
The maximum spectral radius of theta-free
graphs with given size

Jing Gao1, Xueliang Li1,2

1Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
2School of Mathematical Sciences, Xinjiang Normal University, Urumchi, Xinjiang 830017, China

gjing1270@163.com, lxl@nankai.edu.cn

Abstract

A graph G is said to be F -free if it does not contain F as a subgraph. Let
G(m,F ) denote the set of F -free graphs with m edges having no isolated vertices.
A theta graph, denoted by θl1,l2,l3 , is the graph obtained by connecting two distinct
vertices with three internally disjoint paths of length l1, l2, l3, where l1 ≤ l2 ≤ l3 and
l2 ≥ 2. Recently, Li, Zhao and Zou (2025) characterized the θ1,p,q-free graph of size
m having the largest spectral radius, where q ≥ p ≥ 3 and p + q ≥ 2k + 1 ≥ 7. Up
to now, for all θ1,p,q-free graphs with q ≥ p ≥ 2, except for the case q = p = 3, the
graphs in G(m, θ1,p,q) with the largest spectral radius have been determined. So they
proposed a problem on characterizing the graphs with the maximum spectral radius
among θ1,3,3-free graphs. In this paper, we consider this problem and determine
the maximum spectral radius of θ1,3,3-free graphs with size m and characterize the
extremal graph.
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1 Introduction

For a simple graph G = (V (G), E(G)), we use n := |G| = |V (G)| and m := e(G) to
denote the order and the size of G, respectively. Since isolated vertices do not have an
effect on the spectral radius of a graph, throughout this paper we consider graphs without
isolated vertices. Let N(v) or NG(v) be the set of neighbors of v, and d(v) or dG(v) be the
degree of a vertex v in G. Denote N [v] = N(v) ∪ {v}. For a subset U ⊆ V (G), we denote
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by NU(u) the set of vertices of U that are adjacent to u, that is, NU(u) = NG(u)∩U , and
let dU(u) be the number of vertices of NU(u). For subsets X, Y of V (G), we write E(X,Y )

for the set of edges with one end in X and the other in Y . Let e(X,Y ) = |E(X,Y )|. If
Y = X, we simply write e(X) for e(X,X). The distance between two distinct vertices
u, v ∈ V (G) is the length of a shortest path from u to v in G. The diameter diam(G)

of a graph G is the greatest distance between any two vertices of G. The join of simple
graphs G and H, written G ∨H, is the graph obtained from the disjoint union G ∪H by
adding the edges to join every vertex of G with every vertex of H. For graph notation and
terminology undefined here, readers are referred to [1].

Let A(G) be the adjacency matrix of a connected graph G. The maximum of modulus
of all eigenvalues of A(G) is the spectral radius of G and denoted by λ(G). Since A(G)

is irreducible and nonnegative for a connected graph G, by the Perron-Frobenius theorem
there exists a unique positive unit eigenvector x corresponding to λ(G), which is called
Perron vector of G.

As usual, let Pn, Cn and K1,n−1 be the path, the cycle, and the star on n vertices,
respectively. Let K1,n−1 + e be the graph obtained from K1,n−1 by adding one edge within
its independent set. A theta graph, say θl1,l2,l3 , is the graph obtained by connecting two
distinct vertices with three internally disjoint paths of length l1, l2, l3, where l1 ≤ l2 ≤ l3

and l2 ≥ 2.
Let F be a family of graphs. A graph G is called F -free if it does not contain any

element in F as a subgraph. When the forbidden set F is a singleton, say F , then we write
F -free for F -free. Let G(m,F) denote the set of F -free graphs with m edges having no
isolated vertices. If F = {F}, then we write G(m,F ) for G(m,F).

The classic Turán type problem asks what is the maximum number of edges in an F -free
graph of order n. In spectral graph theory, Nikiforov [13] proposed a spectral Turán type
problem which asks to determine the maximum spectral radius of an F -free graph with
n vertices, which is known as the Brualdi-Solheid-Turán type problem. In the past few
decades, this problem has been studied for many classes of graphs, see [11, 12, 13, 18, 20].
In addition, Brualdi and Hoffman [2] raised another spectral Turán type problem: What is
the maximal spectral radius of an F -free graph with given size m? This problem is called
the Brualdi-Hoffman-Turán type problem. Up to now, much attention has been paid to
the Brualdi-Hoffman-Turán type problem for various families of graphs. For example, [15]
for K3-free graphs, [7] for non-bipartite K3-free graphs, [9, 10] for Kr+1-free graphs, [12]
for C4-free graphs, [19] for K2,r+1-free graphs, [3] for non-star K2,r+1-free graphs, [5] for
C+

k -free graphs where C+
k is a graph on k vertices obtained from Ck by adding a chord

between two vertices with distance two, [14] for Bk-free graphs where Bk is obtained from
k triangles by sharing an edge, [21] for F5-free graphs, [4] for F2k+2-free graphs where
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Fk = K1 ∨Pk−1, [6] for F2,3-free graphs, [4] for Fk,3-free graphs where Fk,3 is the friendship
graph obtained from k triangles by sharing a common vertex.

For theta graphs, Sun et al. [16] established sharp upper bounds on spectral radius
for G in G(m, θ1,2,3) and G(m, θ1,2,4), respectively. Subsequently, Lu et al. [8] determined
the graph among G(m, θ1,2,5) having the largest spectral radius. Generally, Li et al. [5]
confirmed the following theorem.

Theorem 1.1 [5] Let k ≥ 3 and m ≥ 4 (k2 + 3k + 1)
2. If G ∈ G(m, θ1,2,2k−1)∪G(m, θ1,2,2k),

then
λ(G) ≤ k − 1 +

√
4m− k2 + 1

2
,

and equality holds if and only if G ∼= Kk ∨
(
m
k
− k−1

2

)
K1.

Recently, Li et al. [4] determined the largest spectral radius of θ1,p,q-free graph with size
m for q ≥ p ≥ 3 and p+ q ≥ 7.

Theorem 1.2 [4] Let k ≥ 3 and m ≥ 9
4
k6+6k5+46k4+56k3+196k2. If G ∈ G(m, θ1,p,q)∪

G(m, θ1,r,s) with q ≥ p ≥ 3, s ≥ r ≥ 3, p+ q = 2k + 1 and r + s = 2k + 2, then

λ(G) ≤ k − 1 +
√
4m− k2 + 1

2
,

and equality holds if and only if G ∼= Kk ∨
(
m
k
− k−1

2

)
K1.

At the same time, they proposed the following problem in [4].

Problem 1.3 [4] How can we characterize the graphs among G(m, θ1,3,3) having the largest
spectral radius?

In this paper, we consider the above problem and characterize the unique graph with
the maximum spectral radius among G(m, θ1,3,3).

Theorem 1.4 Let G ∈ G(m, θ1,3,3) with m ≥ 43. Then λ(G) ≤ 1+
√
4m−3
2

and equality
holds if and only if G ∼= K2 ∨ m−1

2
K1.

2 Preliminaries

In this section, we introduce some basic lemmas which are useful in the subsequent
sections.

Lemma 2.1 [9, 15] If G ∈ G(m,K3), then λ(G) ≤
√
m. Equality holds if and only if G

is a complete bipartite graph.
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If G is a bipartite graph with m edges, then G ∈ G(m,K3). By Lemma 2.1, it follows
that λ(G) ≤

√
m.

Wu et al. [17] obtained a relationship between spectral radius of two graphs under
graph operation, which plays an important role in our proofs.

Lemma 2.2 [17] Let u and v be two vertices of the connected graph G with order n. Sup-
pose v1, v2, . . . , vs (1 ≤ s ≤ dv) are some vertices of NG(v)\NG(u) and x = (x1, x2, . . . , xn)

T

is the Perron vector of G, where xi corresponds to the vertex vi(1 ≤ i ≤ n). Let
G′ = G− {vvi|1 ≤ i ≤ s}+ {uvi|1 ≤ i ≤ s}. If xu ≥ xv, then λ(G) < λ(G′).

A cut vertex of a graph is a vertex whose deletion increases the number of components.
A graph is called 2-connected, if it is a connected graph without cut vertices. Let x be the
Perron vector of G with coordinate xv corresponding to the vertex v ∈ V (G). A vertex u∗

is said to be an extremal vertex if xu∗ = max{xu|u ∈ V (G)}.

Lemma 2.3 [19] Let G be a graph in G(m,F ) with the maximum spectral radius. If F is
a 2-connected graph and u∗ is an extremal vertex of G, then G is connected and d(u) ≥ 2

for any u ∈ V (G) \N [u∗].

3 Proof of Theorem 1.4

Let G∗ be a graph in G(m, θ1,3,3) with the maximum spectral radius. Note that
λ
(
K2 ∨ m−1

2
K1

)
= 1+

√
4m−3
2

and K2 ∨ m−1
2

K1 is θ1,3,3-free, we have

λ(G∗) ≥ λ

(
K2 ∨

m− 1

2
K1

)
=

1 +
√
4m− 3

2
.

By Lemma 2.3, we have G∗ is connected. Let λ = λ(G∗) and x be the Perron vector of
G∗ with coordinate xv corresponding to the vertex v ∈ V (G∗). Assume that u∗ is the
extremal vertex of G∗. That is, xu∗ ≥ xu for any u ∈ V (G∗) \ {u∗}. Set U = NG∗(u∗) and
W = V (G∗) \ NG∗ [u∗]. Let WH = NW (V (H)) for any component H of G∗[U ]. Since G∗

is θ1,3,3-free, G∗[U ] does not contain any path of length four and any cycle of length more
than four.

Lemma 3.1 For any non-trivial component H in G∗[U ], if H contains a cycle of length
four, then NW (u) ∩NW (v) = ∅ for any vertices u and v in the cycle of length four.

Proof. Let the cycle C4 in H be u1u2u3u4u1. Suppose on the contrary that NW (ui) ∩
NW (uj) ̸= ∅ for some vertices ui and uj, 1 ≤ i ̸= j ≤ 4. It follows that NW (ui) ̸= ∅ and
NW (uj) ̸= ∅. Let w ∈ NW (ui) ∩ NW (uj). If ui and uj are adjacent in C4, without loss
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of generality, we assume that ui = u1 and uj = u2. Then u∗u1, u∗u3u4u1 and u∗u2wu1

are three internally disjoint paths of length 1,3,3 between u∗ and u1. So G∗ contains θ1,3,3

as a subgraph, a contradiction. Hence, ui and uj are not adjacent in C4. Assume that
ui = u1 and uj = u3. It is easy to get that u1u2, u1u4u

∗u2 and u1wu3u2 are three internally
disjoint paths of length 1,3,3 between u1 and u2. Clearly, G∗ contains θ1,3,3 as a subgraph,
a contradiction. This completes the proof. □

For convenience, we divide U into two subsets U0 and U+ where U0 is the set of isolated
vertices of G∗[U ] and U+ = U \U0. It is easy to see that m = |U |+e(U+)+e(U,W )+e(W ).
Since λ(G∗)x = A(G∗)x, we have

λxu∗ =
∑
u∈U

xu =
∑
u∈U+

xu +
∑
u∈U0

xu.

Furthermore, we can get

λ2xu∗ = λ(λxu∗) = λ
∑
u∈U

xu

=
∑
u∈U

∑
v∈NG(u)

xv =
∑

v∈V (G)

dU(v)xv

= |U |xu∗ +
∑
u∈U+

dU(u)xu +
∑
w∈W

dU(w)xw.

Therefore,

(λ2 − λ)xu∗ = |U |xu∗ +
∑
u∈U+

(dU(u)− 1)xu +
∑
w∈W

dU(w)xw −
∑
u∈U0

xu

≤ |U |xu∗ +
∑
u∈U+

(dU(u)− 1)xu + e(U,W )xu∗ −
∑
u∈U0

xu.

Recall that λ ≥ 1+
√
4m−3
2

, that is, λ2 − λ ≥ m − 1 = |U | + e(U+) + e(U,W ) + e(W ) − 1.
Hence ∑

u∈U+

(dU(u)− 1)xu ≥

(
e(U+) + e(W ) +

∑
u∈U0

xu

xu∗
− 1

)
xu∗ .

Let H be the set of all non-trivial components in G∗[U ]. For each non-trivial component
H of H, we denote η(H) :=

∑
u∈V (H)(dH(u)− 1)xu. Clearly,

∑
H∈H

η(H) ≥

(
e(U+) + e(W ) +

∑
u∈U0

xu

xu∗
− 1

)
xu∗ , (1)

with equality if and only if λ2 − λ = m− 1 and xw = xu∗ for any w ∈ W with dU(w) ≥ 1.

Claim 3.2 G∗[U ] contains no any cycle of length four.
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Proof. Suppose to the contrary that G∗[U ] contains C4. Since G∗[U ] is P5-free, we can
get that G∗[U ] contains a component H ∈ {C4, C4 + e,K4} where C4 + e is the graph
obtained from C4 by adding one edge to two nonadjacent vertices. Let H′ be the family of
components of G∗[U ] each of which contains C4 as a subgraph, that is, H ∈ {C4, C4+e,K4}
for any H ∈ H′, then H \ H′ is the family of other components of G∗[U ] each of which is
a tree with diameter at most 3 or a unicyclic graph containing a triangle. Therefore, for
each H ∈ H \ H′, we have

η(H) =
∑

u∈V (H)

(dH(u)− 1)xu ≤ (2e(H)− |H|)xu∗ ≤ e(H)xu∗ .

Next we show that
η(H) < (e(H)− 1)xu∗ +

2
∑

w∈WH
xw

λ− 3

for each H ∈ H′. Let H∗ ∈ H′ with V (H∗) = {u1, u2, u3, u4} and the cycle of length four
be u1u2u3u4u1.

First, we consider the case WH∗ = ∅. Let xu1 = max{xui
|1 ≤ i ≤ 4}. Then

λxu1 =
∑

u∈N(u1)

xu ≤ xu∗ + xu2 + xu3 + xu4 ≤ xu∗ + 3xu1 .

Hence, xu1 ≤ 1
λ−3

xu∗ . Since m ≥ 43, we have λ ≥ 1+
√
4m−3
2

≥ 7. Thus, xu1 <
1
2
xu∗ and

η(H∗) ≤ (2e(H∗)− |H∗|)xu1 < (e(H∗)− 2)xu∗ < (e(H∗)− 1)xu∗ +
2
∑

w∈WH∗ xw

λ− 3
,

as desired.
In the following, we assume that WH∗ ̸= ∅. We consider the following two cases.
Case 1. All vertices in WH∗ have a unique common neighbor in V (H∗).
Without loss of generality, let the common neighbor be u1. It follows that NW (ui) = ∅

for i ∈ {2, 3, 4}. Let xu2 = max{xui
|2 ≤ i ≤ 4}. Then

λxu2 ≤ xu1 + xu3 + xu4 + xu∗ ≤ 2xu2 + 2xu∗ .

Thus, xu2 ≤ 2
λ−2

xu∗ ≤ 2
5
xu∗ since λ ≥ 7. Therefore, we have

η(H∗) =
∑

u∈V (H∗)

(dH∗(u)− 1)xu

≤ (dH∗(u1)− 1)xu1 + (2e(H∗)− dH∗(u1)− 3)xu2

≤
(
dH∗(u1)− 1 +

4

5
e(H∗)− 2

5
dH∗(u1)−

6

5

)
xu∗

=

(
4

5
e(H∗) +

3

5
dH∗(u1)−

11

5

)
xu∗ .
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Since dH∗(u1) ≤ 3, the above inequality becomes

η(H∗) ≤
(
4

5
e(H∗)− 2

5

)
xu∗

< (e(H∗)− 1)xu∗

< (e(H∗)− 1)xu∗ +
2
∑

w∈WH∗ xw

λ− 3
.

Case 2. There are at least two vertices of WH∗ such that they have distinct neighbors
in V (H∗).

Since 

λxu1 ≤ xu2 + xu3 + xu4 + xu∗ +
∑

w∈NWH∗ (u1)
xw,

λxu2 ≤ xu1 + xu3 + xu4 + xu∗ +
∑

w∈NWH∗ (u2)
xw,

λxu3 ≤ xu1 + xu2 + xu4 + xu∗ +
∑

w∈NWH∗ (u3)
xw,

λxu4 ≤ xu1 + xu2 + xu3 + xu∗ +
∑

w∈NWH∗ (u4)
xw,

we obtain

λ(xu1 + xu2 + xu3 + xu4) ≤ 3(xu1 + xu2 + xu3 + xu4) + 4xu∗ +
4∑

i=1

∑
w∈NWH∗ (ui)

xw.

By Lemma 3.1, we get that NWH∗ (ui) ∩ NWH∗ (uj) = ∅ for any vertices ui ̸= uj ∈ V (H∗).
Thus,

∑
w∈WH∗ xw =

∑
w∈NW (V (H∗)) xw =

∑4
i=1

∑
w∈NWH∗ (ui)

xw. Therefore, by λ ≥ 7, we
obtain

xu1 + xu2 + xu3 + xu4 ≤
4xu∗

λ− 3
+

∑
w∈WH∗ xw

λ− 3

≤ xu∗ +

∑
w∈WH∗ xw

λ− 3
.

Since H∗ ∈ H′, it follows that H∗ ∈ {C4, C4+e,K4}. Then dH∗(u) ≤ 3 for any u ∈ V (H∗).
Hence, by the definition of η(H∗),

η(H∗) ≤ 2(xu1 + xu2 + xu3 + xu4)

≤ 2xu∗ +
2
∑

w∈WH∗ xw

λ− 3

< (e(H∗)− 1)xu∗ +
2
∑

w∈WH∗ xw

λ− 3
.

Therefore, we conclude that η(H) < (e(H) − 1)xu∗ +
2
∑

w∈WH
xw

λ−3
for each H ∈ H′. Recall

that η(H) ≤ e(H)xu∗ for each H ∈ H \ H′. Thus,∑
H∈H

η(H) =
∑
H∈H′

η(H) +
∑

H∈H\H′

η(H)
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<
∑
H∈H′

(e(H)− 1)xu∗ +
∑
H∈H′

2
∑

w∈WH
xw

λ− 3
+

∑
H∈H\H′

e(H)xu∗

= e(U+)xu∗ −
∑
H∈H′

xu∗ +
∑
H∈H′

2
∑

w∈WH
xw

λ− 3
.

For any H ∈ H′ satisfying WH = ∅, we have
∑

w∈WH
xw = 0. For any H ∈ H′ satisfying

WH ̸= ∅ and any w ∈ WH , since G∗ is θ1,3,3-free, we obtain WH ∩ WG∗[U ]\H = ∅. Then
dU\V (H)(w) = 0. By Lemma 3.1, we have dH(w) = 1. It follows that dU(w) = 1. As
d(w) ≥ 2 by Lemma 2.3, it is easy to get that dW (w) ≥ 1. Thus,

∑
H∈H′

∑
w∈WH

xw ≤∑
H∈H′

∑
w∈WH

dW (w)xw ≤
∑

H∈H′
∑

w∈WH
dW (w)xu∗ ≤ 2e(W )xu∗ . Note that λ ≥ 7.

Therefore, ∑
H∈H

η(H) < e(U+)xu∗ −
∑
H∈H′

xu∗ +
∑
H∈H′

2
∑

w∈WH
xw

λ− 3

≤ e(U+)xu∗ −
∑
H∈H′

xu∗ +
4e(W )

λ− 3
xu∗

≤

(
e(U+) + e(W )−

∑
H∈H′

1

)
xu∗ ,

which contradicts with (1). Hence, G∗[U ] contains no C4. This completes the proof. □
By Claim 3.2, we know that each non-trivial component of G∗[U ] is either a tree with

diameter at most 3 or a unicyclic graph K1,r + e with r ≥ 2. Let c be the number of
non-trivial tree-components of G∗[U ]. Then∑

H∈H

η(H) ≤
∑
H∈H

∑
u∈V (H)

(dH(u)− 1)xu∗ =
∑
H∈H

(2e(H)− |H|)xu∗ = (e(U+)− c)xu∗ .

Combining with (1), we get

e(W ) ≤ 1− c−
∑
u∈U0

xu

xu∗
. (2)

Thus, e(W ) ≤ 1 and c ≤ 1. In addition, if e(W ) = 1, then c = 0, U0 = ∅, λ2 − λ = m− 1,
xw = xu∗ for any w ∈ W with dU(w) ≥ 1 and xu = xu∗ for any u ∈ V (H) with dH(u) ≥ 2.

Claim 3.3 e(W ) = 0.

Proof. Suppose on the contrary that e(W ) = 1. Let w1w2 be the unique edge in G∗[W ].
Note that c = 0 and U0 = ∅, it follows that each component of G∗[U ] is isomorphic to
a unicyclic graph K1,r + e with r ≥ 2. That is, each component of G∗[U ] contains a
triangle. Let H be a component of G∗[U ] and u1u2u3u1 be the triangle C3 of H. Since
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G∗ is θ1,3,3-free, we get that dC3(w1) + dC3(w2) ≤ 3. Otherwise, there are two cases. One
case is dC3(wi) = 3 and dC3(wj) ≥ 1 for i ̸= j ∈ {1, 2}. Without loss of generality, we
suppose that dC3(w1) = 3 and dC3(w2) ≥ 1. Let u1 ∈ NC3(w2). It is easy to find that u1u2,
u1u

∗u3u2 and u1w2w1u2 are three internally disjoint paths of length 1,3,3 between u1 and
u2. It is a contradiction. The other case is dC3(wi) ≥ 2 for i ∈ {1, 2}. Since |C3| = 3,
we obtain |NC3(w1) ∩ NC3(w2)| ≥ 1. Assume u1, up ∈ NC3(w1) and u1, uq ∈ NC3(w2)

with p, q ∈ {2, 3}. If p ̸= q, then u1uq, u1w1w2uq and u1u
∗upuq are three internally

disjoint paths of length 1,3,3 between u1 and uq. If p = q, for convenience, suppose
p = q = 2, then u1uq, u1w1w2uq and u1u

∗u3uq are three internally disjoint paths of length
1,3,3 between u1 and uq. It is also a contradiction. Since dC3(w1) + dC3(w2) ≤ 3, we have∑

u∈NC3
(w1)

xu +
∑

u∈NC3
(w2)

xu ≤ (dC3(w1) + dC3(w2))xu∗ ≤ 3xu∗ . According to λxu∗ =∑
u∈N(u∗) xu =

∑
u∈C3

xu +
∑

u∈U\C3
xu, we obtain

∑
u∈U\C3

xu = λxu∗ − xu1 − xu2 − xu3 .
By Lemma 2.3 and e(W ) = 1, we get dU(wi) ≥ 1 for i ∈ {1, 2}. Recall that xw = xu∗ for
any w ∈ W with dU(w) ≥ 1. We get xw1 = xw2 = xu∗ . As dH(ui) ≥ 2, we have xui

= xu∗

for i ∈ {1, 2, 3}. This implies that

2λxu∗ = λxw1 + λxw2

= xw2 +
∑

u∈NU (w1)

xu + xw1 +
∑

u∈NU (w2)

xu

≤ xw2 + xw1 +
∑

u∈NC3
(w1)

xu +
∑

u∈NC3
(w2)

xu + 2
∑

u∈U\C3

xu

≤ xw2 + xw1 + 3xu∗ + 2(λxu∗ − xu1 − xu2 − xu3)

= 2xu∗ + 3xu∗ + 2(λxu∗ − 3xu∗)

= 2λxu∗ − xu∗ .

It is a contradiction for xu∗ > 0. The proof is complete. □

Claim 3.4 G∗[U ] contains no triangle.

Proof. Suppose on the contrary that G∗[U ] contains triangles. Then G∗[U ] contains a
component which is isomorphic to K1,r + e with r ≥ 2. Let H∗ ∼= K1,r + e be a component
of G∗[U ]. It follows that e(H∗) = r + 1. Suppose u1u2u3u1 is the triangle of H∗ and
dH∗(u1) = dH∗(u2) = 2.

If WH∗ = ∅, then xu1 = xu2 . Hence,

λxu1 = xu2 + xu3 + xu∗ ≤ xu1 + 2xu∗ .

This implies that xu1 ≤ 2
λ−1

xu∗ . Therefore,

η(H∗) = xu1 + xu2 + (r − 1)xu3 ≤
4

λ− 1
xu∗ + (r − 1)xu∗ .
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Since m ≥ 43 and λ ≥ 7, we get η(H∗) < rxu∗ = (e(H∗)−1)xu∗ . Note that η(H) ≤ e(H)xu∗

for any other component H ∈ H \ {H∗} of G∗[U ]. Hence,∑
H∈H

η(H) = η(H∗) +
∑

H∈H\{H∗}

η(H)

< (e(H∗)− 1)xu∗ +
∑

H∈H\{H∗}

e(H)xu∗

= (e(U+)− 1)xu∗ ,

which contradicts with (1). Thus, WH∗ ̸= ∅.
Because e(W ) = 0, by Lemma 2.3, we have dU(w) ≥ 2 for any w ∈ WH∗ . Suppose

r ≥ 3, let u4, . . . , ur+1 be the neighbors of u3. For w ∈ WH∗ , if {u1, u2} ⊆ NU(w), then u1u3,
u1u

∗u4u3 and u1wu2u3 are three internally disjoint paths of length 1,3,3 between u1 and u3,
a contradiction. If {ui, u3} ⊆ NU(w), then uju3, uju

∗u4u3 and ujuiwu3 are three internally
disjoint paths of length 1,3,3 between uj and u3 where i ̸= j ∈ {1, 2}, a contradiction. If
{ui, uj} ⊆ NU(w), then uiu3, uiu

∗u{1,2}\{i}u3 and uiwuju3 are three internally disjoint paths
of length 1,3,3 between ui and u3 where i ∈ {1, 2} and j ∈ {4, . . . , r + 1}, a contradiction.
If {u3, uj} ⊆ NU(w), then u∗u3, u∗ujwu3 and u∗u1u2u3 are three internally disjoint paths
of length 1,3,3 between u∗ and u3 where j ∈ {4, . . . , r + 1}, a contradiction. If {ui, uj} ⊆
NU(w), then u∗uj, u∗uiwuj and u∗u1u3uj are three internally disjoint paths of length 1,3,3
between u∗ and uj where i ̸= j ∈ {4, . . . , r + 1}, a contradiction. If {ui, v} ⊆ NU(w), then
u∗ui, u∗vwui and u∗u4u3ui are three internally disjoint paths of length 1,3,3 between u∗

and ui where i ∈ {1, 2} and v ∈ U \V (H∗), a contradiction. If {u3, v} ⊆ NU(w), then u∗u3,
u∗vwu3 and u∗u1u2u3 are three internally disjoint paths of length 1,3,3 between u∗ and u3

where v ∈ U \V (H∗), a contradiction. If {ui, v} ⊆ NU(w), then u∗ui, u∗vwui and u∗u1u3ui

are three internally disjoint paths of length 1,3,3 between u∗ and ui where i ∈ {4, . . . , r+1}
and v ∈ U \ V (H∗), a contradiction. Therefore, r = 2. That is, H∗ is a triangle u1u2u3u1.

First, we assume that |WH∗| = 1. Let WH∗ = {w}. Since G∗ is θ1,3,3-free, it follows
that dU\V (H∗)(w) = 0. Therefore, d(w) = dH∗(w). As H∗ is a triangle, we obtain d(w) = 2

or d(w) = 3. If d(w) = 2, without loss of generality, we suppose N(w) = {u1, u2}. Then
xu1 = xu2 . Since

λxu3 = xu1 + xu2 + xu∗ ≤ 3xu∗ ,

we obtain xu3 ≤ 3
λ
xu∗ . Furthermore,

λxu1 = xu2 + xu3 + xu∗ + xw ≤ xu1 +
3

λ
xu∗ + 2xu∗ .

This implies that xu1 ≤ 3+2λ
λ(λ−1)

xu∗ . Thus,

η(H∗) = xu1 + xu2 + xu3 ≤
7λ+ 3

λ(λ− 1)
xu∗ .
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Since 7x+3
x(x−1)

is decreasing in variable x > 1 and λ ≥ 7, we get

η(H∗) ≤ 7× 7 + 3

7× 6
xu∗ < 2xu∗ = (e(H∗)− 1)xu∗ .

Recall that η(H) ≤ e(H)xu∗ for any other component H ∈ H \ {H∗} of G∗[U ]. Hence,∑
H∈H

η(H) = η(H∗) +
∑

H∈H\{H∗}

η(H)

< (e(H∗)− 1)xu∗ +
∑

H∈H\{H∗}

e(H)xu∗

= (e(U+)− 1)xu∗ ,

which contradicts with (1). If d(w) = 3, that is, N(w) = {u1, u2, u3}, then xu1 = xu2 = xu3 .
By

λxu1 = xu2 + xu3 + xu∗ + xw ≤ 2xu1 + 2xu∗ ,

we obtain xu1 ≤ 2
λ−2

xu∗ . Therefore, by λ ≥ 7,

η(H∗) = xu1 + xu2 + xu3 ≤
6

λ− 2
xu∗ < 2xu∗ = (e(H∗)− 1)xu∗ .

Thus,
∑

H∈H η(H) < (e(U+)− 1)xu∗ , a contradiction. So |WH∗| ≥ 2.
Similarly, since G∗ is θ1,3,3-free, we have dU\V (H∗)(w) = 0 for any w ∈ WH∗ . Therefore,

2 ≤ d(w) = dH∗(w) ≤ 3. If there is a vertex w′ ∈ WH∗ such that d(w′) = 3, then
N(w′) = {u1, u2, u3}. Note that |WH∗| ≥ 2, there exists a vertex w′′ ̸= w′ in WH∗ satisfying
d(w′′) ≥ 2. Suppose that u1, u2 ∈ N(w′′). Then u∗u1, u∗u3w

′u1 and u∗u2w
′′u1 are three

internally disjoint paths of length 1,3,3 between u∗ and u1, a contradiction. Hence, d(w) =
dH∗(w) = 2 for any w ∈ WH∗ . This implies that 1 ≤ |N(w) ∩ N(w′)| ≤ 2 for any two
vertices w,w′ ∈ WH∗ . If |N(w) ∩ N(w′)| = 1, without loss of generality, we assume that
N(w) = {u1, u2} and N(w′) = {u1, u3}. It is easy to see that u∗u1, u∗u3w

′u1 and u∗u2wu1

are three internally disjoint paths of length 1,3,3 between u∗ and u1, a contradiction.
Therefore, |N(w) ∩ N(w′)| = 2. That is, N(w) = N(w′) for any w,w′ ∈ WH∗ . Without
loss of generality, we suppose that N(w) = {u1, u2} for any w ∈ WH∗ . Let G′ be a graph
such that V (G′) = V (G∗) and E(G′) = E(G∗)−{u1w|w ∈ NW (u1)}+{u∗w|w ∈ NW (u1)}.
One can verify that G′ is θ1,3,3-free. By Lemma 2.2, we have λ(G′) > λ. It is a contradiction
with the maximality of G∗. We complete the proof. □

Proof of Theorem 1.4. By Claims 3.2 and 3.4, we have that each component of
G∗[U ] is a non-trivial tree or an isolated vertex. By inequality (2), the number c of non-
trivial tree-components is at most 1. If c = 0, then G∗ is bipartite. By Lemma 2.1,
λ ≤

√
m < 1+

√
4m−3
2

, a contradiction. Hence c = 1. It follows that U0 = ∅. Let H be the
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unique component of G∗[U ]. That is, G∗[U ] ∼= H and W = WH . Since G∗ is θ1,3,3-free,
diam(H) ≤ 3.

If diam(H) = 3, then H is a double star. Denote the two centers of H by u1 and u2. If
WH = ∅, then G∗ = {u∗}∨H. Without loss of generality, suppose that xu1 ≥ xu2 . Let G′ be
a graph such that V (G′) = V (G∗) and E(G′) = E(G∗)−{u2v|v ∈ NH(u2)\{u1}}+{u1v|v ∈
NH(u2) \ {u1}}. One can verify that G′ is θ1,3,3-free. By Lemma 2.2, we have λ(G′) > λ, a
contradiction. If WH ̸= ∅, then N(w) = {u1, u2} for any w ∈ WH . Otherwise, G∗ contains
θ1,3,3 as a subgraph, a contradiction. Let G′′ be a graph such that V (G′′) = V (G∗) and
E(G′′) = E(G∗) − {u2w|w ∈ WH} + {u∗w|w ∈ WH}. Obviously, G′′ is θ1,3,3-free. By
Lemma 2.2, we have λ(G′′) > λ, a contradiction. Hence, diam(H) ≤ 2. That is, H ∼= K1,r

with r ≥ 1.
Let V (H) = {u0, u1, . . . , ur} and u0 be the center of H with r ≥ 1. Since

λxu0 = xu1 + xu2 + · · ·+ xur + xu∗ +
∑

w∈NW (u0)

xw,

and
λxu∗ = xu0 + xu1 + xu2 + · · ·+ xur ,

we obtain λ(xu0 − xu∗) = xu∗ +
∑

w∈NW (u0)
xw − xu0 . Note that xu0 ≤ xu∗ and xv > 0 for

any v ∈ V (G∗). Thus, NW (u0) = ∅ and xu0 = xu∗ . If W ̸= ∅, by Lemma 2.3, we have
d(w) ≥ 2 for w ∈ WH . Note that e(W ) = 0. Let w0 ∈ W . Suppose u1, u2 ∈ NH(w0).
If r ≥ 3, then u∗u2, u∗u1w0u2 and u∗uru0u2 are three internally disjoint paths of length
1,3,3 between u∗ and u2, a contradiction. So r ≤ 2. Since d(w) ≥ 2 and NW (u0) = ∅, we
obtain r ̸= 1. Therefore, r = 2 and N(w) = {u1, u2} for any w ∈ W . Hence, xu0 = xu∗

and xu1 = xu2 . As
λxu∗ = xu0 + xu1 + xu2 = xu∗ + 2xu1 ,

it follows that xu1 =
λ−1
2
xu∗ . Note that xu∗ ≥ xu1 . We can get λ ≤ 3, it is a contradiction

with λ ≥ 7. Thus W = ∅. Equivalently, G∗ ∼= K1 ∨ K1,r with 2r + 1 = m. Hence
G∗ ∼= K2 ∨ m−1

2
K1. This completes the proof. □
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