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Abstract

Let Gσ be an oriented graph obtained by assigning an orientation σ to the
edge set of a simple undirected graph G. Let S(Gσ) be the skew adjacency
matrix of Gσ. The skew energy of Gσ is defined as the sum of the absolute
values of all eigenvalues of S(Gσ). In this paper, we determine the tricyclic
oriented graphs of order n ≥ 13 with the maximal skew energy.
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1 Introduction

An important quantum-chemical characteristic of a conjugated molecule is its

total π−electron energy. The energy of a graph has closed links to chemistry. Let G

be a simple undirected graph and A(G) be the adjacency matrix of G. Gutman [7]

firstly defined the energy E(G) of G as follows:

E(G) =
n∑

i=1

|λi|,
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where λ1, λ2, . . . , λn are the eigenvalues of A(G). For more results about graph energy,

we refer the readers to the surveys [8, 9] and the book [15].

There are various generalizations of graph energy, such as the Randić energy [5,

16], the distance energy [22], the incidence energy [2] and the energy of a polynomial

[17]. In this paper, we focus on the skew energy of a graph. Let Gσ be an oriented

graph obtained by assigning an orientation σ to the edge set of a simple undirected

graph G. The skew adjacency matrix S(Gσ) = (sij) of Gσ is a real skew symmetric

matrix, where sij = 1 and sji = −1 if ij is an arc of Gσ, otherwise sij = sji = 0. Then

the authors [1] defined the skew energy ES(Gσ) of an oriented graph Gσ as the sum

of the absolute values of all eigenvalues of S(Gσ). The skew characteristic polynomial

of Gσ is defined as

PS(Gσ; x) = det(xI − S(Gσ)) =
n∑

i=0

bix
n−i.

Since S(Gσ) is a real skew symmetric matrix, we have b2k(G
σ) ≥ 0 and b2k+1(G

σ) = 0

for all 0 ≤ i ≤ bn
2
c (see [6]). Thus we have

PS(Gσ; x) =

bn
2
c∑

k=0

b2k(G
σ)xn−2k.

By the coefficients of PS(Gσ; x), the skew energy ES(Gσ) can be expressed by the

following integral formula as follows [14]:

ES(Gσ) =
1

π

∫ +∞

−∞

1

t2
ln(1 +

bn
2
c∑

k=0

b2kt
2k)dt.

So ES(Gσ) is a strictly monotonically increasing function of b2k(G
σ), k = 0, 1, . . . , bn

2
c.

Consequently, if Gσ1 and Hσ2 are oriented graphs with

b2k(G
σ1) ≥ b2k(H

σ2) for each k (0 ≤ k ≤ bn
2
c), (1)

then

ES(Gσ1) ≥ ES(Hσ2). (2)

Equality in (2) is attained only if (1) is an equality for all 0 ≤ k ≤ bn
2
c. If the

inequalities (1) hold for all k, then we write G º H or H ¹ G. If G º H, but not

H º G, then we write G Â H. That is exactly the quasi-order relation defined by

Gutman and Polansky [10] on graph energy, which is generalized to the skew-energy

of oriented graph. See [3, 11, 12, 14, 19, 20, 23, 25] for some recent results about the

spectrum and energy of the skew-adjacency matrix.
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Due to the coefficients b2k ≥ 0, it makes that the skew energy problem is much

easier than the adjacency energy problems. Particularly, it is researched thoroughly

for the extremal skew energy of unicyclic and bicyclic graphs. For example, Hou et al.

[14, 19] determined the unicyclic and bicyclic oriented graphs having the minimum

or maximum skew energies respectively. Wang et al. [24] determined the oriented

bicyclic graph with the second largest skew energy. In this paper, we will characterize

the tricyclic oriented graph of order n ≥ 13 with maximal skew energy.

For the sake of completeness, we say something about the orientation of Gσ that

already exists [19]. Let Gσ be an orientation of a graph G. If C is an even cycle of

G, then we say C is evenly oriented relative to Gσ if it has an even number of edges

oriented in the direction of the routing; otherwise C is oddly oriented. Let W be a

subset of V (G) and W = V (G)\W . The orientation Gσ′ of G obtained from Gσ by

reversing the orientations of all arcs between W and W is said to be obtained from

Gσ by a switching with respect to W . Moreover, two orientations Gσ and Gσ′ of a

graph G are said to be switching-equivalent if Gσ′ can be obtained from Gσ by a

sequence of switchings. As noted in [1], since the skew adjacency matrices obtained

by a switching are similar, their spectra and hence skew energies are equal.

It is easy to verify that up to switching equivalence there are just two orientations

of a cycle C: (1) Just one edge on the cycle has the opposite orientation to that of

others, we call it orientation +. (2) All edges on the cycle C have the same orientation,

we denote this orientation −. So if a cycle is of even length and oddly oriented, then

it is equivalent to the orientation +; if a cycle is of even length and evenly oriented,

then it is equivalent to the orientation −. The skew energy of a directed tree is

the same as the energy of its underlying tree ([1]). So by switching equivalence, for

an oriented unicyclic graph or an oriented bicyclic graph, we only need to consider

the orientations of cycles. Simultaneously, we denote by T the oriented tree and

omit the superscript σ since the skew energy of a directed tree is independent of its

orientations.

We denote by G+ (resp., G−) the unicyclic graph on which the orientation of a

cycle is of orientation + (resp., −), and denote by G∗ the unicyclic graph on which

the orientation of a cycle is of arbitrary orientation ∗. Let Cx, Cy be two cycles in

bicyclic graph G with t (t ≥ 0) common vertices. If t ≤ 1, then G contains exactly two

cycles, and we denote by Ga,b the bicyclic graph on which cycle Cx is of orientation

a and cycle Cy is of orientation b, where a, b ∈ {+,−, ∗}. If t ≥ 2, then G contains

exactly three cycles. The third cycle is denoted by Cz, where z = x + y − 2t + 2.

Without loss of generality, assume that x ≤ z and y ≤ z. Moreover, Let Ga,b,c be the

bicyclic graph on which cycle Cx is of orientation a, cycle Cy is of orientation b, Cz
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is of orientation c, where a, b, c ∈ {+,−, ∗}. If G is tricyclic with none of two cycles

intersecting, we denote by Ga,b,c, where a, b, c ∈ {+,−, ∗}. The other graphs used in

the paper are shown as follows.
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Figure 1: Graphs used in the paper.

The rest of this paper is organized as follows. In section 2, some useful lemmas

are stated. In section 3, the tricyclic oriented graph of order n ≥ 13 with maximal

skew energy is determined.

2 Some useful lemmas

Let G be a graph. A linear subgraph L of G is a disjoint union of some edges and

some cycles in G [4]. We call a linear subgraph L of G evenly linear if L contains no

cycle with odd length and denote by ELi(G) the set of all evenly linear subgraphs of

G with i vertices. For a linear subgraph L ∈ ELi(G), denote by pe(L) (resp., po(L))

the number of evenly (resp., oddly) oriented cycles in L relative to Gσ.

Lemma 2.1 [13] Let Gσ be an orientation of a graph G. Then

bi(G
σ) =

∑
L∈ELi

(−2)pe(L)2po(L).
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Lemma 2.1 implies that b2k(G
σ) = m(Gσ, k) for any orientation of a graph that

does not contain any even cycle, particularly for a tree or a unicyclic non-bipartite

graph.

Lemma 2.2 [13] Let e = uv be an edge of G. Then

PS(Gσ; x) = PS(Gσ − e; x) + PS(Gσ − u− v; x)

+ 2
∑

e∈C∈Od(Gσ)

PS(Gσ − C; x)− 2
∑

e∈C∈Ev(Gσ)

PS(Gσ − C; x).

Corollary 2.1 [13] Let e = uv be an edge of G that is on no even cycle of G. Then

PS(Gσ; x) = PS(Gσ − e; x) + PS(Gσ − u− v; x). (3)

By equating the coefficient of polynomials in Eq.(3), we have

b2k(G
σ) = b2k(G

σ − e) + b2k−2(G
σ − u− v). (4)

Furthermore, if e = uv is a pendent edge with pendent vertex v, then

b2k(G
σ) = b2k(G

σ − v) + b2k−2(G
σ − u− v). (5)

A k-matching M of a graph G is a disjoint union of k-edges. The number of

k-matchings of G is denoted by m(G, k).

Lemma 2.3 [14] Let e = uv be an edge of G. Then

(1) m(G, k) = m(G− e, k) + m(G− u− v, k − 1).

(2) if G is a forest, then m(G, k) ≤ m(Pn, k), k ≥ 1.

(3) if H is a subgraph of G, then m(H, k) ≤ m(G, k), k ≥ 1. Moreover, if H is

a proper subgraph of G, then the inequality is strict.

We define m(G, 0) = 1 and m(G, k) = 0 for k ≥ n
2
.

Lemma 2.4 [21] Let a + b = c + d with 0 ≤ a ≤ b and 0 ≤ c ≤ d. Set a < c.

(1) If a is even, then m(Pa ∪ Pb, i) ≥ m(Pc ∪ Pd, i). Furthermore, there exists at

least one index i such that the above inequality is strict.

(1) If a is odd, then m(Pa ∪ Pb, i) ≤ m(Pc ∪ Pd, i). Furthermore, there exists at

least one index i such that the above inequality is strict.

Two immediately results are followed from Lemma 2.3 and 2.4.
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Lemma 2.5 [19] Let Fn be a (oriented) forest of order n. Then Fn ¹ Pn. Equality

holds if and only if Fn = Pn.

Lemma 2.6 [19] (1) Pn Â P2 ∪ Pn−2 Â P4 ∪ Pn−4 Â · · ·P2k ∪ Pn−2k Â P2k+1 ∪
Pn−2k−1 Â P2k−1 ∪ Pn−2k+1 Â · · · Â P3 ∪ Pn−3 Â P1 ∪ Pn−1.

(2) If a ≥ 2, Pa ∪ (P 4
n−a)

+ ≺ P2 ∪ (P 4
n−2)

+.

Let B+
n = {U+

4 (a, b)|0 ≤ a ≤ b, a + b = n− 5}.

Lemma 2.7 [25] Let k = bn−5
2
c, t = bk

2
c and ` = bk−1

2
c. Then we have the following

quasi-order relation in B+
n , where the graphs are shown in Fig. 1.

U+
4 (0, n−5) Â U+

4 (2, n−7) Â · · · Â U+
4 (2t, n−5−2t) Â U+

4 (2`+1, n−5−2`−1) Â
· · · Â U+

4 (7, n− 12) Â U+
4 (5, n− 10) Â U+

4 (3, n− 8) Â U+
4 (1, n− 6).

Let A+
n = B+

n \{U+
4 (5, n−10), U+

4 (3, n−8), U+
4 (1, n−6)}. We have the following.

Lemma 2.8 [25] Let n ≥ 31. The oriented unicyclic graphs of order n with the first

bn−9
2
c largest skew energies are the oriented unicyclic graphs in A+

n .

In [18], the authors determined the bicyclic oriented graphs with the first five

largest skew energies, where the graphs are shown in Fig. 1.

Theorem 2.1 [18] Among all oriented bicyclic graphs with order n ≥ 13, the graphs

B+,+
4,4 (0, n−9) º B+,+

4,4 (n−9, 0) º B+,+
4,4 (2, n−11) º B+,+

4,4 (n−11, 2) º B+,+
4,4 (4, n−13)

have the first five largest skew energy.

3 Oriented tricyclic graphs with maximal skew en-

ergy

In this section, we determine the tricyclic oriented graph with maximal skew

energy. Let T (n) be the set of all tricyclic graphs of order n. We now divide T (n)

into three subsets, that is, T1(n) = {G ∈ T (n) : there exists a cycle of G not

intersecting other cycles}, T2(n) = {G ∈ T (n) : G /∈ T1(n), there exists a cycle of G

intersecting any other cycles at most one vertex} and T3(n) = {G ∈ T (n) : G /∈ T1(n)

and each common vertex of any two cycles is not a cut vertex} (see Fig. 2-4).

The following lemma is easy but helpful.

Lemma 3.1 Let G be an arbitrary graph and v ∈ G. We have m(G, k) ≤ m(G ·
P2t, k + t), where G ·P2t is the graph obtained by connecting v and an endpoint of P2t.
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Figure 2: The set T1(n), where the right is an arbitrary bicyclic graph.
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Figure 3: The set T2(n).
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Figure 4: The set T3(n).

Proof. Let M be an arbitrary k matching of G and Mt be a t matching of P2t.

Then M ′ = M ∪ Mt is a k + t matching of G · P2t. Therefore we have m(G, k) ≤
m(G · P2t, k + t). ¤

The following corollary immediately follows from Lemmas 3.1 and 2.1.

Corollary 3.1 Let 0 ≤ a ≤ b ≤ bn/2c. Then

(1) b2k−2a(Pn−2a) ≥ b2k−2b(Pn−2b);

(2) b2k−2a((P
4
n−2a)

+) ≥ b2k−2b((P
4
n−2b)

+).

Lemma 3.2 Let Gσ be a tricyclic oriented graph and G ∈ T1(n), n ≥ 13. If Gσ 6=
T+,+,+

4,4,4 , then Gσ ≺ T+,+,+
4,4,4 .

Proof. Let Cx be the cycle which does not intersect other cycles and |Cx| = x. We can

choose the edge e = uv on Cx such that u is a vertex in a path which connects other

cycles. Obviously, Gσ − e is a bicyclic oriented graph and Gσ − u− v is the disjoint

union of a forest and a bicyclic oriented graph Bn1 with order n1 ≤ n− x. Without

loss of generality, we can always suppose that Gσ− e 6= B+,+
4,4 (0, n− 9), B+,+

4,4 (n− 9, 0)

and Bn1 6= B+,+
4,4 (0, n1−9), B+,+

4,4 (n1−9, 0) (otherwise, one can check that there exists

another cycle Cy meeting our requirements).
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By Lemmas 2.2 and 2.6 we get

b2k(Pa ∪B+,+
4,4 (n− a− 9, 0))

=b2k(C
+
4 ∪ Pa ∪ (P 4

n−a−4)
+) + b2k−2(C

+
4 ∪ P3 ∪ Pa ∪ Pn−a−9)

<b2k(C
+
4 ∪ P2 ∪ (P 4

n−6)
+) + b2k−2(C

+
4 ∪ P3 ∪ P2 ∪ Pn−11)

=b2k(P2 ∪B+,+
4,4 (n− 11, 0)),

which together with Theorem 2.1 and corollary 3.1 leads to

b2k(G
σ) ≤b2k(G

σ − e) + b2k−2(G
σ − u− v) + 2b2k−x(G

σ − C+
x )

<b2k(B
+,+
4,4 (n− 9, 0)) + b2k−2(Pn−n1−2 ∪B+,+

4,4 (n1 − 9, 0))

+ 2b2k−x(B
+,+
4,4 (n1 − 9, 0) ∪ Pn−n1−x)

≤b2k(B
+,+
4,4 (n− 9, 0)) + b2k−2(P2 ∪B+,+

4,4 (n− 13, 0)) + 2b2k−4(B
+,+
4,4 (n− 13, 0))

=b2k(T
+,+,+
4,4,4 ).

This completes the proof. ¤

Lemma 3.3 Let Gσ be a tricyclic oriented graph and G ∈ T2(n), n ≥ 13. Then

Gσ ≺ T+,+,+
4,4,4 .

Proof. By the definition of T2(n), let Cx ∩ Cy = {u} and P be the internal disjoint

path on Cy. We divide the proof into two cases.

Case 1. None of the endpoints of P on Cy is u. Suppose e = uv is an edge of Cx.

Clearly, Gσ − e is a bicyclic oriented graph and Gσ − e 6= B+,+
4,4 (0, n − 9), B+,+

4,4 (n −
9, 0), B+,+

4,4 (2, n − 11), B+,+
4,4 (n − 11, 2). Gσ − u − v is the disjoint union of a forest

and an unicyclic oriented graph Un1 with order n1 ≤ n− x. By Lemmas 2.2, 2.6 and

Corollary 3.1, we have

b2k(G
σ) ≤b2k(G

σ − e) + b2k−2(G
σ − u− v) + 2b2k−x(G

σ − C+
x )

<b2k(B
+,+
4,4 (4, n− 13)) + b2k−2(Pn−n1−2 ∪ (P 4

n1
)+) + 2b2k−x((P

4
n1

)+ ∪ Pn−n1−x)

≤b2k(B
+,+
4,4 (4, n− 13)) + b2k−2(P2 ∪ (P 4

n−4)
+) + 2b2k−4((P

4
n−4)

+)

<b2k(B
+,+
4,4 (4, n− 13)) + b2k−2(P2 ∪B+,+

4,4 (0, n− 13)) + 2b2k−4(B
+,+
4,4 (0, n− 13))

=b2k(T
+,+,+
4,4,4 ).

Case 2. At least one endpoint of P on Cy is u. Suppose e = uv is an edge of Cx.

Clearly, Gσ − e is a bicyclic oriented graph and Gσ − e 6∈ {B+,+
4,4 (0, n− 9), B+,+

4,4 (n−
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9, 0), B+,+
4,4 (2, n− 11), B+,+

4,4 (n− 11, 2)} and Gσ − u− v is also a forest. Then we have

b2k(G
σ) ≤b2k(G

σ − e) + b2k−2(G
σ − u− v) + 2b2k−x(G

σ − C+
x )

<b2k(B
+,+
4,4 (4, n− 13)) + b2k−2(P2 ∪ Pn−4) + 2b2k−4(Pn−4)

≤b2k(B
+,+
4,4 (4, n− 13)) + b2k−2(P2 ∪B+,+

4,4 (0, n− 13)) + 2b2k−4(B
+,+
4,4 (0, n− 13))

=b2k(T
+,+,+
4,4,4 ).

This finishes the proof. ¤

We finally focus on dealing with the set T3(n). The following lemma is a fact

concerning the orientation of a oriented graph.

Lemma 3.4 [6] A graph has an orientation under which every cycle of even length

is oddly oriented if and only if the graph contains no subgraph which is, after the

contraction of an most one cycle of odd length an, even subdivision of K2,3, where

K2,3 denotes the complete bipartite graph with two parts whose order are 2 and 3

respectively.

Figure 5: Graph G1.

Lemma 3.5 Let Gσ be a tricyclic oriented graph and G ∈ T3(n), n ≥ 13. If there

exists an edge on some cycle in at most three oddly oriented cycles, among which at

most one cycle is of length 4, then Gσ ≺ T+,+,+
4,4,4 .

Proof. Let e = uv be a such edge and u be an intersection vertex of some two cycles.

Assume that e is in three oddly oriented cycles C+
x , C+

y and C+
z with |C+

x | ≥ 4,

|C+
y | ≥ 6 and |C+

z | ≥ 6(the case e in less than three oddly oriented cycles is easier

and obvious from our proof). Without loss of generality, set |Cz| ≥ |Cy| ≥ |Cx|. We

first show the following claim.

Claim 3.1 (P 4
n)+ ≺ B+,+

4,4 (0, n− 11) ∪ P2.
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The proof of Claim 3.1. From Lemma 2.2 it follows that

b2k(B
+,+
4,4 (0, n− 11) ∪ P2)− b2k((P

4
n)+)

=b2k−2((P
4
n−6)

+ ∪ P2 ∪ P2)− b2k−2((P
4
n−3)

+ ∪ P1) + 2b2k−4((P
4
n−6)

+ ∪ P2)

≥b2k−2((P
4
n−6)

+ ∪ P2 ∪ 2P1)− b2k−2((P
4
n−6)

+ ∪ P3 ∪ P1) + 2b2k−4((P
4
n−6)

+ ∪ P2)

=− b2k−4((P
4
n−6)

+ ∪ 2P1) + 2b2k−4((P
4
n−6)

+ ∪ P2)

≥0.

It is obvious that there exists at least one index k such that the above inequality is

strict and this finishes the proof of Claim 3.1.

Set Gσ
i = Gσ − Ci, where i ∈ {x, y, z}. We now discuss the following cases based

on the fact that at most one graph in {Gσ
x, G

σ
y , G

σ
z} contains at most a cycle.

Case 1. Gσ
x, Gσ

y and Gσ
z are all acyclic. Note that Gσ − uv 6= B+,+

4,4 (0, n −
9), B+,+

4,4 (n − 9, 0), B+,+
4,4 (2, n − 11), B+,+

4,4 (n − 11, 2). Then by Lemma 2.2, Claim 3.1

and Theorem 2.1 we have

b2k(G
σ) =b2k(G

σ − e) + b2k−2(G
σ − u− v) + 2b2k−x(G

σ − C+
x ) + 2b2k−y(G

σ − C+
y )

+ 2b2k−z(G
σ − C+

z )

<b2k(B
+,+
4,4 (4, n− 13)) + b2k−2((P

4
n−2)

+) + 2b2k−4(Pn−4) + 4b2k−6(Pn−6)

≤b2k(B
+,+
4,4 (4, n− 13)) + b2k−2(B

+,+
4,4 (0, n− 13) ∪ P2)

+ 2b2k−4(Pn−4) + 4b2k−6(Pn−6).

Hence,

b2k(T
+,+,+
4,4,4 )− b2k(G

σ)

>2b2k−4(B
+,+
4,4 (0, n− 13))− 2b2k−4(Pn−4)− 4b2k−6(Pn−8 ∪ P2)− 4b2k−8(Pn−9 ∪ P1)

≥2b2k−4(B
+,+
4,4 (0, n− 13))− 2b2k−4(Pn−4)− 4b2k−6(Pn−8 ∪ P2)− 4b2k−8(Pn−8)

≥0.

Case 2. One graph in {Gσ
x, G

σ
y , G

σ
z} contains a cycle. Recall that |Cz| ≥ |Cy| ≥ 6

and |Cy| ≥ |Cx| ≥ 4. The following subcases are considered.

Subcase 2.1. |C+
x | ≥ 4, |C+

y | ≥ 6 and |C+
z | ≥ 8. Notice that Gσ − e 6=

B+,+
4,4 (0, n− 9), B+,+

4,4 (n− 9, 0), B+,+
4,4 (2, n− 11), B+,+

4,4 (n− 11, 2). Then by Lemma 2.2,

Claim 3.1 and Corollary 3.1 we have
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b2k(G
σ) =b2k(G

σ − e) + b2k−2(G
σ − u− v) + 2b2k−x(G

σ − C+
x ) + 2b2k−y(G

σ − C+
y )

+ 2b2k−z(G
σ − C+

z )

<b2k(B
+,+
4,4 (4, n− 13)) + b2k−2((P

4
n−2)

+) + 2b2k−4((P
4
n−4)

+)

+ 2b2k−6(Pn−6) + 2b2k−8(Pn−8)

≤b2k(B
+,+
4,4 (4, n− 13)) + b2k−2(B

+,+
4,4 (0, n− 13) ∪ P2) + 2b2k−4((P

4
n−4)

+)

+ 2b2k−6(Pn−6) + 2b2k−8(Pn−8).

Therefore,

b2k(T
+,+,+
4,4,4 )− b2k(G

σ)

>2b2k−4(B
+,+
4,4 (0, n− 13))− 2b2k−4((P

4
n−4)

+)− 2b2k−6(Pn−6)− 2b2k−8(Pn−8)

≥2b2k−4(B
+,+
4,4 (0, n− 13))− 2b2k−4(Pn−4)− 4b2k−6(Pn−8 ∪ P2)

− 4b2k−8(Pn−8)− 2b2k−8(Pn−9 ∪ P1)− 2b2k−8(Pn−8)

≥0.

Subcase 2.2. |C+
x | = 6, |C+

y | = 6 and |C+
z | = 6. By a similar technique with

Subcase 2.1, it is not hard to verify this case whose proof is omitted here.

Subcase 2.3. |C+
x | = 4, |C+

y | = 6 and |C+
z | = 6. Then Gσ must contain G1 as

a subgraph (see Fig. 5). We can observe that there is an even subdivision of K2,3 in

G1. Thus by lemma 3.4, there exists at least one evenly oriented cycle. We choose an

new edge u′v′ on this cycle such that u′ is a intersection vetex with other cycles and

u′v′ is in at most two oddly oriented cycles. With the similar discussion of Subcase

2.1, we can get the result easily. ¤

Lemma 3.6 Let Gσ be a tricyclic oriented graph and G ∈ T3(n), n ≥ 13. If G

contains K4 or K2,4 as a subgraph, then we have Gσ ≺ T+,+,+
4,4,4 .

Proof. Suppose G contains K2,4 as a subgraph. By Lemma 3.4, at least one cycle of

K2,3 is evenly oriented. If there exists a subgraph K2,3 of Gσ with all three cycles

being evenly oriented, then each edge of the subgraph K2,3 is in at most one oddly

oriented cycle of Gσ. By Lemma 3.5, we are done. Now suppose that each subgraph

K2,3 of Gσ has exactly one cycle with evenly oriented. Then each edge of K2,4 is in

exactly two oddly oriented cycles and an evenly oriented cycle. Since n ≥ 13, we can

choose the edge e = uv of K2,4 such that Gσ − u − v is disconnected and acyclic.

Clearly, Gσ − e 6= B+,+
4,4 (0, n− 9), B+,+

4,4 (n− 9, 0), B+,+
4,4 (2, n− 11), B+,+

4,4 (n− 11, 2).
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If G contains K4 as a subgraph, it is easy to check that each edge is in at most two

oddly oriented cycles, we can also choose the edge e = uv satisfying that Gσ−u−v is

disconnected and acyclic. Clearly, Gσ−e 6= B+,+
4,4 (0, n−9), B+,+

4,4 (n−9, 0), B+,+
4,4 (2, n−

11), B+,+
4,4 (n− 11, 2). Therefore, for the above both situations, we have

b2k(G
σ) =b2k(G

σ − e) + b2k−2(G
σ − u− v) + 4b2k−4(G

σ − C+
4 )

≤b2k(G
σ − e) + m(Pn−4 ∪ P2, k − 1) + 4m(Pn−4, k − 2)

≤b2k(G
σ − e) + m(Pn−4, k − 1) + 5m(Pn−4, k − 2)

<b2k(B
+,+
4,4 (4, n− 13)) + m(P 4

n−4, k − 1) + m(P 4
n−8, k − 2)

+ 3m(P 4
n−4, k − 2) + 8m(P 4

n−8, k − 3) + 4m(Pn−12, k − 5)

+ 15m(P 4
n−8, k − 4) + 12m(Pn−12, k − 6)

=b2k(T
+,+,+
4,4,4 ).

This completes the proof. ¤

Lemma 3.7 Let Gσ be a tricyclic oriented graph and G ∈ T3(n), n ≥ 13. If G

contains an odd cycle, then we have Gσ ≺ T+,+,+
4,4,4 .

Proof. Let Cx ∈ Gσ be an odd cycle with vertices u and v, where the two paths on

the cycle connecting u and u are denoted by Pa and Pb respectively. Since G ∈ T3(n),

then there is another path Pc connecting u and v. Since Cx is an odd cycle, we can

assume |Pa| ≡ |Pc| (mod 2). Notice that the cycle formed by Pc and Pb is also an

odd cycle. In order that G is tricyclic, there must be another internal disjoint path

Pd connecting two vertices u′, v′, where u′ and v′ belong to Pc or Cx. Let u1 ∈ Pb be

adjacent to u. We finish the proof by dividing it into four cases:

Case 1. u′, v′ ∈ Pa (or Pc). It is easy to check that uu1 is in at most one even

cycle. By Lemma 3.5, Gσ ≺ T+,+,+
4,4,4 .

Case 2. u′, v′ ∈ Pb. The edge u′u′1, where u′1 is on the path from u′ to v′ of Pb, is

in at most one even cycle. By Lemma 3.5, Gσ ≺ T+,+,+
4,4,4 .

Case 3. u′ ∈ Pa (or Pc), v′ ∈ Pb. For briefly, denote by Ps (resp. Pt) the path

from u′ through u (resp. v) to v′ on Pb and Pc. Then |Ps| ≡ |Pt| (mod 2) and one

of the cycles, formed by Pd and Ps, Pt respectively, must be of odd length. Without

loss of generality, suppose the cycle formed by Pd and Ps is odd, then the edge uu1

is in at most one even cycle. By Lemma 3.5, Gσ ≺ T+,+,+
4,4,4 .

Case 4. u′ ∈ Pa, v′ ∈ Pc. Note that the edge uu1 is in at most two even cycles.

If the new formed cycles containing uu1 are both of length 4, it is easy to check that

12



G contains K4 as subgraph. Then by Lemma 3.6, we are done. If at least one cycle

has length more than 4, by Lemma 3.5 we are done. ¤

Lemma 3.8 Let Gσ be a tricyclic oriented graph and G ∈ T3(n), n ≥ 13. Then

Gσ ≺ T+,+,+
4,4,4 .

Proof. If G contains odd cycles, by Lemma 3.7 we are done. We now consider the

case that G contains no odd cycles. We first show the following claim.

Claim 3.2 There exists an cycle C of Gσ such that each edge of this cycle is in at

most three oddly oriented cycles.

The proof of Claim 3.2. It is obvious for the graphs of type 1,2 and 3 (see Fig.

4). Now let Gσ has the type 4 (see Fig. 4), where a, b, c, d, e, f denote the lengths

of the paths respectively. Then each edge of Gσ is in at most 4 cycles. Since G

has no odd cycle, then one of {a, b, c} must be even. Let a ≡ 0 (mod 2). Then

a ≡ b + c ≡ d + e ≡ 0 (mod 2). Thus Gσ contains an even subdivision of K2,3 as

a subgraph. By Lemma 3.4, at least one cycle of Gσ is evenly oriented. Therefore,

each edge of this evenly oriented cycle is in at most three oddly oriented cycles. This

finishes the proof of Claim 3.2.

Let C be such a cycle in Claim 3.2. If |C| ≥ 6, it is easy to check there exists

one edge of C satisfying the condition of Lemma 3.5. Thus we are done. Now

assume that |C| = 4, and each edge of C is in at least two oddly oriented 4-cycles.

Recall that Gσ has no odd cycle, then Gσ must contain K2,3 as a subgraph, set

V (K2,3) = {u1, u2, v1, v2, v3}. By Lemma 3.4, suppose that the cycle C ′ = u1v1u2v3u1

is evenly oriented. If C = C ′, then G contains K2,4 as a subgraph. By Lemma 3.6,

we are done. Hence assume that C 6= C ′ and K2,4 * Gσ. Without loss of generality,

let {u1v1, u2v1} ⊂ C. In order to make sure that u1v1, u2v1 is in at least two oddly

oriented 4-cycles, there is an 2-length internal path P = v1wv2 connecting v1 and v2.

Note that the subgraph induced by {u1, u2, v1, v2, w} is also a K2,3, thus by Lemma

3.4, one of {u1v1, u2v1} is in at most one oddly oriented 4-cycle only. By Lemma 3.5,

we are done. Consequently, we have Gσ ≺ T+,+,+
4,4,4 . ¤

Combining Lemmas 3.2,3.3 and 3.8, we get the main result of this paper.

Theorem 3.1 Among all oriented tricyclic oriented graphs with order n ≥ 13, the

graph T+,+,+
4,4,4 has the maximal skew energy.
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