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Abstract

A graph G is said to be F-free if it does not contain F' as a subgraph. Let
G(m, F') denote the set of F-free graphs with m edges having no isolated vertices.
A theta graph, denoted by 6;, 1, 1,, is the graph obtained by connecting two distinct
vertices with three internally disjoint paths of length 11,1, 13, where |1 <l <3 and
ly > 2. Recently, Li, Zhao and Zou (2025) characterized the 6, j ,-free graph of size
m having the largest spectral radius, where ¢ > p >3 and p+q>2k+12>7. Up
to now, for all 01y ,-free graphs with ¢ > p > 2, except for the case ¢ = p = 3, the
graphs in G(m, 01 p 4) with the largest spectral radius have been determined. So they
proposed a problem on characterizing the graphs with the maximum spectral radius
among 0 3 3-free graphs. In this paper, we consider this problem and determine
the maximum spectral radius of 6 33-free graphs with size m and characterize the

extremal graph.
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1 Introduction

For a simple graph G = (V(G), E(G)), we use n := |G| = |[V(G)| and m := e(G) to
denote the order and the size of GG, respectively. Since isolated vertices do not have an
effect on the spectral radius of a graph, throughout this paper we consider graphs without
isolated vertices. Let N(v) or Ng(v) be the set of neighbors of v, and d(v) or dg(v) be the
degree of a vertex v in G. Denote N[v] = N(v) U {v}. For a subset U C V(G), we denote



by Ny (u) the set of vertices of U that are adjacent to u, that is, Ny(u) = Ng(u) NU, and
let dy(u) be the number of vertices of Ny (u). For subsets X, Y of V(G), we write E(X,Y)
for the set of edges with one end in X and the other in Y. Let e(X,Y) = |E(X,Y)|. If
Y = X, we simply write e(X) for e(X,X). The distance between two distinct vertices
u,v € V(G) is the length of a shortest path from u to v in G. The diameter diam/(Q)
of a graph (G is the greatest distance between any two vertices of G. The join of simple
graphs G and H, written G V H, is the graph obtained from the disjoint union G U H by
adding the edges to join every vertex of G with every vertex of H. For graph notation and

terminology undefined here, readers are referred to [1].

Let A(G) be the adjacency matrix of a connected graph G. The maximum of modulus
of all eigenvalues of A(G) is the spectral radius of G and denoted by A\(G). Since A(G)
is irreducible and nonnegative for a connected graph G, by the Perron-Frobenius theorem
there exists a unique positive unit eigenvector x corresponding to A\(G), which is called

Perron vector of G.

As usual, let P,, C,, and K;,_; be the path, the cycle, and the star on n vertices,
respectively. Let K ,_1 + e be the graph obtained from K ,_; by adding one edge within

its independent set. A theta graph, say 6, is the graph obtained by connecting two

12,3

distinct vertices with three internally disjoint paths of length [y, 1[5, 13, where I} < Iy < I3
and [, > 2.

Let F be a family of graphs. A graph G is called F-free if it does not contain any
element in F as a subgraph. When the forbidden set F is a singleton, say F', then we write
F-free for F-free. Let G(m,F) denote the set of F-free graphs with m edges having no
isolated vertices. If F = {F'}, then we write G(m, F) for G(m, F).

The classic Turan type problem asks what is the maximum number of edges in an F-free
graph of order n. In spectral graph theory, Nikiforov [13] proposed a spectral Turén type
problem which asks to determine the maximum spectral radius of an F-free graph with
n vertices, which is known as the Brualdi-Solheid-Turan type problem. In the past few
decades, this problem has been studied for many classes of graphs, see [11, 12, 13, 18, 20].
In addition, Brualdi and Hoffman [2] raised another spectral Turan type problem: What is
the maximal spectral radius of an F-free graph with given size m? This problem is called
the Brualdi-Hoffman-Turan type problem. Up to now, much attention has been paid to
the Brualdi-Hoffman-Turén type problem for various families of graphs. For example, [15]
for K3-free graphs, [7] for non-bipartite Ks-free graphs, [9, 10] for K, ;-free graphs, [12]
for Cy-free graphs, [19] for K, i-free graphs, [3] for non-star K, -free graphs, [5] for
Cif-free graphs where C} is a graph on k vertices obtained from Cj, by adding a chord
between two vertices with distance two, [14] for By-free graphs where By, is obtained from

k triangles by sharing an edge, [21] for Fj-free graphs, [4] for Fy, o-free graphs where



Fp, = K1V Py_4, [6] for F; s-free graphs, [4] for Fj, 5-free graphs where Fj, 5 is the friendship
graph obtained from k triangles by sharing a common vertex.

For theta graphs, Sun et al. [16] established sharp upper bounds on spectral radius
for G in G(m, 0123) and G(m, 0y 24), respectively. Subsequently, Lu et al. [8] determined
the graph among G(m, 6, 25) having the largest spectral radius. Generally, Li et al. [5]
confirmed the following theorem.

Theorem 1.1 [5] Letk > 3 andm > 4 (k% + 3k +1)°. IfG € G(m, 01.2.9%—1)UG (m, 01 5.1),

then

k—14++vVdm—k*+1
2 7
and equality holds if and only if G = K, V (% — %) K.

AMG) <

Recently, Li et al. [4] determined the largest spectral radius of 6, , ,-free graph with size
miforg>p>3andp+qg>T.

Theorem 1.2 [4] Let k > 3 and m > 2kS+6k® +46k* +56k> +196k2. If G € G(m, 0, ,4)U
G(m,0y,,) withq>p>3,s>r>3,p+q=2k+1andr+s=2k+2, then

< k:—1+\/4m—k:2+1’
- 2
and equality holds if and only if G = K, V (% — %) K.

AG)

At the same time, they proposed the following problem in [4].

Problem 1.3 [}/ How can we characterize the graphs among G(m, 0y 3 3) having the largest

spectral radius?

In this paper, we consider the above problem and characterize the unique graph with
the maximum spectral radius among G(m, 6y 33).

Theorem 1.4 Let G € G(m, 61 33) with m > 43. Then \(G) < 2"=2 and equality
holds if and only if G = Ky V mT_lKl.

2 Preliminaries

In this section, we introduce some basic lemmas which are useful in the subsequent

sections.

Lemma 2.1 [9, 15] If G € G(m, K3), then \(G) < v/m. Equality holds if and only if G
is a complete bipartite graph.



If G is a bipartite graph with m edges, then G € G(m, K3). By Lemma 2.1, it follows
that A\(G) < /m.
Wu et al. [17] obtained a relationship between spectral radius of two graphs under

graph operation, which plays an important role in our proofs.

Lemma 2.2 [17] Let u and v be two vertices of the connected graph G with order n. Sup-
pose vy, vy, . .., v, (1 < s < d,) are some vertices of Na(v)\Ng(u) and x = (z1, 29, ..., 2,)"
is the Perron vector of G, where x; corresponds to the vertex v;(1 < i < n). Let

G =G —{vy|l <i<s}+{uv|l <i<s}. Ifx, > x,, then N(G) < AM(G').

A cut vertex of a graph is a vertex whose deletion increases the number of components.
A graph is called 2-connected, if it is a connected graph without cut vertices. Let x be the
Perron vector of G with coordinate z, corresponding to the vertex v € V(G). A vertex u*

is said to be an extremal vertex if z,~ = max{x,|u € V(G)}.

Lemma 2.3 [19] Let G be a graph in G(m, F') with the mazimum spectral radius. If F is
a 2-connected graph and u* is an extremal vertex of G, then G is connected and d(u) > 2
for any w € V(G) \ N[u*].

3 Proof of Theorem 1.4

Let G* be a graph in G(m,#6;33) with the maximum spectral radius. Note that
A (K2 \Y; mT_lKl) — Lrvim=3 “2“"*3 and Ky V mT_lKl is 0, 3 s-free, we have

m—1K>_1+\/4m—3
9o 1 2 '

AG*) > A (K2 Y,

By Lemma 2.3, we have G* is connected. Let A = A\(G*) and x be the Perron vector of
G* with coordinate z, corresponding to the vertex v € V(G*). Assume that u* is the
extremal vertex of G*. That is, z,+ > z, for any v € V(G*) \ {u*}. Set U = Ng«(u*) and
W = V(G*) \ Ng+[u*]. Let Wy = Ny (V(H)) for any component H of G*[U]. Since G*
is 6, 3 5-free, G*[U] does not contain any path of length four and any cycle of length more

than four.

Lemma 3.1 For any non-trivial component H in G*[U], if H contains a cycle of length

four, then Ny (u) N Ny (v) =0 for any vertices u and v in the cycle of length four.

Proof. Let the cycle Cy in H be ujusugusuy. Suppose on the contrary that Ny (u;) N
Ny (uj) # 0 for some vertices u; and u;, 1 < i # j < 4. It follows that Ny (u;) # 0 and
Ny (uj) # 0. Let w € Nw(u;) N Nw(u;). If w; and u; are adjacent in Cy, without loss
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of generality, we assume that u;, = u; and u; = uy. Then w*u;, v uzusu; and v uowu,y
are three internally disjoint paths of length 1,3,3 between u* and u;. So G* contains 0; 33
as a subgraph, a contradiction. Hence, u; and u; are not adjacent in Cy. Assume that
u; = uy and u; = us. It is easy to get that ujug, ujusu*uy and ujwuguy are three internally
disjoint paths of length 1,3,3 between u; and uy. Clearly, G* contains 6; 33 as a subgraph,

a contradiction. This completes the proof. O

For convenience, we divide U into two subsets Uy and U, where Uj is the set of isolated
vertices of G*[U] and U = U\ Up. It is easy to see that m = |U|+e(Uy)+e(U, W) +e(W).
Since A\(G*)x = A(G*)x, we have

ALy = 5 Ty = E T, + E Ty
uelU ueU4 uelUy
Furthermore, we can get

Ny = AAz) = A 2,

uelU

:Z Z Ty = Z dy(v)x,

uelU veNg(u) veV(Q)

= Ulzws + Y do(w)a, + Y du(w)a,.

uelUy weW

Therefore,

(N = Ny = [Ulzws + Y (dy(u) = Dy + D do(w)zy — Y 2y

u€U+ weW uelo
< |U|mw + Z (dy(u) — Dy + e(U, W)y — Z Ty
uely ueUp

Recall that A > M2m=3 that is, A2 = A > m — 1 = |[U| + e(Us) + e(U,W) + e(W) — 1.
Hence

Z (dy(u) — 1)z, > (e(U+) +e(W) + Z T 1) Ty

Ty
uelUy uelUy

Let H be the set of all non-trivial components in G*[U]. For each non-trivial component
H of H, we denote n(H) := >~ oy (du(u) — 1)z,. Clearly,

Z n(H) > (e(U+) +e(W) + Z Lu _ 1) Loy, (1)

TLoy*
HeH ueUp

with equality if and only if A2 = A =m — 1 and x,, = 2+ for any w € W with dy(w) > 1.
Claim 3.2 G*[U] contains no any cycle of length four.

bt



Proof. Suppose to the contrary that G*[U] contains Cy. Since G*[U] is Ps-free, we can
get that G*[U] contains a component H € {Cy,Cy + e, K4} where Cy + e is the graph
obtained from C} by adding one edge to two nonadjacent vertices. Let H’ be the family of
components of G*[U] each of which contains Cy as a subgraph, that is, H € {Cy, Cy+e, K4}
for any H € H’', then H \ H' is the family of other components of G*[U] each of which is
a tree with diameter at most 3 or a unicyclic graph containing a triangle. Therefore, for
each H € H \ H', we have

n(H) = Y (du(u) = D, < (2e(H) — [H|)zuw < e(H)z,.
ueV (H)
Next we show that
2 ZUJEWH Lw
A—3
for each H € H'. Let H* € H' with V(H*) = {u1, us, u3, us} and the cycle of length four

be U1U2U3ULUT -

n(H) < (e(H) — 1)xy +

First, we consider the case W+ = ). Let x,, = max{z,,|1 <i < 4}. Then

ATy, = Z Ty < Tyr + Ty + Tug + Toy < Tyr + 324,
wEN (u1)

Hence, z,, < /\ig%*- Since m > 43, we have )\ > 1Hvim=3 Vém_g > 7. Thus, x,, < %xu and

* * * * * 2 ZwEWH* L
n(H*) < (2e(H*) — |H*| )2y, < (e(H*) — 2)xy < (e(H") — 1)ays + 3
as desired.

In the following, we assume that Wy # (). We consider the following two cases.

Case 1. All vertices in Wy« have a unique common neighbor in V (H*).

Without loss of generality, let the common neighbor be wu;. It follows that Ny (u;) = ()
for i € {2,3,4}. Let z,, = max{x,,|2 <i <4}. Then

My < Ty + Ty + Ty + T < 224, + 245

Thus, z,, < éxu < %l‘u since A > 7. Therefore, we have

n(H*) = > (dg-(u) — 1)z,
ueV (H*)
< (dg+(uy) — D)xy, + (2e(H") — dp=(uq) — 3)xy,

4 2 6
< (dH*(ul) -1+ EG(H*) - gdH*(%) - 5) Ty

4 3 11
(ge(H*) + gdH* (ur) — E) Ty



Since dy-(uy) < 3, the above inequality becomes
4 2
n(H*) < (56<H*) - 5) Loy

2 Z’U}EWH* xw

< (e(H") = 1)y + =4

Case 2. There are at least two vertices of W+ such that they have distinct neighbors
in V(H*).

Since
(ATuy < Ty + Ty + Tuy + Tur + 2 weN,, (ur) T
ATy < Ty + Tug + Tuy + Tyx + ZweNWH* (ug) Tw>
ATy < Tuy + Tuy + Tuy + Tur + ey, (uy) T
Ay < Ty + Tuy + Ty + T + Peny,(ua) T
we obtain

4
ATy + Ty + Ty + Tuy) < 3(Xuy + Ty + Ty + Tyy) + 4Ty + Z Z Ty
i=1 weNw,, (ui)
By Lemma 3.1, we get that Ny, (u;) N Ny,,. (u;) = 0 for any vertices u; # u; € V(H").
Thus, - ew,. To = Dwenw V() To = S ZwENWH* (us) Tw- Therefore, by A > 7, we

obtain

Ty + Ty + Ty + Tayy < f?g + waw_/,{g xw
ZweWH* Lw
A—3
Since H* € H', it follows that H* € {Cy, Cy+e, K4}. Then dy+(u) < 3 for any u € V(H").
Hence, by the definition of n(H*),

qu*—i_

N(H*) < 2(xy, + Tuy + Tuy + Tu,)

2 T
< 23:”* ZKE[/’[/I;)*

< (e(H*) = 1)xy + S5

Therefore, we conclude that n(H) < (e(H) — 1)@, + Ef# for each H € H'. Recall
that n(H) < e(H)z,- for each H € H\ H'. Thus,

donH)= Y uH)+ Y u(H)

HeH HeH' HeH\H'



< Z (e(H) — 1)y + Z QZwGWH T + Z e(H)xy

HeH' Hew' HeH\H'
o T + 2 ZwGWH Lw
HeH' HeH'

For any H € H' satisfying Wy = 0, we have > .z, = 0. For any H € H' satisfying
Wy # (0 and any w € Wy, since G* is 6, 3 3-free, we obtain Wy N Weaunm = (. Then
donvm(w) = 0. By Lemma 3.1, we have dy(w) = 1. It follows that dy(w) = 1. As
d(w) > 2 by Lemma 2.3, it is easy to get that dw(w) > 1. Thus, > pcp D e, Tw <
Yoter 2awewy W (W) Tw < D pean D wew, Aw ()T < 2e(W)z,r. Note that A > 7.
Therefore,

2 .
Z n(H) < e(Us)zy — Z Tyr + Z z:;\vefwg

HeM HEH! HEH!
de(W)
< * — * *
e(Uy)x, Z Ty, \ g L
HeH'
< (e(U+) +e(W) — Z 1) Ty
HeH'

which contradicts with (1). Hence, G*[U] contains no Cjy. This completes the proof. [

By Claim 3.2, we know that each non-trivial component of G*[U] is either a tree with
diameter at most 3 or a unicyclic graph K, + e with » > 2. Let ¢ be the number of

non-trivial tree-components of G*[U]. Then

YoaH)< Y Y (dulu = 3" @e(H) — [H)2y = (e(Uy) = ).

HeM HeH ueV (H) HeH
Combining with (1), we get

(W) <l—c— Y 2. (2)

uelUg Lur
Thus, e(W) < 1 and ¢ < 1. In addition, if (W) =1, then c=0, Uy =0, N> = A =m — 1,
Ty = X+ for any w € W with dy(w) > 1 and z, =z, for any u € V(H) with dg(u) > 2.

Claim 3.3 ¢(W) = 0.

Proof. Suppose on the contrary that e(W) = 1. Let wjwy be the unique edge in G*[W].
Note that ¢ = 0 and Uy = 0, it follows that each component of G*[U] is isomorphic to
a unicyclic graph K;, + e with » > 2. That is, each component of G*[U] contains a
triangle. Let H be a component of G*[U] and ujusuzu; be the triangle C3 of H. Since

8



G* is 0y 3 3-free, we get that de,(w;) + dey(ws) < 3. Otherwise, there are two cases. One
case is de,(w;) = 3 and de,(w;) > 1 for ¢ # j € {1,2}. Without loss of generality, we
suppose that de,(w1) = 3 and de,(wy) > 1. Let uy € Ng,(we). It is easy to find that ujus,
urutusug and uywowqug are three internally disjoint paths of length 1,3,3 between u; and
ug. It is a contradiction. The other case is de,(w;) > 2 for i € {1,2}. Since |C3] = 3,
we obtain |Ng,(wi) N Ney(we)| > 1. Assume wug,u, € Ney(wq) and ug,uy € Ney(ws)
with p,q¢ € {2,3}. If p # ¢, then wu,, wywiwu, and uju*u,u, are three internally
disjoint paths of length 1,3,3 between w; and u,. If p = ¢, for convenience, suppose
p = q = 2, then ujuy, viwiwou, and uju*usu, are three internally disjoint paths of length
1,3,3 between u; and u,. It is also a contradiction. Since de,(wy) + dey (w2) < 3, we have
ZueNCS(wl) Ty + ZUENCS(UJQ) Ty < (dey(wr) + dog(w2)) @y < 3. According to Az, =
D oueN(ur) Tu = Douecs Tu T Douer oy Tus W ODtAIN D2 cin o Ty = ATyr — Ty — Tuy — Ty
By Lemma 2.3 and e(W) = 1, we get dy(w;) > 1 for i € {1,2}. Recall that x,, = z,~ for
any w € W with dy(w) > 1. We get @, = Ty, = Tyr. As dy(u;) > 2, we have x,,, = x,»
for + € {1,2,3}. This implies that

2ATys = ATy, + ATy,

:xw2+ Z wu_‘_l‘wl_{' Z

uENy (w1) u€Ny (w2)
rtrat ¥ nt Y a2 Y n
uENCc, (w1) UENC, (w2) ueU\C3

S Lapy + Ly + 3«73u* + 2()\ZL’U* — Ly — Tyy — xu;g)

= 20y + 3xyr + 2( ATy — 3Ty+)

It is a contradiction for x,« > 0. The proof is complete. O
Claim 3.4 G*[U] contains no triangle.

Proof. Suppose on the contrary that G*[U] contains triangles. Then G*[U] contains a
component which is isomorphic to K , +e with r > 2. Let H* = K, , + e be a component
of G*[U]. It follows that e(H*) = r + 1. Suppose ujusugu; is the triangle of H* and
dy+(u1) = dy=(ug) = 2.

If Wy« =0, then z,, = z,,. Hence,

)\{Eul = Ty + Lyg + Ty < Ly + 2"L‘u*'

This implies that z,, < s%72,~. Therefore,

NH") = 2y, + Ty + (1 — 1)y, < Ty + (1 — 1D)xys.

4
A—1



Since m > 43 and A\ > 7, we get n(H*) < ra, = (e(H*)—1)x,+. Note that n(H) < e(H)x,»
for any other component H € ‘H \ {H*} of G*[U]. Hence,

S onH)=nH)+ > n(H)

HeH HeH\{H*}

<(e(H") = Dry+ Y e(H)y
HeH\{H*}

— (e(U}) = D,
which contradicts with (1). Thus, Wy« # 0.

Because e(W) = 0, by Lemma 2.3, we have dy(w) > 2 for any w € Wy«. Suppose
r > 3, let ug, ..., u,41 be the neighbors of uz. For w € Wy, if {uy,us} C Ny(w), then ujus,
uru*ugug and ugwusug are three internally disjoint paths of length 1,3,3 between u; and ug,
a contradiction. If {u;, us} € Ny(w), then wjus, uju*usus and uju;wug are three internally
disjoint paths of length 1,3,3 between u; and us where ¢ # j € {1,2}, a contradiction. If
{ui,u;} € Ny(w), then u;ug, uiu g oy iyus and w;wujuz are three internally disjoint paths
of length 1,3,3 between u; and ug where ¢ € {1,2} and j € {4,...,r + 1}, a contradiction.
If {us,u;} € Ny(w), then u*us, w*ujwug and u*ujugus are three internally disjoint paths
of length 1,3,3 between u* and uz where j € {4,...,r + 1}, a contradiction. If {u;,u;} C
Ny(w), then w*u;, u*u;wu; and u*ujugu; are three internally disjoint paths of length 1,3,3
between u* and u; where i # j € {4,...,7+ 1}, a contradiction. If {u;,v} C Ny (w), then
w*u;, w*vwu; and u*uguzu; are three internally disjoint paths of length 1,3,3 between u*
and u; where i € {1,2} and v € U\ V(H*), a contradiction. If {uz,v} C Ny (w), then u*ug,
uw*vwug and u*ujuguz are three internally disjoint paths of length 1,3,3 between u* and ug
where v € U\ V(H*), a contradiction. If {u;,v} C Ny(w), then u*u;, u*vwu; and u*ujusu;
are three internally disjoint paths of length 1,3,3 between «* and u; where i € {4,...,r+1}

and v € U\ V(H"), a contradiction. Therefore, r = 2. That is, H* is a triangle ujususu;.

First, we assume that |[Wpy+| = 1. Let Wy = {w}. Since G* is 0, 3 3-free, it follows
that dy\v (g« (w) = 0. Therefore, d(w) = dy+(w). As H* is a triangle, we obtain d(w) = 2
or d(w) = 3. If d(w) = 2, without loss of generality, we suppose N(w) = {uy,us}. Then

Ty, = Ty,. Since

)\xu;; = Tyy + Ty + Ty < 3$u*7

we obtain z,, < $x,.. Furthermore,

Axul = qu + 'Tu:’, + Loy* + Ty S xul + Xxu* =+ 2xu*.

This implies that z,, < /\3&—3}1‘)% Thus,
) TA+3
T](H ) = Ty + Lyg + Lyg S ml’u*

10



Since % is decreasing in variable z > 1 and A > 7, we get
TxXT74+3
n(H") < Tgxu < 2Ty = (e(H*) — 1)zy-.

Recall that n(H) < e(H)x, for any other component H € H \ {H*} of G*[U]. Hence,

S on(H)=nH)+ > n(H)

HeH HeH\{H*}

< (e(H*) = 1)xy + Z e(H )z
HeH\{H*}

= (e(Uy) = D,

which contradicts with (1). If d(w) = 3, that is, N(w) = {uy, us, us}, then x,, = xy, = Ty,.
By
ATy = Ty + Tuy + Tyr + Ty < 20y, + 2240,

we obtain ., < y%52,+. Therefore, by A > 7,

TI(H*) = Tyy + Ty + Ty <

6
gt < 20, = (e(H") — 1)xys.

Thus, > yeqyn(H) < (e(Us) — 1)xy+, a contradiction. So [Wg+| > 2.

Similarly, since G* is 6 3 3-free, we have dy\v(g+)(w) = 0 for any w € Wy-. Therefore,
2 < d(w) = dyg~(w) < 3. If there is a vertex w’ € Wy such that d(w’) = 3, then
N(w'") = {uy,uq,us}. Note that [Wy«| > 2, there exists a vertex w” # w’ in Wy satisfying
d(w"”) > 2. Suppose that uj,us € N(w”). Then u*uy, u*ugw'u; and u*usw”u; are three
internally disjoint paths of length 1,3,3 between u* and u;, a contradiction. Hence, d(w) =
dp+(w) = 2 for any w € Wy«. This implies that 1 < |N(w) N N(w’)| < 2 for any two
vertices w,w’ € Wy, If [N(w) N N(w')| = 1, without loss of generality, we assume that
N(w) = {ug,us} and N(w') = {uy,us}. It is easy to see that u*u;, u*uzw'u; and u*uswuy
are three internally disjoint paths of length 1,3,3 between u* and w;, a contradiction.
Therefore, |N(w) N N(w')| = 2. That is, N(w) = N(w') for any w,w’ € Wy«. Without
loss of generality, we suppose that N(w) = {uy,us} for any w € Wy«. Let G’ be a graph
such that V(G') = V(G*) and E(G') = E(G*) — {wyw|w € Ny (u1)} + {v*w|w € Ny (u1)}.
One can verify that G’ is 6; 3 3-free. By Lemma 2.2, we have A\(G’) > A. It is a contradiction
with the maximality of G*. We complete the proof. U

Proof of Theorem 1.4. By Claims 3.2 and 3.4, we have that each component of
G*[U] is a non-trivial tree or an isolated vertex. By inequality (2), the number ¢ of non-
trivial tree-components is at most 1. If ¢ = 0, then G* is bipartite. By Lemma 2.1,
A< {m< @, a contradiction. Hence ¢ = 1. Tt follows that Uy = (). Let H be the
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unique component of G*[U]. That is, G*[U] = H and W = Wy. Since G* is 6, 3 3-free,
diam(H) < 3.

If diam(H) = 3, then H is a double star. Denote the two centers of H by u; and usy. If
Wy =0, then G* = {u*}Vv H. Without loss of generality, suppose that x,,, > z,,. Let G’ be
a graph such that V(G") = V(G*) and E(G') = E(G*)—{uqv|v € Ng(uz)\{u1}}+{uvfv €
Npg(uz) \ {u1}}. One can verify that G’ is 0, 3 3-free. By Lemma 2.2, we have A\(G') > A, a
contradiction. If Wy # (), then N(w) = {u1,us} for any w € Wy. Otherwise, G* contains
61 33 as a subgraph, a contradiction. Let G” be a graph such that V(G") = V(G*) and
E(G") = E(G") — {wow|w € Wg} + {u'wjw € Wg}. Obviously, G” is 0, 33-free. By
Lemma 2.2, we have A\(G”) > A, a contradiction. Hence, diam(H) < 2. That is, H = K,
with » > 1.

Let V(H) = {ug, u1,...,u,} and ug be the center of H with » > 1. Since

)\xuo:xu1+$UQ+"'+qu+xu*+ Z Lo,

wENw (up)

and
ALy = Ty + Ty + Tyy + -+ + Ty,

we obtain A(Zy, — Tys) = Ty + ZweNW(uo) Ty — Ty,. Note that x,, < x,+ and x, > 0 for
any v € V(G*). Thus, Ny (ug) = 0 and z,, = x,. If W # (), by Lemma 2.3, we have
d(w) > 2 for w € Wg. Note that e(WW) = 0. Let wy € W. Suppose uy,uy € Ny (wp).
If r > 3, then u*us, u*ujwous and u*u,ugus are three internally disjoint paths of length
1,3,3 between u* and ug, a contradiction. So r < 2. Since d(w) > 2 and Ny (ug) = 0, we
obtain 7 # 1. Therefore, r = 2 and N(w) = {uy,us} for any w € W. Hence, z,, = x,»
and x,, = T,,. As

ATy = Tyy + Ty + Tuy = Ty + 224,

it follows that z,, = %xu*. Note that z,« > x,,. We can get A < 3, it is a contradiction
with A\ > 7. Thus W = (. Equivalently, G* = K; V K;, with 2r + 1 = m. Hence
G*= K,V mT’lKl. This completes the proof. O
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