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Abstract. We introduce the notion of a grammatical labeling to describe a recursive

process of generating combinatorial objects based on a context-free grammar. By

labeling the ascents and descents of Stirling permutations, we obtain a grammar for

the second-order Eulerian polynomials. Using the grammar for 0-1-2 increasing trees

given by Dumont, we obtain a grammatical derivation of the generating function of the

André polynomials obtained by Foata and Schützenberger. We also find a grammar for

the number T (n, k) of permutations of [n] = {1, 2, . . . , n} with k exterior peaks. We

demonstrate that Gessel’s formula for the generating function of T (n, k) can be deduced

from this grammar. From a grammatical point of view, it is easily seen that the number

of the permutations on [n] with k exterior peaks equals the number of increasing trees

on [n] with 2k+1 vertices of even degree. We present a combinatorial proof of this fact,

which is in the spirit of the recursive construction of the correspondence between even

increasing trees and up-down permutations, due to Kuznetsov, Pak and Postnikov.
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1 Introduction

In this paper, a context-free grammar G over a set V = {x, y, z, . . . , } of variable is a

set of substitution rules replacing a variable in V by a Laurent polynomial of variables

in V . For a context-free grammar G over V , the formal derivative D (introduced in [2])

with respect to G is defined as a linear operator acting on Laurent polynomials with

variables in V such that each substitution rule is treated as the common differential

rule that satisfies the following relations,

D(u+ v) = D(u) +D(v),
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D(uv) = D(u)v + uD(v).

For a constant c, we have D(c) = 0. Clearly, the Leibniz formula is also valid,

Dn(uv) =
n∑
k=0

(
n

k

)
Dk(u)Dn−k(v).

Since D(ww−1) = 0, we have

D(w−1) = −D(w)

w2
.

A formal derivative D is also associated with an exponential generating function.

For a Laurent polynomial w of variables in V , let

Gen(w, t) =
∑
n≥0

Dn(w)
tn

n!
.

Then we have the following relations

Gen′(w, t) = Gen(D(w), t), (1.1)

Gen(u+ v, t) = Gen(u, t) + Gen(v, t), (1.2)

Gen(uv, t) = Gen(u, t)Gen(v, t), (1.3)

where u, v and w are Laurent polynomials of variables in V and Gen′(w, t) stands for

the derivative of Gen(w, t) with respect to t.

To illustrate the connection between context-free grammars and combinatorial struc-

tures, we recall the following grammar introduced by Dumont [3],

G : x→ xy, y → xy. (1.4)

He showed that it generates the Eulerian polynomials An(x). Let Sn denote the set of

permutations on [n] = {1, 2, . . . , n}. For a permutation π = π1π2 · · · πn ∈ Sn, an index

i ∈ [n − 1] is called an ascent of π if πi < πi+1; otherwise, i is called a descent. Let

asc(π) be the number of ascents of π and let

An(x) =
∑
π∈Sn

xasc(π)+1. (1.5)

To give a grammatical interpretation of An(x), Dumont defined the bivariate polynomi-

als An(x, y) based on cyclic permutations. Let Cn denote the set of cyclic permutations

on [n]. For a cyclic permutation σ ∈ Cn, an index i (1 ≤ i ≤ n) is called an ascent if

i < σ(i) or a descent if i > σ(i). Let ascc(σ) be the number of ascents of σ, and let

desc(σ) be the number of descents of σ. For n ≥ 1, Dumont [3] defined the polynomial

An(x, y) as follows,

An(x, y) =
∑

σ∈Cn+1

xascc(σ)ydesc(σ). (1.6)
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By using the formal derivative D with respect to the grammar in (1.4), Dumont showed

that

Dn(x) = An(x, y),

where D is the formal derivative with respect to the grammar G. Setting y = 1 in

(1.6), we see that for n ≥ 1,

An(x, y)|y=1 = An(x). (1.7)

It should be noted that Dumont [3] used the notation An+1(x, y) instead of An(x, y)

for the polynomial (1.6). Our notation is chosen to be consistent with the notation

used in this paper.

In this paper, we introduce the concept of a grammatical labeling to generate com-

binatorial structures. This idea is implicit in the partition argument with respect to

the grammar fi → fi+1g1, gi → gi+1 to generate partitions as given in [2]. We find

grammars for Stirling permutations, partitions into lists, permutations with a given

number of exterior peaks, 0-1-2 increasing trees, and increasing trees with parity con-

straints on degrees. As will be seen, such a grammatical approach is not only useful

for the computation of generating functions, but also helpful for finding bijections.

This paper is organized as follows. In Section 2, we give an explanation of relation

(1.7) by labeling ascents and descents of a permutation instead of a cyclic permuta-

tion. Similarly, we obtain a grammatical interpretation of the second-order Eulerian

polynomials. As another example, we give a grammatical explanation of the Lah num-

bers. We also demonstrate how to use grammar of Dumont to derive an identity on

the Eulerian polynomials.

Section 3 is devoted to the applications of the grammar x → xy, y → x found

by Dumont [3] for the André polynomials defined in terms of 0-1-2 increasing trees.

We give a grammatical derivation of the generating function of the André polynomials

obtained by Foata and Schützenberger [8].

In Section 4, we present a grammatical approach to the number T (n, k) of per-

mutations on [n] with k exterior peaks. We find the following grammar to generate

T (n, k):

G : x→ xy, y → x2.

This grammar was announced at the International Conference on Designs, Matrices and

Enumerative Combinatorics held at the National Taiwan University in 2011. Ma [12]

studied the connection between the peak statistics and the relations Dz(x) = xy and

Dz(y) = x2, where x = sec(z), y = tan(z) and Dz is the derivative with respect to z.

We show that Gessel’s formula for the generating function of T (n, k) can be deduced

from this grammar.

In Section 5, by specializing the following grammar of Dumont [3] for increasing

trees,

G : xi → x0xi+1,
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we are led to a grammar to generate the number of increasing trees on [n] with respect

to the number of vertices with even degree. More precisely, the degree of a vertex in

a rooted tree is meant to be the number of its children. As a consequence, we find

that the number of permutations of [n] with k exterior peaks equals the number of

increasing trees on [n] with 2k + 1 vertices of even degree, and we conclude this paper

with a combinatorial proof of this fact, which can be considered as an extension of their

bijection given by Kuznetsov, Pak and Postnikov [11] between up-down permutations

and even trees.

2 Grammatical Labelings

A grammatical labeling of a combinatorial structure is an assignment of the elements

of that structure with constants or variables in a grammar. For example, consider

the grammar (1.4) given by Dumont [3]. We shall use a grammatical labeling on

permutations to show that the Eulerian polynomial An(x) can be expressed in terms

of the formal derivative with respect to the grammar G.

Denote by A(n,m) the number of permutations of [n] with m − 1 ascents. The

generating function

An(x) =
n∑

m=1

A(n,m)xm

is known as the Eulerian polynomial.

It is not difficult to see that An(x, y) can also be expressed in terms of permutations

in Sn. For a permutation π in Sn, we give a labeling of π as follows. An index i

(1 ≤ i ≤ n − 1), is called an ascent if πi < πi+1, or a descent if πi > πi+1. Set

π0 = πn+1 = 0. For 0 ≤ i ≤ n, if πi < πi+1, we label πi by x; if πi > πi+1, we label πi
by y. The weight of π is defined as the product of the labels, that is,

w(π) = xasc(π)+1ydes(π)+1,

where asc(π) denotes the number of ascents in π and des(π) denotes the number of

descents in π. For n ≥ 1, it can be shown that the polynomial An(x, y) defined in (1.6)

possesses the following equivalent expression:

An(x, y) =
∑
π∈Sn

xasc(π)+1ydes(π)+1.

To illustrate the relation between the action of the formal derivative D and the

insertion of the element n+1 into a permutation on [n], we give the following example.

Let n = 6 and π = 325641. The grammatical labeling of π reads

3 2 5 6 4 1
x y x x y y y,
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where the element 0 is made invisible. If we insert 7 after 5, the resulting permutation

and its grammatical labeling are given below,

3 2 5 7 6 4 1
x y x x y y y y.

Notice that the insertion of 7 after 5 corresponds to applying the rule x → xy to the

label x associated with 5. We have a similar situation when the new element is inserted

after an element labeled by y. Hence the action of the formal derivative D on the set

of weights of permutations in Sn gives the set of weights of permutations in Sn+1. This

yields a grammatical expression for An(x, y).

Theorem 2.1 Let D be the formal derivative with respect to the grammar (1.4). For

n > 1, we have

Dn(x) =
n∑

m=1

A(n,m)xmyn+1−m.

From Theorem 2.1, it follows that Dn(x)|y=1 = An(x). Here we give a grammatical

proof of the following classical recurrence for the Eulerian polynomials An(x).

Proposition 2.2 For n ≥ 1, we have

An(x) =
n−1∑
k=0

(
n

k

)
Ak(x)(x− 1)n−1−k, (2.1)

where A0(x) = 1.

Proof. By the grammar (1.4), we have D(x−1) = −x−2D(x) = −x−1y. Hence

D(x−1y) = x−1D(y) + yD(x−1) = x−1y(x− y). (2.2)

Since (x− y) is a constant with respect to D, we see that

Dn(x−1y) = x−1y(x− y)n. (2.3)

By the Leibniz formula, we find that for n ≥ 1,

Dn(x) = Dn(y) = Dn(xx−1y) =
n∑
k=0

(
n

k

)
Dk(x)Dn−k(x−1y). (2.4)

Substituting (2.3) into (2.4), we get

(x− y)x−1Dn(x) =
n−1∑
k=0

(
n

k

)
x−1yDk(x)(x− y)n−k.
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Setting y = 1, we arrive at (2.1).

Next, we introduce a grammar to generate Stirling permutations.

Let [n]r denote the multiset {1r, 2r, . . . , nr}, where ir stands for r occurrences of

i. An r-Stirling permutation is a permutation on [n]r such that the elements between

two occurrences of i are not smaller than i. In particular, a 2-Stirling permutation is

usually referred to as a Stirling permutation, see Gessel and Stanley [9]. For example,

123321455664 is a Stirling permutation on [6]2.

For a Stirling permutation π = π1π2 · · · π2n, an index i (1 ≤ i ≤ 2n − 1), is called

an ascent if πi < πi+1, or a descent if πi > πi+1, or a plateaux if πi = πi+1. We shall

show that the following grammar

G : x→ xy2, y → xy2 (2.5)

can be used to generate Stirling permutations. Let π = π1π2 · · · π2n be a Stirling

permutation on [n]2. We label an ascent of π0π1π2 · · · π2nπ2n+1 by x and label a descent

or a plateau by y, where we set π0 = π2n+1 = 0. For example, let π = 244215566133.

The grammatical labeling of π is given below

2 4 4 2 1 5 5 6 6 1 3 3
x x y y y x y x y y x y y.

If we insert 77 after the first occurrence of 4, we get

2 4 7 7 4 2 1 5 5 6 6 1 3 3
x x x y y y y x y x y y x y y.

Inserting 77 after the second occurrence of 1 gives

2 4 4 2 1 5 5 6 6 1 7 7 3 3
x x y y y x y x y y x y y y y.

Clearly, each Stirling permutation on [n]2 can be obtained by inserting nn into a

Stirling permutation on [n − 1]2. This leads to a grammatical interpretation of the

second-order Eulerian polynomials, namely, the generating functions of the Stirling

permutations.

Theorem 2.3 Let D be the formal derivative with respect to the grammar (2.5). Then

we have

Dn(x) =
n∑

m=1

C(n,m)xmy2n+1−m, (2.6)

where C(n,m) denotes the number of Stirling permutations of [n]2 with m− 1 ascents.

We adopt the notation Cn(x) as used in Bóna [1] for the second-order Eulerian

polynomials

Cn(x) =
n∑

m=1

C(n,m)xm.
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From Theorem 2.3, we see that Cn(x) = Dn(x)|y=1.

In general, the grammar

G : x→ xyr, y → xyr (2.7)

can be used to generate r-Stirling permutations.

To conclude this section, we define the Lah grammar as follows:

G : z → xyz, x→ xy, y → xy (2.8)

and we show that it generates partitions into lists. A partition of [n] into lists is a

partition of [n] for which the elements of each block are linearly ordered. For a partition

into lists, label the partition itself by z. Express a list σ1σ2 · · ·σm by 0σ1σ2 · · ·σm0 and

label an ascent by x and a descent by y. For example, the labeling π = {325, 614, 7} is

given by

z
3 2 5

x y x y
6 1 4

x y x y
7

x y.

Notice that the elements 0 are omitted in the above expression. It can be easily checked

that grammar (2.8) generates partitions into lists.

Theorem 2.4 Let C(n, k,m) be the number of partitions of [n] into k lists with m−k
ascents. Then

Dn(z) =
n∑
k=1

n∑
m=k

C(n, k,m)xmyk+n−mz.

In particular, setting y = x in grmmar (2.8), we get the grammar for the Lah

numbers

L(n, k) =

(
n− 1

k − 1

)
n!

k!
.

Corollary 2.5 Let D be the formal derivative with respect to the grammar

G : z → x2z, x→ x2.

Then we have

Dn(z) = xnz
n∑
k=1

L(n, k)xk.

3 The André Polynomials

In this section, we use the grammar found by Dumont [3] to give a proof of the gener-

ating function formula for the André polynomials. This formula was first obtained by

Foata and Schützenberger [8] using a differential equation. Later, Foata and Han [7]
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found a way to compute the generating function of En(x, 1) without solving a differ-

ential equation.

Recall that the André polynomials are defined in terms of 0-1-2 increasing trees.

An increasing tree on [n] is a rooted tree with vertex set {0, 1, 2, . . . , n} in which the

labels of the vertices are increasing along any path from the root. Note that 0 is the

root. A 0-1-2 increasing tree is an increasing tree in which the degree of any vertex is

at most two. The degree of a vertex in a rooted tree is meant to be the number of its

children. Given a 0-1-2 increasing tree T , let l(T ) denote the number of leaves of T ,

and let u(T ) denote the number of vertices of T with degree 1. The André polynomial

En(x, y) is defined by

En(x, y) =
∑
T

xl(T )yu(T ),

where the sum ranges over 0-1-2 increasing trees on {0, 1, . . . , n− 1}.

Setting x = y = 1, En(x, y) reduces to the n-th Euler number En, which counts

0-1-2 increasing trees on {0, 1, . . . , n − 1} as well as alternating permutations on [n],

see [6, 8, 11].

Dumont [3] introduced the grammar

G : x→ xy, y → x (3.1)

and showed that it generates the André polynomials En(x, y), namely,

Dn(y) = En(x, y), (3.2)

where D is the formal derivative with respect to the grammar G in (3.1). This fact

can be justified intuitively in terms of the following grammatical labeling. Given a

0-1-2 increasing tree T , a leaf is labeled by x, a vertex of degree 1 is labeled by y and

a vertex of degree 2 is labeled by 1. The following figure illustrates the labeling of a

0-1-2 increasing tree on {0, 1, 2, 3, 4, 5}.

0(1)

2(y)

4(x)

1(1)

3(x) 5(x)

Figure 3.1: The labeling of a 0-1-2 increasing tree on {0, 1, 2, 3, 4, 5}

If we add 6 as a child of 2, the resulting tree is
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0(1)

2(1)

4(x) 6(x)

1(1)

3(x) 5(x)

Once the vertex 6 is added, the label y of 2 becomes the label 1, and the vertex 6 gets

a new label x. This corresponds to the substitution rule y → x. Similarly, adding the

vertex 6 to a leaf of the increasing tree in Figure 3.1 corresponds to the substitution

rule x→ xy. So the above grammatical labeling leads to the relation (3.2).

The following classical relation

2En+1 =
n∑
k=0

(
n

k

)
EkEn−k (3.3)

immediately follows from the above grammar. Since 2Dn+1(y) = 2Dn(x) = 2Dn−1(xy) =

Dn(y2), by the Leibniz formula, we get

2Dn+1(y) =
n∑
k=0

(
n

k

)
Dk(y)Dn−k(y).

Replacing Dn(y) by En(x, y), we obtain that

2En+1(x, y) =
n∑
k=0

(
n

k

)
Ek(x, y)En−k(x, y). (3.4)

Setting x = y = 1 yields (3.3).

Using the grammar (3.1), we also get equivalent formulations of (3.3) and (3.4).

Since Dn(y) = Dn−1(x) = Dn−2(xy) for n ≥ 2, by the Leibniz formula, we are led to

Dn(y) =
n−2∑
k=0

(
n− 2

k

)
Dk(x)Dn−2−k(y).

Noting that for k ≥ 1, Dk(y) = Dk−1(x) = Ek(x, y), we see that

En(x, y) =
n−2∑
k=0

(
n− 2

k

)
Ek+1(x, y)En−2−k(x, y) (3.5)

for n ≥ 2. Setting x = y = 1 in (3.5) yields the known identity

En =
n−2∑
k=0

(
n− 2

k

)
Ek+1En−2−k. (3.6)
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A combinatorial interpretation of (3.6) was given by Donaghey [5].

Next we use the grammar G to derive the generating function of En(x, y) without

solving a differential equation.

Theorem 3.1 (Foata and Schützenberger) We have

∞∑
n=0

En(x, y)

n!
tn

=
x
√

2x− y2 + y(2x− y2) sin(t
√

2x− y2)− (x− y2)
√

2x− y2 cos(t
√

2x− y2)
(x− y2) sin(t

√
2x− y2) + y

√
2x− y2 cos(t

√
2x− y2)

.

(3.7)

Proof. By the Leibniz formula, we have

Gen(x−1y, t) = Gen(x−1, t)Gen(y, t). (3.8)

Differentiating both sides of (3.8) with respect to t yields

Gen′(x−1y, t) = Gen′(x−1, t)Gen(y, t) + Gen(x−1, t)Gen′(y, t). (3.9)

Since D(x−1) = −x−1y, we have

Gen′(x−1, t) = Gen(D(x−1), t) = −Gen(x−1y, t). (3.10)

Using D(y) = x, we obtain

Gen(x−1, t)Gen′(y, t) = Gen(x−1, t)Gen(D(y), t) = Gen(x−1, t)Gen(x, t) = 1. (3.11)

Substituting (3.10) and (3.11) into (3.9), we deduce that

Gen′(x−1y, t) = 1−Gen(x−1y, t)Gen(y, t),

and hence

Gen(y, t) =
1−Gen′(x−1y, t)

Gen(x−1y, t)
. (3.12)

We now compute the generating function Gen(x−1y, t). It is easily verified that for

m ≥ 0,

D2m(x−1y) = x−1y(y2 − 2x)m (3.13)

and

D2m+1(x−1y) = (1− x−1y2)(y2 − 2x)m. (3.14)
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Using (3.13) and (3.14), we have

Gen(x−1y, t) =
∞∑
n=0

Dn(x−1y)

n!
tn

= x−1y
∞∑
n=0

(y2 − 2x)n

(2n)!
t2n + (1− x−1y2)

∞∑
n=0

(y2 − 2x)n

(2n+ 1)!
t2n+1

= x−1y
∞∑
n=0

(−1)n(t
√

2x− y2)2n

(2n)!
+

1− x−1y2√
2x− y2

∞∑
n=0

(−1)n(t
√

2x− y2)2n+1

(2n+ 1)!

= x−1y cos(t
√

2x− y2) +
1− x−1y2√

2x− y2
sin(t

√
2x− y2). (3.15)

Plugging (3.15) into (3.12), we arrive at (3.7), and hence the proof is complete.

Setting x = y = 1, (3.7) reduces to the generating function of the Euler numbers:

∞∑
n=0

En
n!
tn = sec t+ tan t.

4 Permutations of [n] with k Exterior Peaks

In this section, we use the grammar

G : x→ xy, y → x2 (4.1)

to show that G generates the number T (n, k) of permutations of [n] with k exterior

peaks. Let

Tn(x) =
∑
k≥0

T (n, k)xk.

We give a grammatical proof of the formula for the generating function of Tn(x) due

to Gessel, see [13]. We also obtain a recurrence relation of Tn(x).

Recall that for a permutation π = π1π2 · · · πn ∈ Sn, the index i is called an exterior

peak if 1 < i < n and πi−1 < πi > πi+1, or i = 1 and π1 > π2. We shall use the

following grammatical labeling of a permutation to show that the above grammar G

generates the polynomials Tn(x). For a permutation π of [n], we first add an element

0 at the end of π. If i is an exterior peak, then we label πi and πi+1 by x. In addition,

the element 0 is labeled by x, and all other elements are labeled by y. The weight w

of π is defined to be the product of all the labels. If π has k exterior peaks, then its

weight is given by

w(π) = x2k+1yn−2k.
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For example, let π = 325641. The labeling of π is as follows

3 2 5 6 4 1
x x y x x y x,

and the weight of π is x5y2. If we insert 7 before 3, then the labeling of the resulting

permutation is
7 3 2 5 6 4 1
x x y y x x y x.

We see that the label of 2 becomes y and the label of 7 becomes x. So this insertion

corresponds to the rule x→ xy. If we insert 7 before 0, then we have

3 2 5 6 4 1 7
x x y x x y y x,

where the label of 0 remains the same and the label of 7 is y. In this case, the insertion

corresponds to the rule x→ xy. If we insert 7 before 5, then we obtain

3 2 7 5 6 4 1
x x x x x x y x,

where the label of 5 becomes x and the label of 7 is x. Indeed, the above labeling leads

to the following theorem.

Theorem 4.1 Let D be the formal derivative with respect to the grammar (4.1). For

n ≥ 1, we have

Dn(x) =

bn/2c∑
k=0

T (n, k)x2k+1yn−2k. (4.2)

Proof. We proceed by induction on n. For n = 1, the statement is obvious. Assume

that the theorem holds for n. To show that it is valid for n + 1, we represent a

permutation in Sn by adding a zero at the end. Let π = π1π2 · · · πn0 be a permutation

of Sn. Recall that if i (1 ≤ i ≤ n − 1) is an exterior peak of π, then we label πi and

πi+1 by x. Moreover, the element 0 is labeled by x and all other elements are labeled

by y. We consider the following two cases according to where n + 1 is inserted into π

to generate a permutation in Sn+1.

Case 1: n + 1 is inserted after πn. No matter πn is labeled by x or y, the inserted

element n+ 1 always gets a label y:

· · · n+ 1
· · · y x.

Therefore, in either case, the insertion corresponds to the rule x→ xy.

Case 2: n+ 1 is inserted before πi (1 ≤ i ≤ n).
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If πi is labeled by y, that is, i− 1 and i are not exterior peaks, we obtain

· · · πi · · ·
· · · y · · · =⇒ · · · n+ 1 πi · · ·

· · · x x · · · .

So this insertion corresponds to the rule y → x2.

If πi is labeled by x and i is an exterior peak, we have

· · · πi πi+1 · · ·
· · · x x · · · =⇒ · · · n+ 1 πi πi+1 · · ·

· · · x x y · · · .

Now, the insertion corresponds to the rule x→ xy.

If πi is labeled by x and i− 1 is an exterior peak, we obtain

· · · πi−1 πi · · ·
· · · x x · · · =⇒ · · · πi−1 n+ 1 πi · · ·

· · · y x x · · · .

In this case, the insertion also corresponds to the rule x→ xy.

Thus we have shown that the theorem is valid for n+ 1. This completes the proof.

By Theorem 4.1, we obtain the following recurrence relation.

Proposition 4.2 For n ≥ 1, we have

Tn(x) =
n∑
j=1

(−1)j−1
(
n

j

)
(1− x)bj/2cTn−j(x), (4.3)

where T0(x) = 1.

Proof. Note that

D(x−1) = −x−1y, D(−x−1y) = x−1(y2 − x2), D(y2 − x2) = 0.

Hence for m ≥ 0, we have

D2m(x−1) = x−1(y2 − x2)m, (4.4)

and

D2m+1(x−1) = −x−1y(y2 − x2)m. (4.5)

Setting y = 1 in (4.4) and (4.5), we obtain

Dj(x−1)|y=1 = (−1)jx−1(1− x2)bj/2c.

By the Leibniz formula, we find that

Dn(x−1x)|y=1 = 0 =
n∑
j=0

(
n

j

)
Dj(x−1)|y=1D

n−j(x)|y=1

=
n∑
j=0

(−1)j
(
n

j

)
x−1(1− x2)bj/2cDn−j(x)|y=1. (4.6)
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By Theorem 4.1, we see that

Dn(x)|y=1 = xTn(x2).

Hence (4.3) follows from (4.6).

Using the grammar (4.1), we give a derivation of the following generating function

of Tn(x) due to Gessel, see [13].

Theorem 4.3 (Gessel) We have

∞∑
n=0

Tn(x)

n!
tn =

√
1− x√

1− x cosh(t
√

1− x)− sinh(t
√

1− x)
. (4.7)

To prove Theorem 4.3, we need the following lemma.

Lemma 4.4 For the the following grammar

G : u→ v2, v → v, (4.8)

we have

Gen(u−1v, t) =
v

u cosh(t) + (v2 − u) sinh(t)
. (4.9)

Proof. Let D be the formal derivative with respect to G in (4.8). Since D(v) = v, we

have

Gen(v, t) = vet.

By (1.3), we find that

Gen(u−1v2, t) = Gen(v, t)Gen(u−1v, t) = vetGen(u−1v, t). (4.10)

We proceed to compute (Gen(u−1v2, t))′ in two ways. It is easily checked that

D(u−1v2) = −(u−1v)2(v2 − 2u).

Thus, from (1.1) and (1.3) we deduce that

(Gen(u−1v2, t))′ = Gen
(
D(u−1v2), t

)
= −Gen2(u−1v, t)Gen(v2 − 2u, t). (4.11)

On the other hand, since

D(u−1v) = u−1v(1− u−1v2),

from (4.10) we find that

(Gen(u−1v2, t))′ = (vetGen(u−1v, t))′

= vetGen(u−1v, t) + vetGen(D(u−1v), t)

= vetGen(u−1v, t) + vetGen(u−1v, t)Gen(1− u−1v2, t). (4.12)
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Comparing (4.11) with (4.12) yields

−Gen2(u−1v, t)Gen(v2 − 2u, t)

= vetGen(u−1v, t) + vetGen(u−1v, t)Gen(1− u−1v2, t),

or, equivalently,

−Gen(u−1v, t)Gen(v2 − 2u, t) = vet + vetGen(1− u−1v2, t). (4.13)

Since D(v2 − 2u) = 0, we obtain that

Gen(v2 − 2u, t) = v2 − 2u.

Clearly, Gen(1− u−1v2, t) = 1−Gen(u−1v2, t). Thus (4.13) can be simplified to

− (v2 − 2u)Gen(u−1v, t) = 2vet − vetGen(u−1v2, t). (4.14)

Plugging (4.10) into (4.14), we arrive at

Gen(u−1v, t) =
2v

v2et − (v2 − 2u)e−t
,

which can be rewritten in the form of (4.9), and so the proof is complete.

To prove Theorem 4.3, we introduce a parameter w in the grammar G for permu-

tations on [n] with k peaks. More precisely, consider the grammar

G′ : x→ xy, y → wx2, (4.15)

where w is a constant. For a permutation π on [n], we give a labeling which is essentially

the same as the labeling used in the proof of Theorem 4.1. First, add a zero at the

end of π. If i is an exterior peak, then we label πi by wx and πi+1 by x. Moreover,

the element 0 is labeled by x, and all other elements are labeled by y. For example,

let π = 325641. Then π has the following labeling

3 2 5 6 4 1
wx x y wx x y x.

Clearly, w records the number of exterior peaks. It follows that

Dn(x) =

bn/2c∑
k=0

T (n, k)x2k+1yn−2kwk. (4.16)

Proof of Theorem 4.3. For the grammar (4.8) in Lemma 4.4, the following relations

hold:

D(u−1v) = u−1v(1− u−1v2),

D(1− u−1v2) = (u−1v)2(v2 − 2u),

D(v2 − 2u) = 0.
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Comparing the above relations with the rules of the grammar in (4.15) and making the

substitutions x = u−1v, y = 1 − u−1v2, w = v2 − 2u, we get the rules as in grammar

(4.15), namely, D(x) = xy, D(y) = wx2 and D(w) = 0. Hence (4.16) implies that

Dn(u−1v) =

bn/2c∑
k=0

T (n, k)(u−1v)2k+1(1− u−1v2)n−2k(v2 − 2u)k,

that is,

Gen(u−1v, t) =
∑
n≥0

tn

n!

bn/2c∑
k=0

T (n, k)(u−1v)2k+1(1− u−1v2)n−2k(v2 − 2u)k. (4.17)

Comparing (4.9) with (4.17), we get

∑
n≥0

tn

n!

bn/2c∑
k=0

T (n, k)(u−1v)2k(1− u−1v2)n−2k(v2 − 2u)k =
u

u cosh(t) + (v2 − u) sinh(t)
.

Since the above relation is valid for indeterminates u and v, we can set v =
√
u− 1 to

deduce the following relation

∑
n≥0

tnu−n

n!

bn/2c∑
k=0

T (n, k)(1− u2)k =
u

u cosh(t)− sinh(t)
. (4.18)

Substituting t by ut in (4.18), we find that

∑
n≥0

tn

n!

bn/2c∑
k=0

T (n, k)(1− u2)k =
u

u cosh(ut)− sinh(ut)
. (4.19)

Finally, by setting x = 1− u2 in (4.19), we arrive at (4.7). This completes the proof.

5 Increasing trees and peaks in permutations

In this section, we use a grammatical approach to establish a connection between

permutations with a given number of exterior peaks and increasing trees with a given

number of vertices of even degree. We also give a combinatorial interpretation of this

fact.

Theorem 5.1 The number of permutations on [n] with m exterior peaks equals the

number of increasing trees on {0, 1, 2, . . . , n} with 2m+ 1 vertices of even degree.
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We first present a proof of the theorem using the following grammar given by Du-

mont [3]:

G : xi → x0xi+1. (5.1)

Let D be the formal derivative with respect to G. Dumont [3] showed that

Dn(x0) =
∑
T

x
m0(T )
0 x

m1(T )
1 x

m2(T )
2 · · ·, (5.2)

where the sum ranges over increasing trees T on {0, 1, 2, . . . , n} and mi(T ) denotes the

number of vertices of degree i in T . Relation (5.2) can be justified by labeling a vertex

of degree i with xi. Here is an example.

0(x2)

2(x1)

4(x0)

1(x3)

3(x0)5(x0)6(x0)

Figure 5.2: A labeling on an increasing tree

Let T be an increasing tree on {0, 1, 2, . . . , n} with the above labeling. When adding

the vertex n+ 1 to T as the child of a vertex v of degree i, the label of v changes from

xi to xi+1 and n + 1 gets a label x0. This corresponds to the rule xi → x0xi+1, which

proves (5.2).

Setting x2i = x and x2i+1 = y, we see that the grammar (5.1) reduces to the

grammar (4.1) that generates the polynomial Tn(x) for permutations with a given

number of exterior peaks. This gives a grammatical reasoning of Theorem 5.1.

To conclude this paper, we give a combinatorial proof of Theorem 5.1. More

precisely, we provide a bijection Φ between permutations and increasing trees such

that a permutation on [n] with m exterior peaks corresponds to an increasing tree

on {0, 1, 2, . . . , n} with 2m + 1 vertices of even degree. Recall that a permutation

σ = σ1σ2 · · ·σn on [n] is called an up-down permutation if σ1 < σ2 > σ3 < · · · . Simi-

larly, σ is called a down-up permutation if σ1 > σ2 < σ3 > · · · . An even increasing tree

is meant to be an increasing tree such that each vertex possibly except for the root is

of even degree. Kuznetsov, Pak and Postnikov [11] found a bijection between up-down

permutations and even increasing trees.

Clearly, an up-down permutation σ = σ1σ2 · · ·σn can be transformed into a down-up

permutation σ′ = σ′1σ
′
2 · · ·σ′n by taking the complement σ′i = n+ 1− σi for 1 ≤ i ≤ n.
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Our bijection Φ from down-up permutations to increasing trees can be considered as

an extension of the bijection given by Kuznetsov, Pak and Postnikov [11].

The increasing tree Φ(σ) is constructed in n steps. At each step, a vertex is added

to a forest of increasing trees. At the k-th step for 1 ≤ k ≤ n, we obtain a forest of

increasing trees with k vertices, and finally obtain an increasing tree on {0, 1, 2, . . . , n}.

The bijection Φ can be described as follows. Let (c1, c2, . . . , cn) be the code of σ,

that is, for 1 ≤ i ≤ n, ci is the number of elements σj such that j > i and σi > σj. In

the first step, we start with an increasing tree F1 with a single vertex i1 = n − c1. In

the k-th step for k > 1, we assume that an increasing forest Fk−1 has been obtained at

the (k− 1)-th step. Denote by Ik−1 and Jk−1 the set of vertices and the set of roots of

Fk−1, respectively. Let Īk−1 be the complement of Ik−1, that is, Īk−1 = [n] \ Ik−1. The

goal of the k-th step is to construct an increasing forest Fk by adding an element ik
from Īk−1 to Fk−1 such that ik is the father of those roots larger than ik in Fk−1.

Let j1, j2, . . . , jl be the elements of Jk−1 listed in decreasing order. For notational

convenience, we assume that j0 = n+ 1, jl+1 = 0 and c0 = 0. Let

Uk = {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some s ≥ 0}, (5.3)

Vk = {m ∈ Īk−1 | j2s+1 < m < j2s for some s ≥ 0}. (5.4)

It is clear that Uk ∩ Vk = ∅ and Uk ∪ Vk = Īk−1.

Define

Mk =

{
Uk, if ck−2 ≤ ck−1 ≤ ck or ck−2 > ck−1 > ck;

Vk, otherwise.
(5.5)

Let m1,m2, . . . be the elements of Mk listed in increasing order.

We claim that for 2 ≤ k ≤ n, at the k-th step of the construction of Φ, we have

|Mk| =

{
ck−1, if ck−1 > ck;

n− k + 1− ck−1, if ck−1 ≤ ck.
(5.6)

It implies that there are at least ck + 1 elements in Mk if ck−1 > ck. Otherwise, there

are at least n− k + 1− ck elements in Mk. Thus it is feasible to set

ik =

{
mck+1, if ck−1 > ck;

mn−k+1−ck , if ck−1 ≤ ck.

Then we add vertex ik to Fk−1 as the father of each vertex js ∈ Jk−1 as long as js > ik,

and denote the resulting forest by Fk. When k < n, we may iterate the above process

until we obtain an increasing forest Fn on [n]. Finally, we add vertex 0 to Fn as the

father of each root, so that we obtain an increasing tree T .

Here is an example. Let n = 7 and σ = 5346721. The code of σ is code(σ) =

(4, 2, 2, 2, 2, 1, 0). The corresponding increasing tree Φ(σ) is given below.
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1

2

3 6 7

4

5

The values of Ik, Jk, Mk, ik and the forests Fk are listed in the following table.

k Mk ik Fk Ik, Jk

1 — i1 = 3 3 I1 = {3}
J1 = {3}

2 M2 = {4, 5, 6, 7} i2 = 6 3 6 I2 = {3, 6}
J2 = {3, 6}

3 M3 = {1, 2, 7} i3 = 7 3 6 7 I3 = {3, 6, 7}
J3 = {3, 6, 7}

4 M4 = {1, 2} i4 = 2

2

3 6 7

I4 = {2, 3, 6, 7}
J4 = {2}

5 M5 = {1} i5 = 1

1

2

3 6 7

I5 = {1, 2, 3, 6, 7}
J5 = {1}

6 M6 = {4, 5} i6 = 5

1

2

3 6 7

5
I6 = {1, 2, 3, 5, 6, 7}
J6 = {1, 5}

7 M7 = {4} i7 = 4

1

2

3 6 7

4

5 —

Next we give a proof of claim (5.6) which ensures that the map Φ is well defined.

Proof of (5.6). It is clear that |M2| = c1 if c1 > c2, and |M2| = n− 1− c1 if c1 ≤ c2. In

other words, (5.6) holds for k = 2. Assume that (5.6) holds for k. To compute |Mk+1|,
we consider the following four cases:

Case 1: ck−2 > ck−1 > ck. Let j1, j2, . . . , jl be the elements of Jk−1 listed in decreasing

order, and let j0 = n + 1 and jl+1 = 0. By the assumption ck−2 > ck−1 > ck and the

definition of Mk, we get

Mk = Uk = {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some s ≥ 0}.
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Since ik ∈Mk, there exists t ≥ 0 such that j2t+2 < ik < j2t+1. So the set of roots of Fk
is given by

Jk = {ik, j2t+2, . . . , jl}.

It follows that

Uk+1 = {m ∈ Īk | m < ik, j2s+2 < m < j2s+1 for some s ≥ t}

= {m ∈Mk | m < ik}.

Since ck−1 > ck, ik is the (ck + 1)-th smallest element in Mk. Hence

|Uk+1| = |{m ∈Mk | m < ik}| = ck.

If ck > ck+1, by the assumption ck−1 > ck, we have

|Mk+1| = |Uk+1| = ck.

If ck ≤ ck+1, by (5.5), we obtain that

Mk+1 = Vk+1 = Īk \ Uk+1,

which implies that

|Mk+1| = n− k − ck.

So we have verified that in this case (5.6) also holds.

Case 2: ck−2 > ck−1 ≤ ck. In this case, we see that

Mk = Vk = {m ∈ Īk−1 | j2s+1 < m < j2s for some s ≥ 0}. (5.7)

Since ik ∈Mk, there exists t ≥ 0 such that j2t+1 < ik < j2t. It follows that

Jk = {ik, j2t+1, . . . , jl}. (5.8)

Since Ik = Ik−1 ∪ {ik} and Īk = Īk−1 \ {ik}, by (5.4) and (5.8), we find that

Vk+1 = {m ∈ Īk | ik < m < j0 or j2s+2 < m < j2s+1 for some s ≥ t}

= {m ∈ Īk | ik < m < j0} ∪ {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some s ≥ t}.

Since j2t+1 < ik < j2t, we see that ik < m for any j2s+1 < m < j2s or j2s+2 < m < j2s+1,

where 0 ≤ s < t. Noting that Īk = Īk−1 \ {ik}, we have

{m ∈ Īk | ik < m < j0} = {m ∈ Īk−1 | ik < m < j0}

= {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some 0 ≤ s < t}

∪ {m ∈ Īk−1 | m > ik, j2s+1 < m < j2s for some 0 ≤ s ≤ t}.
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Thus Vk+1 can be rewritten as

Vk+1 = {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some 0 ≤ s < t}

∪ {m ∈ Īk−1 | m > ik, j2s+1 < m < j2s for some 0 ≤ s ≤ t}

∪ {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some s ≥ t}.

By the definition of Uk, we find that

Uk = {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some 0 ≤ s < t}

∪ {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some s ≥ t}.

Let Wk = {m ∈ Īk−1 | m > ik, j2s+1 < m < j2s for some 0 ≤ s ≤ t}, so that Vk+1 can

be written as Vk+1 = Uk ∪Wk. It is easy to check that Uk ∩Wk = ∅. Recalling that

j2t+1 < ik < j2t, by the definition of Mk in (5.7), we deduce that

Wk = {m ∈ Īk−1 | m > ik, j2s+1 < m < j2s for some 0 ≤ s ≤ t}

= {m ∈ Īk−1 | m > ik, j2s+1 < m < j2s for some s ≥ 0}

= {m ∈Mk | m > ik}.

Hence

|Vk+1| = |Uk|+ |{m ∈Mk | m > ik}|. (5.9)

Using the induction hypothesis and (5.7), we find that

|Vk| = |Mk| = n− k + 1− ck−1, (5.10)

so that

|Uk| = |Īk−1 \ Vk| = ck−1. (5.11)

Since ck−1 ≤ ck, it can be seen that ik is the (n − k + 1 − ck)-th smallest element in

Mk. In other words,

|{m ∈Mk | m ≤ ik}| = n− k + 1− ck. (5.12)

In view of (5.10) and (5.12), we obtain that

|{m ∈Mk | m > ik}|

= |Mk| − |{m ∈Mk | m ≤ ik}|

= (n− k + 1− ck−1)− (n− k + 1− ck)

= ck − ck−1. (5.13)

Substituting (5.11) and (5.13) into (5.9) gives |Vk+1| = ck, and hence |Uk+1| = n−k−ck.
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If ck > ck+1, by the assumption ck−1 ≤ ck and (5.5), we have |Mk+1| = |Vk+1| = ck.

If ck ≤ ck+1, by (5.5), we get |Mk+1| = |Uk+1| = n− k− ck. This shows that (5.6) holds

for Mk+1 in the case ck−2 > ck−1 ≤ ck.

For the other two cases, ck−2 ≤ ck−1 ≤ ck and ck−2 ≤ ck−1 > ck, |Mk+1| can be

determined by the same argument. The details are omitted. Thus we have shown that

(5.6) holds for k + 1. Hence (5.6) holds for 2 ≤ k ≤ n.

Combinatorial Proof of Theorem 5.1. Let σ = σ1σ2 · · ·σn be a permutation with m

exterior peaks on [n]. Let T = Φ(σ) and let i1, i2, . . . , in be the vertices successively

generated in the construction of the increasing tree T . First, we show that a vertex of

even degree, except for i1, in T is an exterior peak or a valley in σ. For the vertex i1,

it is clear that it remains to be a leaf during the construction of T . However, as will

be seen, i1 is neither an exterior peak nor a valley in σ.

For 2 ≤ k ≤ n, since j2t+1 < ik < j2t for some t ≥ 0, it can be checked that

ik is a vertex of even degree in T if and only if ik ∈ Vk. Moreover, ik ∈ Vk if and

only if ck−2 ≤ ck−1 > ck or ck−2 > ck−1 ≤ ck. Consequently, ik ∈ Vk if and only if

σk−2 < σk−1 > σk or σk−2 > σk−1 < σk. Hence, for 2 ≤ k ≤ n, ik is a vertex of even

degree if and only if k−1 is either an exterior peak or a valley. By the same argument,

we find that i1 is neither an exterior peak nor a valley.

To compute the number of vertices of even degree in T , we consider the total number

of exterior peaks and valleys in σ. Setting σ0 = 0, then σ begins with an exterior peak,

alternately followed valleys and exterior peaks. If σn−1 < σn, then σ ends up with a

valley. Since there are m exterior peaks in σ, there are also m valleys in σ. It follows

that there are a total number of 2m exterior peaks or valleys in σ, and hence there are

2m non-rooted vertices of even degree in T assuming that ii is not taken into account.

Given that i1 is a leaf in T , there are 2m+ 1 non-rooted vertices of even degree in T .

Noting that there are an odd number of vertices of even degree for any rooted tree,

the degree of the root 0 in T must be odd. Therefore, T has 2m + 1 vertices of even

degree.

If σn−1 > σn, then σ ends up with an exterior peak. By the above argument, we see

that there are m exterior peaks and m − 1 valleys in σ. Thus T has 2m non-rooted

vertices of even degree. Moreover, the degree of the root 0 is also even. Thus T has

2m+ 1 vertices of even degree. Based on the two cases discussed above, it follows that

T is an increasing tree with 2m+1 vertices of even degree. Therefore, Φ is well-defined.

It remains to prove that Φ is a bijection. To this end, we construct the inverse map

Ψ of Φ. Let T be an increasing tree on {0, 1, . . . , n}. Let Fn be the increasing forest

obtained from T by deleting the root 0. From Fn, we construct a sequence Fn−1, . . . , F1

of increasing forests. For k = n, n− 1, . . . , 2, Fk−1 is obtained from Fk as follows. Let

ik be the largest root of the increasing forest Fk, and let Fk−1 be the increasing forest

obtained from Fk by deleting the root ik. For k = 1, set i1 to be the largest root of F1.
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For 1 ≤ k ≤ n, we let Ik denote the set of vertices in Fk and let Jk denote the set

of roots in Fk. As before, let Īk denote the complement of Ik with respect to [n]. For

2 ≤ k ≤ n, assume that Uk and Vk are defined as in (5.3) and (5.4), namely,

Uk = {m ∈ Īk−1 | j2s+2 < m < j2s+1 for some s ≥ 0},

Vk = {m ∈ Īk−1 | j2s+1 < m < j2s for some s ≥ 0},

where j1, j2, . . . , jl are the elements of Jk−1 listed in decreasing order and j0 = n + 1,

jl+1 = 0. Note that ik ∈ Īk−1 and Īk−1 is the disjoint union of Uk and Vk. If ik ∈ Uk,
we set Mk = Uk. If ik ∈ Vk, we set Mk = Vk.

Given M2, . . . ,Mn, we construct a sequence (c1, c2, . . . , cn), which will be shown to

be a permutation code. It is easily seen that |Mn| = 1 and we set cn = 0. For k = n−1,

set

cn−1 =

{
1, if the degree of the root 0 in T is even,

0, if the degree of the root 0 in T is odd.

Moreover, for k = n− 2, n− 3, . . . , 1, set

ck =



|Mk+1|, if Mk+2 = Uk+2 and ck+1 > ck+2,

n− k − |Mk+1|, if Mk+2 = Uk+2 and ck+1 ≤ ck+2,

n− k − |Mk+1|, if Mk+2 = Vk+2 and ck+1 > ck+2,

|Mk+1|, if Mk+2 = Vk+2 and ck+1 ≤ ck+2.

(5.14)

Now, we verify that for 1 ≤ k ≤ n, 0 ≤ ck ≤ n − k. Recalling that for 2 ≤ k ≤ n,

ik ∈Mk and Mk ⊆ Īk−1, hence 1 ≤ |Mk| ≤ |Īk−1|. On the other hand, by the definition

of Ik−1, we find that |Īk−1| = n− k + 1. It follows that for 2 ≤ k ≤ n,

1 ≤ |Mk| ≤ n− k + 1. (5.15)

Clearly, for 1 ≤ k ≤ n − 1, by (5.14), ck equals |Mk+1| or n − k − |Mk+1|. In view of

(5.15), we conclude that 0 ≤ ck ≤ n− k for 1 ≤ k ≤ n− 1.

Finally, we set Ψ(T ) to be the permutation σ with code (c1, c2, . . . , cn). It can be

checked that every step of the construction of Ψ is the inverse of the corresponding

step of Φ, and hence the proof is complete.
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