 3-colorable (P_5 , gem)free graphs with an induced C_5 below. Let \mathcal{G}_1 be the family of graphs, consisting of G_1 and all graphs obtained from G_1 by expanding one vertex to a disjoint union of K_2 , \mathcal{G}_4 be the family of graphs obtained from G_4 by expanding x_5 to a disjoint union of K_2 , and $\mathcal{G}_{10} = \{G_{10}\}.$

Lemma 3.5. If G be a 3-colorable (P₅, gem)-free graph with an induced C₅, then G has a false twin or $G \in \mathcal{G}_1 \cup \mathcal{G}_4 \cup \mathcal{G}_{10}$.

Proof. By Lemma 3.4, we have that $G \in \mathcal{H}$ or G is a P_4 -free expansion of either G_1, G_2, \ldots, G_9 or G_{10} . Suppose $G \in \mathcal{H}$. Let $x_i \in A_i$ for $i \in \{1, 2, \ldots, 5\}$. Note that $G[\{x_1, x_2, \ldots, x_5\}]$ is an induced C_5 . Since G is 3-colorable, at least one of A_2 and A_5 is an independent set by Observation 3.3. Therefore G contains a false twin (x, y) with $x \in A_2 \cup A_5$ and $y \in A_6$.

Now we assume that G is a P_4 -free expansion of G_1, G_2, \ldots, G_9 or G_{10} . In this case, if there exists a false twin, then we are done. So we suppose that there is no false twin in G. For any $i \in \{1, 2, \ldots, 10\}$, since G is 3-colorable and gem-free, any vertex of G_i can only be expanded to a 2-colorable P_4 -free graph. We have the following.

Claim 1. Any connected 2-colorable P_4 -free graph except K_1 and K_2 contains a false twin.

Figure 1: Basic graphs.

Proof. Let H be a connected 2-colorable P_4 -free graph and $H \notin \{K_1, K_2\}$. Then we can find an induced path P of length 2 in H. Let P = xzy. Suppose that x has a neighbor w other than z, then $w \notin N(z)$ because H is 2-colorable. So w is adjacent to y, otherwise $H[\{w, x, z, y\}]$ is an induced P_4 in H, a contradiction. So $N(x) \subseteq N(y)$ and (x, y) is a false twin.

Claim 2. For any $i \in \{1, 2, ..., 10\}$, a vertex of G_i can only be expanded to K_1 or a disjoint union of K_2 .

Proof. Suppose that a vertex of G_i is expanded to H, where $i \in \{1, 2, ..., 10\}$. By the definition of expansion, we know that if $x, y \in V(H)$ and $N_H(x) \subseteq N_H(y)$, then $N_{G_i}(x) \subseteq N_{G_i}(y)$. So we have that each component of H is K_1 or K_2 by Claim 1. If H contains a K_1 , then $H \cong K_1$, otherwise the neighborhood of the vertex in K_1 is included in the neighborhood of any other vertex in H.

Since G contains no false twin, for any $i \in \{1, 2, ..., 10\}$, if there exists a false twin (x, y) in G_i , then x has to be expanded to a disjoint union of K_2 . Thus, for some $i \in \{1, 2, ..., 10\}$, if G_i contains two false twins (x, y) and (u, v) such that x and u are on

an induced C_5 (we use $[G_i:(x,y),(u,v)]$ to denote the special false twin pair), then by Observation 3.3 and Claim 2, G is not a P_4 -free expansion of G_i . Therefore G is not a P_4 -free expansion of $G_2, G_3, G_5, G_6, G_8, G_9$, as these special false twin pairs are $[G_2 :$ $(x_5, x_6), (x_2, x_6)], [G_3: (x_5, x_6), (x_7, x_3)], [G_5: (x_5, x_7), (x_8, x_2)], [G_6: (x_5, x_6), (x_8, x_1)], [G_8: (x_5, x_6), (x_8, x_1)], [G_8: (x_8, x_$ $(x_2, x_7), (x_3, x_8)], [G_9 : (x_2, x_7), (x_3, x_8)],$ respectively. In G_7 , since (x_8, x_5) and (x_7, x_2) are two false twins, x_8 and x_7 must be expanded to a disjoint union of K_2 . Note that $G_7[\{x_1, x_2, x_3\}]$ and $G_7[\{x_4, x_5, x_6\}]$ are two triangles. Since G contains no K_4 , any vertex in $\{x_1, x_2, \ldots, x_6\}$ cannot be expanded to a disjoint union of K_2 by Claim 2. If G is the graph obtained from G_7 by expanding each of x_8 and x_7 to a disjoint union of K_2 , then for any 3-coloring c of G, we have $c(x_2) = c(x_4)$ and $c(x_1) = c(x_5)$. Thus, we have $c(x_3) = c(x_6)$, a contradiction. Hence, G is not a P_4 -free expansion of G_7 .

Now we consider G_1 , G_4 and G_{10} . Since G_1 is an induced C_5 , Observation 3.3 and Claim 2 imply that at most one vertex of G_1 can be expanded to a disjoint union of K_2 . So $G \in \mathcal{G}_1$. In G_4 , since (x_5, x_7) is a false twin, x_5 must be expanded to a disjoint union of K_2 . Note that any vertex of G_4 other than x_5 is in a triangle. Since G contains no K_4 , we have $G \in \mathcal{G}_4$ by Claim 2. Finally for G_{10} , since any vertex of G_{10} is in a triangle, $G \in \mathcal{G}_{10}$.

This completes the proof of Lemma 3.5.

3.2Proof of Theorem 3.1

By way of contradiction, suppose that there exists k with $k \ge 4$ such that G is a 3-colorable P_5 -free graph that is not k-mixing. Among all 3-colorable P_5 -free graphs that is not k-mixing, we choose G so that |V(G)| is minimum.

Claim 3. $\delta(G) \ge 3$.

Proof. Suppose that G contains a vertex x with $d(x) \leq 2$. Let α and β be two k-colorings of G. Let α' and β' be the restrictions of α and β to $G' = G - \{x\}$. By the minimality of G, there exists a sequence \mathcal{S}' of recolorings that transforms α' into β' . We extend \mathcal{S}' to a sequence \mathcal{S} of recolorings in G. To form \mathcal{S} in G, we can perform each recoloring step from \mathcal{S}' , except when a neighbor y of x is to be recolored with the current color of x. In that case, we need to recolor x before recoloring its neighbor y. The number of colors unused on N[x] is at least $k - (d(x) + 1) \ge 1$. We recolor x with one of these colors that is not the target color in the next recoloring of a neighbor of x. Finally, if need, we recolor x to $\beta(x)$. Thus, we get that G is k-mixing, a contradiction.

Claim 4. G has no false twin.

Proof. Suppose that G contains a flase twin (x, y). Let α and β be any two k-colorings of G where $k \ge 4$. Let α' and β' be the restrictions of α and β to $G' = G - \{x\}$. By the minimality of G, there exists a sequence S' of recolorings that transforms α' into β' . To extend S' to a sequence S of recolorings in G, we first recolor x to $\alpha(y)$, this is possible as $x \not\sim y$. Then we perform each recoloring step from S' except when y is recolored. Every time, after recoloring y, we need to recolor x to the current color of y. Finally, if need, we recolor x to $\beta(x)$. Since $N(x) \subseteq N(y)$, S is a sequence of recolorings that transforms α into β . Thus, we get that G is k-mixing, a contradiction.

Claim 5. G has no induced gem.

Proof. Suppose that G has an induced gem, see Figure 2(a). Let α be a 3-coloring of G with $\alpha(u) = 3, \alpha(u_1) = \alpha(u_3) = 1, \alpha(u_2) = \alpha(u_4) = 2$. By Claim 4, we have $N(u_1) \setminus N(u_3) \neq \emptyset$ and $N(u_4) \setminus N(u_2) \neq \emptyset$. Here we have the following property (P1).

(P1) For any $x \in N(u_1) \setminus N(u_3)$, we have $\alpha(x) = 3$ and $N(x) \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_2, u_4\}$.

Proof. If $\alpha(x) \neq 3$ or $N(x) \cap \{u_1, u_2, u_3, u_4\} = \{u_1\}$, then $xu_1u_2u_3u_4$ is an induced P_5 , contradicting the fact that G is P_5 -free. Suppose $N(x) \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_2\}$. Let $y \in N(u_4) \setminus N(u_2)$. Note that $x \neq y$. Then xu_2uu_4y is an induced P_5 , a contradiction. Suppose $N_G(x) \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_4\}$. By Claim 4, there exists a vertex z such that $z \in N(x) \setminus N(u)$. Then zxu_1uu_3 is an induced P_5 when $\alpha(z) = 1$ and zxu_4uu_2 is an induced P_5 when $\alpha(z) = 2$, a contradiction. Therefore, $\alpha(x) = 3$ and $N(x) \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_2, u_4\}$.

Let $x \in N(u_1) \setminus N(u_3)$ and $y \in N(u_4) \setminus N(u_2)$. By (P1) and the symmetry of u_1 and u_4 , we have $x \neq y$, $\alpha(y) = 3$ and $N(y) \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_3, u_4\}$. For $i \in \{1, 2\}$, let $N^i(x)$ (resp. $N^i(y)$) be the set of neighbors of x (resp. y) colored i under α except u_1, u_2, u_3, u_4 . Note that for $i \in \{1, 2\}$, $N^i(x)$ or $N^i(y)$ might be empty. We have the following property (P2).

(P2) For any $x_1 \in N^1(x)$, we have $x_1 \sim u$ and $x_1 \sim y$. For any $y_2 \in N^2(y)$, we have $y_2 \sim u$ and $y_2 \sim x$.

Proof. By the symmetry of x_1 and y_2 , it suffices to prove $x_1 \sim u$ and $x_1 \sim y$. If $x_1 \not \sim u$, then $x_1xu_1uu_3$ is an induced P_5 , a contradiction. If $x_1 \not \sim y$, then xx_1uu_3y is an induced P_5 , a contradiction. Therefore, $x_1 \sim u$ and $x_1 \sim y$.

Since $x \not\sim u$ and $y \not\sim u$, Claim 4 and (P2) imply that $N^2(x) \setminus N(u) \neq \emptyset$ and $N^1(y) \setminus N(u) \neq \emptyset$. We have the following property (P3).

(P3) For any $x_2^* \in N^2(x) \setminus N(u)$ and $y_1^* \in N^1(y) \setminus N(u)$, we have $x_2^* \not\sim y$, $y_1^* \not\sim x$, $x_2^* \sim y_1^*$, $x_2^* \sim u_1$, $x_2^* \sim u_3$, $y_1^* \sim u_2$, $y_1^* \sim u_4$.

Figure 2: Structural properties of gems.

Proof. Since $x_2^* \notin N(u)$ and $y_1^* \notin N(u)$, we have $x_2^* \not\sim y$ and $y_1^* \not\sim x$, otherwise, $x_2^*yu_4uu_2$ and $y_1^*xu_1uu_3$ are two induced P_5 , a contradiction. If $x_2^* \not\sim y_1^*$, then $x_2^*xu_2y_1^*y$ is an induced P_5 , a contradiction. If $x_2^* \not\sim u_3$, then $x_2^*xu_2u_3y$ is an induced P_5 , a contradiction. If $x_2^* \not\sim u_1$, then $y_1^*x_2^*u_3uu_1$ is an induced P_5 , a contradiction. Thus $x_2^* \sim y_1^*$, $x_2^* \sim u_1$ and $x_2^* \sim u_3$. Similarly, we have $y_1^* \sim u_2$ and $y_1^* \sim u_4$.

Let $x_2^* \in N^2(x) \setminus N(u)$ and $y_1^* \in N^1(y) \setminus N(u)$. Since $\alpha(x_2^*) = \alpha(u_2)$ and $\alpha(y_1^*) = \alpha(u_3)$, we have $x_2^* \not\sim u_2$ and $y_1^* \not\sim u_3$. The induced subgraph $H = G[\{u, u_1, u_2, u_3, u_4, x, y, x_2^*, y_1^*\}]$ is shown in Figure 2(b). Note that $G[\{u_1, u, u_2, x, x_2^*\}]$ and $G[\{u_4, u, u_3, y, y_1^*\}]$ are two induced gems. We first consider $G[\{u_1, u, u_2, x, x_2^*\}]$. The following discussion is similar to the foregoing discussion for the structure of gem. Since $x_2^* \not\sim u_2$, by Claim 4 there exists a vertex z such that $z \in N(x_2^*) \setminus N(u_2)$. By (P1), we know that $z \sim x, z \sim u$ and $\alpha(z) = 1$. By the adjacency relationship, we have $z \neq u_3, y_1^*$, which means that $z \notin V(H)$. Since $z \in N^1(x)$, we have $z \sim y$ by (P2). Since $\alpha(z) = \alpha(u_1) = 1$, we have $z \not\sim u_1$. Then Claim 4 and (P2) imply that there exists a vertex $z_3^* \in N(z) \setminus N(u_1)$ and $\alpha(z_3^*) = 3$. Since $y \sim u_1$, we have $z_3^* \neq y$. Thus, $z_3^* \notin V(H)$. Note that $u_3 \in N(u) \setminus N(u_1)$, $u_4 \in N(u_3) \setminus N(u_1)$ and $u_4 \not\sim u_1$. Then by (P3), we have $z_3^* \sim x_2^*, z_3^* \sim u_2$ and $z_3^* \sim u_4$. Now we consider the induced gem $G[\{u_4, u, u_3, y, y_1^*\}]$. By symmetry, there exist two vertices $w, w_3^* \notin V(H)$ such that $w \in N(y_1^*) \setminus N(u_4)$, $\alpha(w) = 2$ and $w_3^* \in N(w) \setminus N(u_4)$, $\alpha(w_3^*) = 3$, $w_3^* \sim u_1$. Then $w_3^*u_1uu_4z_3^*$ is an induced P_5 , which is shown in Figure 2(c), a contradiction.

Claim 6. G has no induced C_5 .

Proof. Suppose that G has an induced C_5 . By Claim 5, we know that G is a 3-colorable (P_5, gem) -free graph with an induced C_5 . Then by Lemma 3.5, we have $G \in \mathcal{G}_1 \cup \mathcal{G}_4 \cup \mathcal{G}_{10}$.

Note that any graph in $\mathcal{G}_1 \cup \mathcal{G}_4 \cup \mathcal{G}_{10}$ has no false twin. Since any graph in \mathcal{G}_1 has minimum degree 2, Claim 3 implies that $G \notin \mathcal{G}_1$. Now we consider $G \in \mathcal{G}_4 \cup \mathcal{G}_{10}$. We first give a subclaim as follows.

Subclaim 6.1. Let x, y be two nonadjacent vertices of G and G' be the graph obtained from G by identifying x and y and deleting parallel edges. If G' is a k-colorable P_5 -free graph, then there exists a k-coloring α of G such that α cannot be transformed to any k-coloring α' of G with $\alpha'(x) = \alpha'(y)$.

Proof. Let α and β be any two k-colorings of G. Suppose that α and β can be transformed to two k-colorings α' and β' of G such that $\alpha'(x) = \alpha'(y)$ and $\beta'(x) = \beta'(y)$, respectively. Let z denote the new vertex in G' after identifying x and y in G. Let α'' and β'' be two k-colorings of G' satisfying that $\alpha''(z) = \alpha'(x)$, $\beta''(z) = \beta'(x)$ and $\alpha''(w) = \alpha'(w)$, $\beta''(w) = \beta'(w)$ for any $w \in V(G') \setminus \{z\}$. Since G' is P_5 -free and k-colorable, α'' can be transformed into β'' by the minimality of G. This implies that α' can be transformed into β' . Thus, α can be transformed into β by α into α' , α' into β' , β' into β . Hence, by arbitrary of α and β , G is k-mixing, a contradiction.

The following discussion is split into two cases below.

Case 1. $G \in \mathcal{G}_4$. See Figure 3(a).

Let G' be the graph obtained from G by identifying x_1 and x_6 and deleting parallel edges as shown in Figure 3(b). It is worth noting that G' is P_5 -free. A 3-coloring of G' is shown in Figure 3(c). So G' is P_5 -free and 3-colorable. Now we claim that any k-coloring α of G can be transformed to a k-coloring α' of G such that $\alpha'(x_1) = \alpha'(x_6)$. If $\alpha(x_1) = \alpha(x_6)$, then we are done. So we assume $\alpha(x_1) \neq \alpha(x_6)$. Without loss of generality, we assume that $\alpha(x_1) = 1$ and $\alpha(x_6) = 2$. Let $U = V(G) \setminus \{x_1, x_2, x_3, x_6\}$. Then for any $x \in U$, since x is the common neighbor of x_1 and x_6 , we have $\alpha(x) \in \{3, 4, \ldots, k\}$. If $\alpha(x_2) \neq 2$, then we can recolor x_1 by color 2 and we are done, so we assume $\alpha(x_2) = 2$. By symmetry, we assume $\alpha(x_3) = 1$. Note that $k \ge 4$. Let $a \in \{3, 4, \ldots, k\} \setminus \alpha(x_4)$. We recolor x_3, x_6 by colors a, 1 in order, which yields a k-coloring α' of G such that $\alpha'(x_1) = \alpha'(x_6)$, contradicting Subclaim 6.1.

Figure 3: Some related graphs in the proof of Case 1.

Case 2. $G \in \mathcal{G}_{10}$. See Figure 4(a).

First, we redraw G_{10} as Figure 4(a). Let G' be the graph obtained from G by identifying x_2 and x_6 and deleting parallel edges. Let z denote the new vertex in G'. As shown in Figure 4(b). Figure 4(c) gives a 3-coloring of G', so G' is 3-colorable. If G' contains an induced P_5 , then it must contain the edge x_4z because $G - \{x_6\}$ is P_5 -free. In addition, G' cannot contain both x_8 and x_3 , because they are the common neighbors of z and x_4 . However, the graph $G' - \{x_3, x_8\}$ is obviously P_5 -free, a contradiction. Hence, G' is P_5 -free.

Figure 4: Some related graphs in the proof of Case 2.

Next, we claim that any k-coloring α of G can be transformed to a k-coloring α' of G such that $\alpha'(x_2) = \alpha'(x_6)$. If $\alpha(x_2) = \alpha(x_6)$, then we are done. So we assume $\alpha(x_2) \neq \alpha(x_6)$. Without loss of generality, we assume that $\alpha(x_2) = 1$ and $\alpha(x_6) = 2$. If $\alpha(x_3) \neq 2$ or $\alpha(x_4) \neq 1$, then recolor x_2 by color 2 or x_6 by color 1, which yields a k-coloring α' of G with $\alpha'(x_2) = \alpha'(x_6)$. So we suppose that $\alpha(x_3) = 2$ and $\alpha(x_4) = 1$. If $\{\alpha(x_5), \alpha(x_8)\} \neq \{3, 4\}$, then recolor x_4 by a color in $\{3, 4\} \setminus \{\alpha(x_5), \alpha(x_8)\}$ and x_6 by color 1 in order, which yields a k-coloring α' of G with $\alpha'(x_2) = \alpha'(x_6) = 1$. If $\{\alpha(x_5), \alpha(x_8)\} = \{3, 4\}$, then $\alpha(x_7) = 1$. Recolor x_3 by a color in $\{3, 4\} \setminus \{\alpha(x_9)\}$ and x_2 by color 2 in order, which yields a k-coloring α' of G with $\alpha'(x_2) = \alpha'(x_6) = 2$, contradicting Subclaim 6.1.

Claim 7. G has no induced $\overline{P_5}$.

Proof. We first give a subclaim. Let $[\{x, y\}, x_1x_2x_3x_4]$ denote the graph structure consisting of an induced $P_4 = x_1x_2x_3x_4$ and two vertices x and y such that $\{x_1, x_2\} \subseteq N(x) \cap N(y)$ (see Figure 5(a)). Note that the adjacency relationship between x and y, and between $\{x, y\}$ and $\{x_3, x_4\}$ is uncertain. Let $\mathcal{F}_G = \{[\{x, y\}, x_1x_2x_3x_4] | G \text{ contains the graph structure} [\{x, y\}, x_1x_2x_3x_4]\}.$

Subclaim 7.1. \mathcal{F}_G is an empty set.

Proof. Suppose that G contains a graph structure $[\{x, y\}, x_1x_2x_3x_4] \in \mathcal{F}_G$. Since G is 3-colorable, $x \not\sim y$. By Claim 5, we have that $|N(x) \cap \{x_1, x_2, x_3, x_4\}| \neq 4$ and $|N(y) \cap$

 $\{x_1, x_2, x_3, x_4\} | \neq 4.$ Suppose $N(x) \cap \{x_1, x_2, x_3, x_4\} = N(y) \cap \{x_1, x_2, x_3, x_4\}.$ Since $x \neq y$, Claim 4 implies that there exist $x' \in N(x) \setminus N(y)$ and $y' \in N(y) \setminus N(x)$. Then $x' \sim x_1$ or $y' \sim x_1$, otherwise $x'xx_1yy'$ is an induced P_5 or C_5 . Without loss of generality, we assume $x' \sim x_1$. Since G is 3-colorable, $x' \neq x_2$. Then $x_1x'xx_2y$ forms an induced gem, a contradiction. So $N(x) \cap \{x_1, x_2, x_3, x_4\} \neq N(y) \cap \{x_1, x_2, x_3, x_4\}.$ By the symmetry of x and y, it suffices to consider the following cases. If $N(x) \cap \{x_1, x_2, x_3, x_4\} = \{x_1, x_2\},$ then $xx_1yx_3x_4$ is an induced P_5 when $N(y) \cap \{x_1, x_2, x_3, x_4\} = \{x_1, x_2, x_3\}$ and $xx_1yx_4x_3$ is an induced P_5 when $N_G(y) \cap \{x_1, x_2, x_3, x_4\} = \{x_1, x_2, x_4\},$ a contradiction. If $N(x) \cap \{x_1, x_2, x_3, x_4\} = \{x_1, x_2, x_3\}$ and $N(y) \cap \{x_1, x_2, x_3, x_4\} = \{x_1, x_2, x_4\},$ then $x_2yx_1xx_3$ is an induced gem, a contradiction. Hence \mathcal{F}_G is an empty set. \Box

Figure 5: Some related graphs in the proof of Claim 7.

Now suppose that G has an induced $\overline{P_5}$ shown in Figure 5(b), where $u_1u_2u_3u_4$ is an induced P_4 and u is adjacent to u_1, u_2, u_4 . Since $u_4 \not\sim u_2$, Claim 4 implies that there exists a vertex $v \in N(u_4) \setminus N(u_2)$. Note that $v \sim u_3$, otherwise $u_1u_2u_3u_4v$ is an induced P_5 or C_5 . We need to handle the following two cases.

Case 1. $v \not\sim u_1$. See Figure 5(c).

Since $\delta(G) \geq 3$, there exists a vertex $x \in N(u_1) \setminus \{u, u_2\}$. By Subclaim 7.1, $x \not\sim u_2$, otherwise $[\{u, x\}, u_1 u_2 u_3 u_4] \in \mathcal{F}_G$. Then $x \sim u_3$, otherwise $x u_1 u_2 u_3 u_4$ is an induced P_5 or C_5 . It follows that $x \not\sim u_4$, otherwise $[\{v, x\}, u_4 u_3 u_2 u_1] \in \mathcal{F}_G$. Then $x \sim u$, otherwise $u_1 x u_3 u_4 u$ is an induced C_5 . Now $[\{u_2, x\}, u_1 u u_4 u_3] \in \mathcal{F}_G$, contrary to Subclaim 7.1.

Case 2. $v \sim u_1$. See Figure 5(d).

Note that $u \not\sim v$, otherwise $uu_2u_1vu_4$ is an induced gem. Then the graph shown in Figure 5(d) is an induced graph of G, let G_1 denote the graph. If $G = G_1$, then do the same argument as Case 1 of Claim 6, we have that G is k-mixing, a contradiction. So $V(G) \setminus V(G_1) \neq \emptyset$. Since all vertices of G_1 are symmetry, without loss of generality, we assume that $w \in V(G) \setminus V(G_1)$ and $w \sim v$. Note that uu_2u_3v is an induced P_4 . It follows that $w \not\sim u_3$, otherwise $[\{w, u_4\}, vu_3u_2u] \in \mathcal{F}_G$. Then $w \sim u_2$, otherwise uu_2u_3vw is an induced P_5 or C_5 . Additionally, we have $w \not\sim u$ and $w \not\sim u_4$, otherwise $[\{w, u_1\}, uu_2u_3u_4] \in \mathcal{F}_G$ and $[\{w, u_3\}, u_4vu_1u] \in \mathcal{F}_G$. Then we get that uu_2wvu_4 is an induced C_5 , a contradiction. \Box

Now we get that G is 3-colorable $\{P_5, \overline{P_5}, C_5\}$ -free. Then by Lemma 3.2, G is k-mixing, contradicting our assumption. This completes the proof of Theorem 1.6.

4 Proof of Theorem 1.7

In this section, for any $t \ge 4$ and $t+1 \le k \le {t \choose 2}$, we construct a P_5 -free graph with chromatic number t that has a frozen k-coloring.

Let $S = \{u_1, u_2, \ldots, u_{2k}\}$. Let $T = \{\{a, b\}, a, b \in \{1, 2, \ldots, t\}, a \neq b\}$, which has $\binom{t}{2}$ elements. Let $P = \{\{1, 2\}, \{2, 3\}, \ldots, \{t - 1, t\}, \{t, 1\}\}$. Note that $P \subseteq T$. Let $\phi : S \rightarrow \{1, 2, \ldots, k\}$ be a mapping such that $\phi(u_{2i-1}) = \phi(u_{2i}) = i$ for each $i \in \{1, 2, \ldots, k\}$. Let $\alpha : S \rightarrow \{1, 2, \ldots, t\}$ be a mapping such that $\{\alpha(u_{2i-1}), \alpha(u_{2i})\} \in P$ for $i \in \{1, 2, \ldots, t\}$, $\{\alpha(u_{2i-1}), \alpha(u_{2i})\} \in T \setminus P$ for $i \in \{t+1, \ldots, k\}$, and $\{\alpha(u_{2i-1}), \alpha(u_{2i})\} \neq \{\alpha(u_{2j-1}), \alpha(u_{2j})\}$ for any $i, j \in \{1, \ldots, k\}$ and $i \neq j$. Note that it is possible because $t + 1 \leq k \leq \binom{t}{2}$. Now we construct a graph $G_{t,k}$ with the vertex set S and any two vertices $u_i, u_j \in S$ is an edge of G if and only if $\phi(u_i) \neq \phi(u_j)$ and $\alpha(u_i) \neq \alpha(u_j)$. Note that ϕ is a k-coloring and α is a t-coloring of $G_{t,k}$. So $G_{t,k}$ is t-colorable. Since $G_{t,k}[\{u_1, u_3, \ldots, u_{2t-1}\}]$ is a clique with size t, we have $\chi(G_{t,k}) = t$. Next we show that $G_{t,k}$ is P_5 -free and ϕ is a frozen coloring of $G_{t,k}$. The graph $G_{4,5}$ shown in Figure 6, where the label on u_i represents the color pair $(\phi(u_i), \alpha(u_i))$ for $i \in \{1, 2, \ldots, 10\}$.

Figure 6: The graph $G_{4,5}$.

Claim 8. ϕ is a frozen k-coloring of $G_{t,k}$.

Proof. We need to prove $\{\phi(v) : v \in N(u)\} = \{1, 2, \dots, k\} \setminus \{\phi(u)\}$ for $u \in S$. Without loss of generality, we prove that it holds for u_1 . In other words, we need to prove for any $2 \leq j \leq k, u_1$ is adjacent to at least one vertex in $\{u_{2j-1}, u_{2j}\}$. Let $j \in \{2, \dots, k\}$. Note that $\phi(u_1) \neq \phi(u_{2j-1})$ and $\phi(u_1) \neq \phi(u_{2j})$. Then by the construction of $G_{t,k}$, it suffices to prove $\alpha(u_1) \neq \alpha(u_{2j-1})$ or $\alpha(u_1) \neq \alpha(u_{2j})$. This is established because $\alpha(u_{2j-1}) \neq \alpha(u_{2j})$. \Box

Claim 9. $G_{t,k}$ is P_5 -free.

Proof. Suppose that $G_{t,k}$ contains an induced P_5 , then we denote the induced P_5 by $P = x_1x_2x_3x_4x_5$. Let θ denote the mapping ϕ or α .

We first claim that for any two adjacent vertices x_i and x_j of P, if $x_k \not\sim x_i$ and $x_k \not\sim x_j$, then $\theta(x_k) = \theta(x_i)$ or $\theta(x_k) = \theta(x_j)$, where $i, j, k \in \{1, 2, ..., 5\}$. Suppose that $\theta = \phi$ and $\phi(x_k) \neq \phi(x_i), \phi(x_k) \neq \phi(x_j)$. Since $\alpha(x_i) \neq \alpha(x_j), \alpha(x_k) \neq \alpha(x_i)$ or $\alpha(x_k) \neq \alpha(x_j)$. Then $x_k \sim x_i$ when $\alpha(x_k) \neq \alpha(x_i)$ and $x_k \sim x_j$ when $\alpha(x_k) \neq \alpha(x_j)$, a contradiction. Hence, $\phi(x_k) = \phi(x_i)$ or $\phi(x_k) = \phi(x_j)$. Similarly, we can prove that it holds for α .

So we can obtain that $\theta(x_4) \in \{\theta(x_1), \theta(x_2)\}$ and $\theta(x_5) \in \{\theta(x_1), \theta(x_2)\} \cap \{\theta(x_2), \theta(x_3)\}$. Note that $\theta(x_5) = \theta(x_2)$ when $\theta(x_1), \theta(x_2), \theta(x_3)$ are distinct. Let $\theta(x_1) = a$ and $\theta(x_2) = b$, where $a \neq b$. If $\theta(x_3) = a$, then $\theta(x_4) = b$ and $\theta(x_5) = a$. If $\theta(x_3) \neq a$, then let $\theta(x_3) = c$, where a, b, c are pairwise distinct. It follows that $\theta(x_5) = b$ and $\theta(x_4) = a$. So P has only two types of coloring *ababa* or *abcab* under θ . Since each color appears exactly twice under ϕ , the type of coloring of P can only be *abcab* under ϕ . Note that $\alpha(x_i) \neq \alpha(x_j)$ when $\phi(x_i) = \phi(x_j)$. So the types of coloring of P under ϕ and α are distinct. Hence, the type of coloring of P can only be *ababa* under α . Note that $\phi(x_1) = \phi(x_4), \phi(x_2) = \phi(x_5)$ and $\phi(x_1) \neq \phi(x_2)$. By the definitions of ϕ and α , we have $\{\alpha(x_1), \alpha(x_4)\} \neq \{\alpha(x_2), \alpha(x_5)\}$, a contradiction. Therefore, $G_{t,k}$ is P_5 -free.

5 Conclusion

Combining Theorems 1.6 and 1.7, the connectivity of $R_k(G)$ concerning t-chromatic P_5 -free graphs G is still unclear for some values of k and t, so we propose the following problem.

Problem 5.1. For any $t \ge 4$ and $k \ge {t \choose 2} + 1$, does there exist a t-chromatic P_5 -free graph G such that $\mathcal{R}_k(G)$ is disconnected?

Proposition 2.2 might be useful for providing an affirmative answer to Problem 5.1. Specifically, if there exists a *t*-chromatic P_5 -free graph G with $\omega(G) = t$ that has a frozen k-coloring, where $k \ge t+1 \ge 5$, then for any $s \ge 1$, there exists a (t+s)-chromatic P_5 -free graph G with $\omega(G) = t + s$ that has a frozen (k+s)-coloring. Consequently, if such graphs exist for t = 4 with each $k \ge t+1$, then Problem 5.1 has an affirmative answer. It is worth noting that, we can not apply Proposition 2.2 to improve the upper bound of k in Theorem 1.7, since $\binom{t-1}{2} + 1 \leq \binom{t}{2}$ for each $t \geq 4$.

Acknowledgements

Hui Lei was partially supported by the National Natural Science Foundation of China (No. 12371351) and the Young Elite Scientist Sponsorship Program by CAST. Yulai Ma was partially supported by Sino-German (CSC-DAAD) Postdoc Scholarship Program 2021 (57575640), and Deutsche Forschungsgemeinschaft(DFG, German Research Foundation)-445863039. Zhengke Miao was partially supported by the National Natural Science Foundation of China (Nos. 11971205, 12031018). Yongtang Shi and Susu Wang were partially supported by the National Natural Science Foundation of China (No. 12161141006), the Natural Science Foundation of Tianjin (No. 20JCJQJC00090) and the Fundamental Research Funds for the Central Universities, Nankai University.

References

- V. Bartier, V.N. Bousquet, C. Feghali, M. Heinrich, B. Moore, T. Pierron, Recoloring planar graphs of girth at least five, SIAM J. Discrete Math. 37(1) (2023) 332–350.
- [2] V. Bartier, V.N. Bousquet, M. Heinrich, Recoloring graphs of treewidth 2, Discrete Math. 344(12) (2021) 112553.
- [3] M. Belavadi, K. Cameron, Recoloring some hereditary graph classes, arxiv: 2312.00979 (2023).
- [4] M. Belavadi, K. Cameron, O. Merkel, Reconfiguration of vertex colouring and forbidden induced subgraphs, European J. Combin. 118 (2024) 103908.
- [5] M. Belavadi, K. Cameron, N.L.D. Sintiari, Recoloring via modular decomposition, arxiv: 2405.06446 (2024).
- [6] M. Bonamy, N. Bousquet, Recoloring graphs via tree decompositions, European J. Combin. 69 (2018) 200–213.
- [7] M. Bonamy, M. Johnson, I. Lignos, V. Patel, D. Paulusma, Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs, J. Combin. Optim. 27(1) (2014) 132–143.
- [8] J.A. Bondy, U.S.R. Murty, Graph theory, Springer Publishing Company, Incorporated (2008).
- [9] N. Bousquet, L. Feuilloley, M. Heinrich, M. Rabie, Short and local transformations between $(\Delta + 1)$ -colorings. arxiv: 2203.08885 (2022).
- [10] N. Bousquet, M. Heinrich, A polynomial version of Cereceda's conjecture, J. Comb. Theory, Ser. B 155 (2022) 1–16.

- [11] N. Bousquet, G. Perarnau, Fast recoloring of sparse graphs, European J. Combin. 52 (2016) 1–11.
- [12] S. Cambie, W.C. van Batenburg, D. W. Cranston, Optimally reconfiguring list and correspondence colourings, European J. Combin. 115 (2024) 103798.
- [13] L. Cereceda, J. van den Heuvel, M. Johnson, Connectedness of the graph of vertex colourings, Discrete Math. 308 (2008) 913–919.
- [14] L.S. Chandran, U.K. Gupta, D. Pradhan, List recoloring of planar graphs, arxiv: 2209.05992 (2022).
- [15] M. Chudnovsky, T. Karthick, P. Maceli, F. Maffray, Coloring graphs with no induced five-vertex path or gem, J. Graph Theory 95(4) (2020) 527–542.
- [16] D.W. Cranston, List-recoloring of sparse graphs, European J. Combin. 105 (2022) 103562.
- [17] D.W. Cranston, R. Mahmoud, 5-Coloring reconfiguration of planar graphs with no short odd cycles, J. Graph Theory 105(4) (2024) 670–679.
- [18] Z. Dvořák, C. Feghali, A Thomassen-type method for planar graph recoloring, European J. Combin. 95 (2021) 103319.
- [19] Z. Dvořák, C. Feghali, An update on reconfiguring 10-colorings of planar graphs, Electronic J. Combin. (2020) P4–51.
- [20] E. Eiben, C. Feghali, Toward Cereceda's conjecture for planar graphs, J. Graph Theory 94(2) (2020) 267–277.
- [21] C. Feghali, Paths between colourings of sparse graphs, European J. Combin. 75 (2019) 169–171.
- [22] C. Feghali, Reconfiguring colorings of graphs with bounded maximum average degree, J. Comb. Theory Ser. B 147 (2021) 133–138.
- [23] C. Feghali, J. Fiala, Reconfiguration graph for vertex colourings of weakly chordal graphs, Discrete Math. 43 (2020) 111733.
- [24] C. Feghali, O. Merkel, Mixing colourings in $2K_2$ -free graphs, Discrete Math. 345(11) (2022) 113108.
- [25] J. van den Heuvel, The complexity of change, Surveys in combinatorics. 409 (2013) 127–160.
- [26] M. Jerrum, A very simple algorithm for estimating the number of k-colorings of a low-degree graph, Random Struct. Algorithms 7(2) (1995) 157–165.
- [27] O. Merkel, Recolouring weakly chordal graphs and the complement of triangle-free graphs, Discrete Math. 345(3) (2022) 112708.
- [28] N. Nishimura, Introduction to reconfiguration, Algorithms 11(4) (2018) 52.