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Abstract

The tensor spectra of the power hypergraph of a graph G is called the high-order

spectra of G. In this paper, we show that all Smith graphs are determined by

their high-order spectra. We give some high-order cospectral invariants of trees and

use them to show that some cospectral trees constructed by the classical Schwenk

method can be distinguished by their high-order spectra.
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1. Introduction

If there was a “Holy Grail” in graph theory, it would be a practical test for

graph isomorphism [18]. It was commonly believed that two cospectral graphs are

isomorphic [13], until a pair of non-isomorphic cospectral trees was presented by

Collatz and Sinogowitz in 1957 [24]. Many non-isomorphic cospectral graphs have

since been found [8, 12, 20].

If all graphs who are cospectral with a graph G are isomorphic to G, the graph

G is said to be determined by the spectra (short for DS ). Until now, the known DS

graphs are very special [9, 22, 23, 25].

There have been several variants of research on spectral characterization of

graphs and researchers used many kinds of spectra to study them, such as the

Laplacian spectra [17, 18], the generalized spectra [25] and the Hermitian spectra

[26, 27].
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Let the k-power hypergraph G(k) be the k-uniform hypergraph that is obtained

by adding k− 2 new vertices to each edge of G for k ≥ 2 [14]. The spectra of G(k) is

called the k-order spectra of G. Some interesting properties of the k-order spectra

of G are given, for example, the k-order spectra of G is always k-symmetric [10]

and the k-order eigenvalues of G can be generated from the eigenvalues of signed

subgraphs of G for k ≥ 3 [4]. If graphs G1 and G2 have the same k-order spectra for

some k, G1 and G2 are said to be k-order cospectral. If graphs which have the same

k-order spectra with the graph G are isomorphic to G, we say that G is determined

by the k-order spectra. If G1 and G2 are k-order cospectral for all positive integers

k ≥ 2, G1 and G2 are said to be high-order cospectral.

Definition 1.1. A graph G is determined by the high-order spectra (DHS for short)

if all graphs who are high-order cospectral with G are isomorphic to G.

Notice that the graphs determined by the k-order spectra for some k are DHS

and then the graphs determined by the spectra (2-order spectra) are DHS.

In 1970, Smith classified all connected graphs with spectral radii at most 2 [21],

which usually are called “Smith graphs”. In 2009, Van Dam and Haemers gave all

graphs which are not determined by the spectra in the Smith’s classification [23].

We show that these graphs given by Van Dam and Haemers are determined by the

high-order spectra, thus all Smith graphs are determined by the high-order spectra.

In 1973, Schwenk gave a useful method to construct non-isomorphic cospectral trees

and proved his famous conclusion:“Almost all trees are not DS” [20]. We show

that the infinitely many pairs of non-isomorphic cospectral trees constructed by

Schwenk’s method have different high-order spectra. That means these trees cannot

be distinguished by the spectra, but our results show that they can be distinguished

by the high-order spectra.

This paper is organized as follows. In Section 2, we introduce the spectra of

hypergraphs and some lemmas. In Section 3, we show that Smith graphs are deter-

mined by the high-order spectra. In Section 4, we give some high-order cospectral

invariants about the number of some subtrees. Using these high-order cospectral

invariants, we give infinitely many pairs of cospectral trees with different high-order

spectra.

2. Preliminaries

In this section, we introduce the spectra of a hypergraph and present lemmas

which are important to the results of this paper. For a positive integer n, let [n] =
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{1, . . . , n}. A k-order n-dimension complex tensor T = (ti1···ik) is a multidimensional

array with nk entries on complex number field C, where ij ∈ [n], j = 1, . . . , k. Denote

the set of n-dimension complex vectors by Cn. For x = (x1, . . . , xn)
T ∈ Cn, Txk−1

denotes a vector in Cn whose i-th component is

(
Txk−1

)
i
=

n∑
i2,...,ik=1

tii2···ikxi2 · · · xik .

If there exist λ ∈ C and a nonzero vector x = (x1, x2, . . . , xn)
T ∈ Cn such that

Txk−1 = λx[k−1], then λ is called an eigenvalue of T and x is an eigenvector of T

corresponding to λ, where x[k−1] =
(
xk−1
1 , . . . , xk−1

n

)T
[16, 19].

A hypergraph H = (V (H), E(H)) is called k-uniform if each edge of H contains

exactly k vertices. For a k-uniform hypergraph H with n vertices, its (normalized)

adjacency tensor AH = (ai1i2...ik) is a k-order n-dimension tensor [6], where

ai1i2...ik =

 1
(k−1)!

, if {i1, i2, . . . , ik} ∈ E(H),

0, otherwise.

All the eigenvalues of AH are called the spectra of the hypergraph H [6]. When H

is 2-uniform, AH is the adjacency matrix of the graph H.

A signed graph Gπ is a pair (G, π), where G = (V,E) is a graph and the edge

sign function is π : E → {+1,−1}. We use i ∼ j to denote that the vertices i

and j are adjacent in the graph G and use π(i, j) to denote the sign of edge {i, j}.
The adjacency matrix A(Gπ) = (Aij) of the signed graph Gπ is the symmetric

{0,+1,−1}-matrix, where

Aij =

π(i, j), if i ∼ j,

0, otherwise.

The eigenvalues of A(Gπ) are called the eigenvalues of Gπ. An (induced) subgraph

of the signed graph Gπ is called a signed (induced) subgraphs of G. All the eigen-

values of G(k) without counting multiplicity were given by the eigenvalues of signed

subgraphs of G as follows [4].

Lemma 2.1. [4] Let G(k) be the k-power hypergraph of a graph G.

(1) When k = 3, λ is an eigenvalue of G(3) if and only if there is a signed induced

subgraph with an eigenvalue β such that β2 = λk.
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(2) When k > 3, λ is an eigenvalue of G(k) if and only if there is a signed subgraph

with an eigenvalue β such that β2 = λk.

In [2], the authors gave the characteristic polynomial of power hyperpaths and

provided a closed formula of their distinct eigenvalues.

Lemma 2.2. [2] The set of all distinct eigenvalues of the k-uniform hyperpath P
(k)
n

is {
λ ∈ C : λk =

(
2 cos

π

j + 1
t

)2

, j ∈ [n], t ∈ [j]

}
.

A signed cycle (Cn, π) is called positive (resp. negative) cycle if the product of

signs of all edges of (Cn, π) is positive (resp. negative). We use C+
n and C−

n to denote

the positive and negative cycle, respectively. Since the connected subgraphs of the

cycle Cn are Cn and Pj for j ∈ [n − 1], we obtain all distinct eigenvalues of C
(k)
n

from all eigenvalues of C+
n , C

−
n and Pj by Lemma 2.1. This result will be used to

find distinct eigenvalues of power hypergraphs of Smith graphs and their cospectral

graphs in Section 3.

Lemma 2.3. The set of all distinct eigenvalues of the k-power hypercycle C
(k)
n (for

k > 3) is {
λ ∈ C : λk = β2, β ∈ Ω

}
,

where

Ω = {2 cos tπ

j + 1
, 2 cos

2rπ

n
, 2 cos

(2r − 1)π

n
: j ∈ [n− 1], t ∈ [j], r ∈ [n]}.

Proof. The connected subgraphs of cycle Cn are Cn and Pj for j ∈ [n − 1]. By

Lemmas 2.1 and 2.2, we know that the complex number λ is an eigenvalue of the

k-power hypercycle C
(k)
n (for k > 3) if and only if there is

β ∈ {2 cos tπ

j + 1
: j ∈ [n− 1], t ∈ [j]} ∪ σ(C+

n ) ∪ σ(C−
n )

such that λk = β2, where σ(C+
n ) (resp. σ(C−

n )) is the set of all eigenvalues of

C+
n (resp. C−

n ). It is known that σ(C+
n ) = {2 cos 2πr

n
: r ∈ [n]} [9, Page 72] and

σ(C−
n ) = {2 cos (2r−1)π

n
: r ∈ [n]} [11, Lemma 2.3], then we have

β ∈ {2 cos tπ

j + 1
, 2 cos

2rπ

n
, 2 cos

(2r − 1)π

n
: j ∈ [n− 1], t ∈ [j], r ∈ [n]}.
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The d-th order spectral moment Sd(G) of a graph G is the sum of d-th power of

all eigenvalues of G. Two graphs are cospectral if and only if all of their d-th order

spectral moments are equal [23]. The spectral moment of a graph is an important

parameter in spectral characterizations of graphs [1, 7, 15, 22]. Let Ĝ be a connected

subgraph of G. We use NG(Ĝ) to denote the number of subgraphs of G isomorphic

to Ĝ.

A walk is a sequence of vertices and edges of a graph, and a walk is said to be

closed if the beginning and ending vertices are identical [7]. We use cd(Ĝ) to denote

the number of closed walks with length d in the graph Ĝ running through all the

edges at least once. The d-th order spectral moment Sd(G) can be represented as a

linear combination of the number of connected subgraphs [1, 7, 9], i.e.,

Sd(G) =
∑

Ĝ∈G(d)
cd(Ĝ)NG(Ĝ),

where G(d) is the set of connected subgraphs of G with at most d edges. The

coefficient cd(Ĝ) is called the d-th order spectral moment coefficient of Ĝ. A formula

for the d-th order spectral moment coefficients of trees was given in [3].

Lemma 2.4. [3, Theorem 2.10] The d-th order spectral moment of the tree T is

Sd (T ) =


d
2∑

m=1

∑
T̂∈T(m)

cd(T̂ )NT (T̂ ), 2 | d,

0, 2 ∤ d,

where T(m) is the set of subtrees of T with m edges. The d-th order spectral moment

coefficient of the subtree T̂ is

cd(T̂ ) =


d

∑
∑

e∈E(T̂ )
w(e)= d

2

( ∏
e∈E(T̂ )

w(e)
∏

v∈V (T̂ )
(dv−1)!

rv

)
, 2 | d,

0, 2 ∤ d,

(2.1)

where w(e) is a positive integer corresponding to edge e of the tree T̂ , rv =
∏

e∈Ev(T̂ ) w(e)!

and dv =
∑

e∈Ev(T̂ )w(e).

Similar to the spectral moments of graphs, the d-th order spectral moment Sd(H)

of a k-uniform hypergraph H is the sum of d-th power of all eigenvalues of H,
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i.e., Sd(H) =
∑

λ∈σ(H) λ
d, where σ(H) is the spectra of H. Two hypergraphs are

cospectral if and only if their d-th order spectral moments are equal for all d ≥ 1 [5].

Clark and Cooper expressed the characteristic polynomial coefficients of a uniform

hypergraph H by means of the spectral moments of H and gave the “Harary-Sachs

Theorem” of hypergraphs [5]. In [3], the authors expressed the spectral moment of

power hypertree by the number of subtrees as follows.

Lemma 2.5. [3] Let T (k) be the k-power hypertree of a tree T . Let ci(T̂ ) denote

the i-th order spectral moment coefficient of the subtree T̂ . Then the d-th spectral

moment of T (k) is

Sd

(
T (k)

)
=


d
k∑

m=1

1
2
(k − 1)(|E(T )|−m)(k−1)km(k−2)+1

∑
T̂∈T(m)

c 2d
k
(T̂ )NT (T̂ ), k | d,

0, k ∤ d,

where T(m) is the set of subtrees of T with m edges.

3. Smith graphs are DHS

Connected graphs with spectral radii at most 2 are usually called “Smith graphs”,

since Smith classified them in 1970 [21]. In 2009, Van Dam and Haemers showed

that not all Smith graphs are determined by the spectra [23]. In this section, we

show that all Smith graphs are determined by the high-order spectra.

Figure 1 shows all the Smith graphs. Except for the graphs D̃n and Ẽ6, Smith

graphs are determined by the spectra [23]. Then all Smith graphs are DHS if and

only if D̃n and Ẽ6 are DHS. In order to prove that D̃n and Ẽ6 are DHS, we only

need to give all non-isomorphic cospectral graphs of D̃n (resp. Ẽ6) and then prove

that these cospectral graphs are not high-order cospectral with D̃n (resp. Ẽ6).
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(a) Pn (b) Dn (c) E6 (d) E7

(e) E8 (f) Cn (g) D̃n (h) Ẽ6

(i) Ẽ7 (j) Ẽ8

Figure 1: Smith graphs

The following cospectral invariant of graphs in terms of the number of subgraphs

was given by Cvetković and Rowlinson in [7].

Lemma 3.1. [7] If graphs G and G∗ are cospectral, then NG(P3) + 2NG(C4) =

NG∗(P3) + 2NG∗(C4).

We give all non-isomorphic cospectral graphs of D̃n (resp. Ẽ6) by the above

cospectral invariant. Let G1 +G2 denote the disjoint union of graphs G1 and G2.

Lemma 3.2. Graph G is a non-isomorphic cospectral graphs of D̃n (resp. Ẽ6) if

and only if G = C4 + Pn (resp. C6 +K1).

Proof. It is well-known that C4 + Pn is a non-isomorphic cospectral graphs of D̃n

[9, Page 77]. Let G be a non-isomorphic cospectral graph of D̃n. We will show that

G = C4 + Pn.

Claim 1: G has two connected components, one is a cycle and the other is a tree.

Proof: Since G is cospectral with D̃n, the spectral radius of G is equal to 2. All

Smith graphs are determined by the spectra, except for the graphs D̃n and Ẽ6 [23].

Then G is not a Smith graph, i.e., G is not connected.

The spectral radii of every connected components of G are at most 2. Since

connected graphs with spectral radii at most 2 are cycles or trees, every connected

components of G are cycles or trees. From |V (G)| = |V (D̃n)| = n+4 and |E(G)| =
|E(D̃n)| = n+3, we get |E(G)| = |V (G)|−1. Then we know that only one connected

component of G is a tree and the other connected components are cycles.

The algebraic multiplicity of the eigenvalue λ = 2 of G (or D̃n) is 1 [9, Page

77], it yields that only one connected component of G is cycle and the spectral radii
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of the other connected components are less than 2. Then the graph G contains

exactly two connected components, one of them is a cycle and the other is a tree

with spectral radius less than 2. □

Claim 2: G = C4 + Pn.

Proof: From the proof of Claim 1, we have G = Cs + Tn+4−s, where Cs is a cycle

with s vertices and Tn+4−s is a tree whose spectral radius is less than 2. Since G is

cospectral with D̃n, we have NG(P3) + 2NG(C4) = ND̃n
(P3) + 2ND̃n

(C4) by Lemma

3.1. We know that ND̃n
(P3) + 2ND̃n

(C4) = n+ 4 from Figure 1 (g). Then

NCs(P3) +NTn+4−s(P3) + 2NCs(C4) + 2NTn+4−s(C4) = n+ 4.

We have

2NCs(C4) = n+ 4−NCs(P3)−NTn+4−s(P3)

= n+ 4− s−NTn+4−s(P3). (3.1)

Since the spectral radius of Tn+4−s is less than 2, we know that Tn+4−s is isomorphic

to one of Pn+4−s, Dn+2−n, E6, E7 or E8.

If Tn+4−s = Pn+4−s, we have NTn+4−s(P3) = n + 2 − s when n + 4 − s ≥ 3 and

NTn+4−s(P3) = 0 when 1 ≤ n− s+4 < 3. When n+4− s ≥ 3, we have NCs(C4) = 1

by Equation (3.1), i.e., s = 4. When 1 ≤ n− s+ 4 < 3, we have 1 ≤ 2NCs(C4) < 3

and then NCs(C4) = 1 by Equation (3.1), i.e., s = 4. So we have NG(C4) = 1 if

Tn+4−s = Pn+4−s.

If Tn+4−s is isomorphic to one ofDn+2, E6, E7 and E8, it yields thatNTn+4−s(P3) =

n+3−s from Figure 1 (b), (c), (d) and (e). Then we get 2NCs(C4) = 1 by Equation

(3.1). It contradicts the fact that 2NCs(C4) is even.

Then we get that G = C4 + Pn. □

From the above proof, we know that G is a non-isomorphic cospectral graphs of

D̃n if and only if G = C4 +Pn. Similarly, we also obtain that G is a non-isomorphic

cospectral graphs of Ẽ6 if and only if G = C6 +K1.

Next, we will show that D̃
(k)
n (resp. Ẽ

(k)
6 ) is not high-order cospectral with their

cospectral graphs (C4 + Pn)
(k) (resp. (C6 + K1)

(k)). We show that there is an

eigenvalue λ of the power hypergraph D̃
(k)
n (resp. Ẽ

(k)
6 ) but λ is not an eigenvalue

of (C4 + Pn)
(k) (resp. (C6 + K1)

(k)). Therefore, we obtain the main result in this

section.
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Theorem 3.3. All Smith graphs are determined by the high-order spectra.

Proof. We will prove that D̃n and Ẽ6 are DHS. By Lemma 3.2, we know that graph

G is a non-isomorphic cospectral graphs of D̃n (resp. Ẽ6) if and only if G = C4+Pn

(resp. C6 +K1). Then we only need to prove that D̃n (resp. Ẽ6 ) is not high-order

cospectral with (C4 + Pn) (resp. C6 +K1 ).

Next, we prove that there is an eigenvalue λ of the hypergraph D̃
(k)
n such that λ

is not an eigenvalue of the hypergraph (C4+Pn)
(k). Since Dn is an induced subgraph

of D̃n and 2 cos π
2n+2

is an eigenvalue of Dn [9, Page 77], we know that k

√
(2 cos π

2n+2
)2

is an eigenvalue of D̃
(k)
n from Lemma 2.1. By Lemmas 2.2 and 2.3, the largest real

eigenvalue less than k
√
4 of (C4 + Pn−3)

(k) is k
√

(2 cos π
n
)2. From the monotonicity

of the cosine function on interval [0, π], we have k

√
(2 cos π

2n+2
)2 > k

√
(2 cos π

n
)2. It

follows that k

√
(2 cos π

2n+2
)2 is not an eigenvalue of (C4+Pn−3)

(k). Then D̃n is DHS.

Similarly, since D3 is an induced subgraph of Ẽ6 and 2 cos π
8
is an eigenvalue of

D3, it yields that k
√

(2 cos π
8
)2 is an eigenvalue of Ẽ

(k)
6 by Lemma 2.1. The largest real

eigenvalue less than k
√
4 of (C6 +K1)

(k) is k
√

(2 cos π
6
)2. We know that k

√
(2 cos π

8
)2

is not an eigenvalue of (C6 +K1)
(k) by Lemma 2.3. Then Ẽ6 is DHS.

4. High-order cospectral invariants of trees

In 1973, Schwenk gave a useful method to construct non-isomorphic cospectral

trees and proved his famous conclusion:“Almost all trees are not DS” [20]. The

cospectral trees constructed by Schwenk’s method cannot be distinguished by the

spectra. In this section, we give some high-order cospectral invariants of trees and

our results show that there are infinitely many pairs of cospectral trees constructed

by Schwenk’s method can be distinguished by the high-order spectra.

Let T and T ∗ be two high-order cospectral trees. Then Sd(T
(k)) = Sd(T

∗(k)) for

all positive integers k and d. Let T(m) denote the set of trees with m edges. From

the spectral moment formula shown in Lemma 2.5, we obtain

d
k∑

m=1

1

2
(k − 1)(|E(T )|−m)(k−1)km(k−2)+1

∑
T̂∈T(m)

c 2d
k
(T̂ )

(
NT (T̂ )−NT ∗(T̂ )

)
= 0 (4.1)

for all positive integers k ≥ 2. From Equation (4.1), we obtain some high-order

cospectral invariants of trees.
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Theorem 4.1. If a tree T is high-order cospectral with tree T ∗, then∑
T̂∈T(m)

cd(T̂ )NT (T̂ ) =
∑

T̂∈T(m)

cd(T̂ )NT ∗(T̂ ),

where for all positive integers d and m such that 1 ≤ m ≤ d
2
.

Proof. Since T and T ∗ are high-order cospectral, we have Sd(T
(k)) = Sd(T

∗(k)) for all

positive integers k ≥ 2. Since Sd(T
(k)) = 0 if k ∤ d, we assume k | d in the following

proof.

Let d = kz. From Equation (4.1), we have

z∑
m=1

1

2
(k − 1)(|E(T )|−m)(k−1)km(k−2)+1

∑
T̂∈T(m)

c2z(T̂ )
(
NT (T̂ )−NT ∗(T̂ )

)
= 0 (4.2)

for all positive integers k. Let fm(k) =
1
2
(k − 1)(|E(T )|−m)(k−1)km(k−2)+1. Let ym =∑

T̂∈T(m) c2z(T̂ )
(
NT (T̂ )−NT ∗(T̂ )

)
for all m ∈ [z]. From Equation (4.2), we have∑z

m=1 fm(k)ym = 0. Since fi(k)
fi−1(k)

= kk−2

(k−1)k−1 for i = 2, 3, · · · , z, we get fm(k) =

f1(k)(
kk−2

(k−1)k−1 )
m−1. Then

∑z
m=1 f1(k)(

kk−2

(k−1)k−1 )
m−1ym = 0. For z ≥ 1, let ki, 1 ≤ i ≤

z be any integers so that 0 < k1 < · · · < kz. It follows that
f1(k1) f1(k1)

k
k1−2
1

(k1−1)k1−1 · · · f1(k1)(
k
k1−2
1

(k1−1)k1−1 )
z−1

f1(k2) f1(k2)
k
k2−2
2

(k2−1)k2−1 · · · f1(k2)(
k
k2−2
2

(k2−1)k2−1 )
z−1

...
...

...
...

f1(kz) f1(kz)
kkz−2
z

(kz−1)kz−1 · · · f1(kz)(
kkz−2
z

(kz−1)kz−1 )
z−1




y1
y2
...

yz

 = 0. (4.3)

Then the coefficient matrix of the Equation (4.3) is a Vandermonde matrix. Since

k1, k2, . . . , kz are distinct, the determinant of the coefficient matrix are not equal to

zero. Then ym = 0 for all m ∈ [z].

Let m = |E(T )| = |E(T ∗)| in Theorem 4.1, we directly get the following high-

order cospectral invariants.

Theorem 4.2. Let T and T ∗ be two high-order cospectral trees. Then cd(T ) = cd(T
∗)

for d ≥ 2|E(T )|.
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Let T(m) = {T̂1, T̂2, . . . , T̂|T(m)|}. From Theorem 4.1, we get the following equa-

tion after taking d to be d1, d2, . . . , d|T(m)|.
cd1(T̂1) cd1(T̂2) · · · cd1(T̂|T(m)|)

cd2(T̂1) cd2(T̂2) · · · cd2(T̂|T(m)|)
...

...
. . .

...

cd|T(m)|(T̂1) cd|T(m)|(T̂2) · · · cd|T(m)|(T̂|T(m)|)




h1

h2

...

h|T(m)|

 = 0, (4.4)

where hi = NT (T̂i)−NT ∗(T̂i) for all i ∈ [|T(m)|]. If there exist d1, d2, . . . , d|T(m)| such

that the coefficient matrix of Equation (4.4) is nonsingular, we get NT (T̂ ) = NT ∗(T̂ )

for all T̂ ∈ T(m). By the formula for the spectral moment coefficients for trees, i.e.

Equation (2.1), we can calculate the spectral moment coefficients cd(T̂ ). We show

the d-th order spectral moment coefficients of trees with 3 edges for d = 6, 8, the t-th

order spectral moment coefficients of trees with 4 edges for t = 8, 10, 12 and the l-th

order spectral moment coefficients of trees with 5 edges for l = 10, 12, 14, 16, 18, 20

(see Table 1 and Table 2).

(a) P2 (b) P3 (c) P4 (d) S4 (e) P5 (f) Q5 (g) S5

(h) P6 (i) Q6 (j) R6 (k) H6 (l) J6 (m) S6

Figure 2: Trees with edges at most 5

cd(P4) cd(S4)

d = 6 6 12

d = 8 32 72

(a) The spectral moment coef-

ficients of trees with 3 edges

cd(P5) cd(Q5) cd(S5)

d = 8 8 16 48

d = 10 60 140 480

d = 12 300 804 3120

(b) The spectral moment coefficients of

trees with 4 edges

Table 1: The spectral moment coefficients of trees with 3 or 4 edges
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cd(P6) cd(Q6) cd(R6) cd(H6) cd(J6) cd(S6)

d = 10 10 20 20 40 60 240

d = 12 96 216 228 504 792 3600

d = 14 588 1484 1652 3976 6552 33600

d = 16 2944 8304 9728 25216 43680 252000

d = 18 13158 41328 50832 140832 257184 1668240

d = 20 54730 190800 245880 724320 1398600 10206000

Table 2: The spectral moment coefficients of trees with 5 edges

We obtain the following high-order cospectral invariants of trees about the num-

ber of subtrees, we can apply this result to distinguish some non-isomorphic trees.

Theorem 4.3. If a tree T is high-order cospectral with a tree T ∗, then T̂ is a subtree

of T if and only if T̂ is a subtree of T ∗, and NT (T̂ ) = NT ∗(T̂ ) for any tree T̂ with

at most 5 edges.

Proof. Since T and T ∗ are high-order cospectral, we know that T and T ∗ are cospec-

tral. Then NT (P2) = NT ∗(P2) and NT (P3) = NT ∗(P3) by Lemma 3.1. From Table 1

and Table 2, we get the coefficient matrix of Equation (4.4) when m = 3, 4, 5. It is

easy to check that these coefficient matrices are nonsingular. Then NT (T̂ ) = NT ∗(T̂ )

for all T̂ ∈ T(m), m = 1, 2, 3, 4, 5. Without loss of generality, let NT (T̂ ) ̸= 0, i.e,

T̂ is a subtree of T . Then we know that T̂ is a subtree of T if and only if T̂ is a

subtree of T ∗ and NT (T̂ ) = NT ∗(T̂ ).

By the above high-order cospectral invariants, we get infinitely many pairs of

cospectral trees with different high-order spectra. As shown in Figure 3 and 4, let

Tu and Tv be the tree T rooted at vertices u and v, respectively. For any rooted tree

F , the coalescences F ·Tu and F ·Tv, as shown in Figure 4, are cospectral trees [22].

Figure 3: Tree T
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(a) F · Tu (b) F · Tv

Figure 4: The coalescences F · Tu and F · Tv

Theorem 4.4. Cospectral trees F · Tu and F · Tv have different high-order spectra.

Proof. Recall that R6 denotes the tree in Figure 2 (j). We consider the difference

between the number of subgraphs of F ·Tv and F ·Tu that are isomorphic to R6. Let

V0 (or U0) denote the number of subgraphs in F ·Tv (or F ·Tu) that are isomorphic

to R6 and do not contain the vertex v (or u).

Let Vi (or Ui) denote the number of subgraphs in F · Tv (or F · Tu) that are

isomorphic to R6 and the vertex v (or u) has a degree i for i = 1, 2, 3. It implies

that NF ·Tv(R6) =
∑3

i=0Vi and NF ·Tu(R6) =
∑3

i=0Ui. When i = 0 or i = 3, it is

easy to check that Vi = Ui from Figure 4. When i = 1, we have V1 = U1 − 1 from

Figure 4. Let d be the degree of the root of F . When i = 2, we have V2 = U2+d+1.

Then we have NF ·Tv(R6)−NF ·Tu(R6) =
∑3

i=0 Vi −
∑3

i=0Ui = d.

Note that R6 is a tree with five edges. By Theorem 4.3, we know that F · Tu is

not high-order cospectral with F · Tv.

In this paper, we show that all Smith graphs are determined by the high-order

spectra. And the infinitely many pairs of non-isomorphic cospectral trees con-

structed by Schwenk’s method have different the high-order spectra. At the end

of this paper, we propose the following conjecture.

Conjecture 4.5. Two trees are isomorphic if and only if they have the same high-

order spectra.
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