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Abstract

Let G be a simple connected graph on n vertices and m edges and pq, po, - - -, fin
be the eigenvalues of the Laplacian matrix of G. The Laplacian energy of G is defined
as Er(G) = Y i — 2m/n| and the Laplacian Estrada index of G is defined as
LEEG)=>", eti=2m/n In this paper, we establish asymptotic lower and upper
bounds to the Laplacian energy and Laplacian Estrada index, respectively, for random

multipartite graphs.

Keywords: Random multipartite graph; Laplacian energy ; Laplacian Estrada index

Mathematics Subject Classification: 05C50, 15A18

1 Introduction

Let G be a simple undirected graph with vertex set Vg = {v1, v2,...,v,} and edge set Eg.
The adjacency matriz A(G) of G is the symmetric matrix [A;;], where A;; = Aj; = 1 if
vertices v; and v; are adjacent, otherwise A;; = Aj; = 0. The number of edges incident to
the vertex v; € Vg is the degree of v;, denoted by dg(v;). Denote by dg = Xy,evda(vi)
the degree sum of G. The Laplacian matriz of G is the matrix L(G) = D(G) — A(G),
where D(G) is the degree matriz, which is a diagonal matrix with the diagonal entries the
degrees of G.

The eigenvalues of a graph G are the eigenvalues of its adjacency matrix A(G). As

usual, we denote them by A (G), A\2(G), ..., \n(G), or simply A1, A\2,..., A,. The energy
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of G was first defined by Gutman [12] in 1978 as
E(G) = |Ail,
i=1

which is derived from the total m-electron energy [23] from chemistry. Since then, graph
energy has been studied extensively by lots of mathematicians and chemists. For results
on the study of the energy of graphs, we refer the reader to the book [16] and new book
[13].

In 2006, Gutman et al. [14] introduced a new matrix L(G) for a graph G, i.e.,

n

£(6) = 1(6) - 3 2y ey —2 3y A,
i=1 i=1 i>j

where I,, is the identity matrix of order n. Based on L(G), they defined the Laplacian
energy of G as

EL(G) = i —2m/n] =Y Iéil, (1.1)
=1 =1

where m is the number of edges of G, u1,uso,...,u, are the eigenvalues of L(G) and
1,8, ..., &, are the eigenvalues of L(G). Obviously, Laplacian energy can be regarded as
a variant of graph energy. Up until now, a lot of results have been obtained on Laplacian
energy. The reader can be referred to [3, 4, 5, 11, 18, 19, 21, 26, 27, 28, 29].

In 2009, Fath-Tabar et al. [10] first proposed the Laplacian Estrada index of graphs.

For a graph G, its Laplacian Estrada index is defined as

n

LEE|(G) = et

=1

Independently, also in 2009, Li et al. [17] defined the Laplacian Estrada index as
LEE)(G) =) etim?mim =3 " &, (1.2)
i=1 i=1

Clearly, LEE;(G) = e*™/"LEFE5(G). Thus, these two definitions of the Laplacian Estrada
index are essentially equivalent. In this paper, we adopt the Definition (1.2) and denote
LEFE5(G) simply by LEE(G) for convenience. For more properties of this index, we refer
the reader to [1, 6, 10, 15, 17, 24, 25].

In 1950s, Erdés and Rényi [8] founded the theory of random graphs. The Erdds-Rényi
random graph G,(p) consists of all graphs on n vertices in which the edges are chosen
independently with probability p, where 0 < p < 1. In [7], Du et al. have considered
the Laplacian energy of the Erdds-Rényi model G, (p). They obtained a lower bound
and a upper bound of the Laplacian energy of G,(p), and showed that for almost all
Gn(p) € Gu(p), £(Gp(p)) is no more than Er,(G,(p)).



The purpose of this paper is to study the Laplacian energy and Laplacian Estrada index
of random multipartite graphs. We use K., .. 5, to denote the complete k-partite graph
with vertex set V' (|V| = n), whose parts are Vi,..., Vi (2 < k = k(n) < n) satisfying
\Vi| = nB; = npi(n), i =1,2,..., k. The random k-partite graphs G,.3, . g, (p) consist of
all random k-partite graphs in which the edges are chosen independently with probability
p from the set of edges of K,,.5, . g,. We denote by A, 1 := A(Gn.p,...5.(P)) = (Zij)nxn
the adjacency matrix of random k-partite graphs Gy, .. 8, () € Gnsi,....5,(P), Where x;;
is a random indicator variable for {v;,v;} being an edge with probability p, for ¢ € V; and
jeV\W,i+#j,1 <1<k Then A, satisfies the following properties:

o z;;’s, 1<i<j<n,areindependent random variables with z;; = xj;;

o Pr(z;j=1)=1—Pr(z;; =0)=pifi eV, and j € V\V,, while Pr(z;; =0) =1 if
1eViand j eV, 1 <1<k

Note that when k =n, G,.5, .. g, = Gn(p), that is, the random multipartite graphs can
be viewed as a generalization to the Erdés-Rényi model.

The paper is structured as follows. In Section 2, we consider the Laplacian energy

of the random k-partite graph model G5, . g, (p), and establish a lower bound and an

upper bound to E.(Gp.s, .. 5, (p)) for almost all G5, 3, (p) € Gna,... 5. (p). In Section
3, we establish a lower bound and an upper bound to LEE (G, .. 8, (p)) for almost all
Gnpi,..8.(P) € Gnipy,..8, (). As a corollary, we obtain the Laplacian Estrada index for

almost all G, (p) € Gn(p).

2 Laplacian energy of random multipartite graphs

In this section, we shall formulate a lower bound and an upper bound to the Laplacian
energy for random multipartite graphs G, . 5, (p) € Gn.s,,..5.(p). Before proceeding,
we give some definitions and lemmas.

Let M be a real symmetric matrix. Denote by £(M) the sum of the absolute values

of the eigenvalues of M. Sometimes, £(M) is called the energy of M.

Lemma 1 (Fan [9]). Let X, Y, Z be real symmetric matrices of order n such that X+Y =
Z. Then
EX)+EY)>E(Z).

We say that an event in a probability space holds asymptotically almost surely (a.s.

for short) if its probability goes to one as n tends to infinity.



Lemma 2 (Shiryaev [20]). Let X1, Xo, ... be an infinite sequence of independent identically
distributed (i.i.d.) random wvariables with expected value E(X1) = E(X2) = -+ = p, and
E|X| < co. Then
— 1
X, = E(Xl—l-Xz—l—H-—f—Xn) — poa.s.
Let f(n),g(n) be two functions of n. Then f(n) = o(g(n)) means that f(n)/g(n) =0

asn — 00; f(n) = O(g(n)) means that there exists a constant C' such that |f(n)| < Cg(n),

as n — o0.

Lemma 3 (Du et al.[7]). Almost every random graph Gy (p) satisfies

(2\3/5 (1 —p) + 0(1)> 132 < E1(Gnlp)) < ( W — p2 + 0(1)) n3/2,

Theorem 1. Let Gp.p,...5,(p) € Gnpy,...5,(p) with fy > P > -+ > By and r (1 <7 <

k — 1) be an integer such that Bry1 < Zle B < By. Then almost surely

T k
2+ ot (z@ BTZB1>—(JW+2W 2/33/2+o<1>) 2
=1 i=1

< E.(Gupy...5. (D))

r k
< 2(p+o(l <Zﬁz 5r+125l>+< 2p—p2+2\/2pz())17_m25?/2+0(1)>n3/2-
=1 i=1

Proof. Note that the parts V1, ..., V}, of random k-partite graph G,,.5, .. g, (p) satisfy |V;| =

npi, i=1,2,..., k. Then the adjacency matrix A, ; of Gy, . g, (p) satisfies
An,k + A;l,k = An,
where

A”Bl
/ Anﬁz

n,k —

Anp,
and A, := A(Gn(p)), Ang, := A(Gnp,(p)), i =1,2,... k.

nxn,

The degree matrix Dy, := D(Gp.3,,...8.(P)) of Gn.p,... g, (p) satisfies
Dn,k + D;’k = Dp,

where
D nB1
D nB2

n,k —

D 1Bk

nxn,



and Dy, := D(Gy(p)), Dng, := D(Gng,(p)), i =1,2,... k.
The Laplacian matrix Ly, j := L(Gnip, .5, (P)) of Guipy.... 5, (p) satisfies

Ly + Ly = Ln,

where

L nB1
/ LnﬂQ

n,k —

and Ly, := L(Gn(p)), Lng, := L(Gpng,(p)), 1 =1,2,... k.
Note that L, j = L, — L;%k, App= A, — A;%k, and

n

LTL:L,L—ZdG"()( I, =Ly, —222 "”I

i=1 i=1 i>j
Then
TR ) ) DR
=1 z>]
_ A
=1L, _L/k_2zz nk)Z]In
=1 1>j
k. np
A "”f S 3D ) B E AN
i=11i>j l 1 =1 i>j
= fn - Bn - Cn,
where
Ln51
By =
Lnﬂk nxn
" T Z?fll Zi> '(An,é’l)ij
Lng, = Lypg, — 2—— nﬁjl Lg, for 1 <1<k,
and
Cnﬁl
Cp =
Cnﬁk nXxn
with

Zn_ﬁz ‘ n,B k np
Cpp, = | 222 i (Ao —*ZZZ n8)ij | Ingys for 1 <1<k,

n
51 =1 1=1 1>j



By (2.1) and Lemma 1, we have

E(Tn — Ba) — E(C) < E(Tnz) < E(Fn) + E(By) + E(Ca). (2.2)
Note that . .
E1(Cul)) = 3 In(L) — PP S e (L) = £(T),
=1 i=1
and

EL(Gril0) = 3 L) — M) S e (T = £Ta).
i=1 =1

Then

E(Bn) = E(Lnp,) + -+ E(Lnp,) = EL(Gnp, () + -+ + EL(Gnp, (p))-
Thus, Lemma 3 implies that
E(Ln) — E(Bn) = EL(Gn(p)) = [EL(Gnp, (p) + -+ - + EL(Gnp, (p))]

k
i=1

k
= (2\3@\/]7(1 —p)— V2 —p? ;B?/Q + 0(1)) n3? a.s., (2.3)

and

E(Ln) + E(Bn) = EL(Gn(p)) + [EL(Gnp, (D) + -+ + EL(Grp, (p))]

k
< ( 2p — p? +o(1)) n3/2 4 (2\3@ p(1—p) +0(1)> n3/2;ﬁ?/2

k
= ( 2p —p? + 2*3/5\/;9(1 > B+ 0(1)> % a.s. (2.4)
i=1

By Lemma 1, we have
E(Ln) — €(Bn) < &(Ln — Bn) < E(Ly) + E(Bn). (2.5)

Next, by estimating £(C),), we compare E(L,, — B,) and E(Cy,). Since (4,);;(i > j) are
i.1.d. with mean p and variance y/p(1 — p). It follows from Lemma 2 that, with probability
1

)

L Z?:l Zi>j (An)ij
im

n—00 n(n—1)

Thus, we have

D ()i = (p/2+ o(1))n® a.s.

i=1 i>j



Similarly, for [ =1,2,...,k,
nB

S5 (Aus)is = (/24 01?8 as.

i=1 i>j

Since f1 > -+ > By and B0 < D1y B < B, we have

T Sy (An)is 2 g
2 g 2SS S

=1 i=1 i>j

E(Cn) =

M=

=1

k
- Z (p-l-o(l))nﬁl—(p—ﬂ-o(l))nZgi? )

=1 i=1

k k
= (p+oW)n?> 8= B B

=1 i=1

r k
= 2(p+o(1 n? Zﬁl Zﬁl ZBI) a.s.
=1

Note that

T

> 65— Z/Bz ZBZ>Z/3ZQ B> B =>0.
=1 =1 =1

Hence

E(Cn) = E(Ly — By).

Since fr41 < Zf 1 Bf < B,, we have

2(p + o(1 (Zﬂl @Zm)
=1

IN
g
e

By (2.2), (2.5) and (2.6), we have

E(Cn) = (E(Ln) + E(Bn)) < &(Cn) — E(Ln — B)
< E(Cn) + E(Ly) + E(By).

Then by (2.4) and (2.7), we have

. k
p+0 (Z/Bl IBTZBZ>_<\/W+2\/@ZB?/2+0(1
=1 —

IN
g
h
S

=

< 2p+o(l (Zﬂl 5r+1z/3z>
=1
/7 k
+ ( 2p —p? + 2y~ p) 2p31 1) > 6" +o(1)> n3? a.s.
=1

This completes the proof.

)) n3/2



Next, we consider the case when each part of G,,.5, .. 8, (P) € Gn.g,....5, (p) has the same

size as n tends to infinity.

Theorem 2. Let G5, .. 8, (D) € Gnipy,...5. (P) satisfying 7}1_)120 % =1, 1<14,j5<k. Then

<2\/2p§)1 - \/Zp D2 )

< EL(Gn;ﬁl,...,ﬁk (p))

22
2_2

Proof. Note that lim 2: =1,for 1 <i,j < k. Then for [,t =1,--- , k, we have

almost surely

IN

n—oo ~J
S Ny (Ang)is _ S Ny (Ans )i Eia S0 Sy (An)is
n np n -
Then
C,, =0 a.s.

So, by (2.1), we have
nk = L, — B, a.s.

h

According to Lemma 1, we have

E(Ln) = E(Bp) < E(Lnp) < E(Ln) + E(Bn). (2.8)
Note that hm 5—; = 1 implies that hm Bi =4, for 1 <i < k. From (2.3) and (2.4), we
have
— 2v/2
E(Ly) — E(By) > (f\/ —V2p— p2253/2+0 ) 3/2
(2.9)
— + o( a.s.,
and
(2.10)

E(Ly) +&(By) < ( 2p — p+2\3[ 1-p 253/2+0 )> 3/2

2p — p? + &\/ p(l=p) +0o(1) | n®? a.s.
3 k
Then (2.8), (2.9) and (2.10) imply that
_ — 2
2/2p(1—p) \/219 Py |
3 k
< Eu(Gupi,..5.(P)

)
2 [2p(1—
2p —p? + 3 21 = p) +0(1)> n®/2.




This completes the proof. O

3 Laplacian Estrada index of random multipartite graphs

In this section, we will establish a lower bound and an upper bound to LEE(G .3, ... 5, (p))
for almost all Gp.p,... 5.(p) € Gn:py....5.(p). Recall that Ay, L,; and L,j denote

A(Gnpy,..5.(P), L(Gnip,..5.(p)) and L(Gpip, ... 1, (D)), respectively.

Lemma 4 (Bryc et al. [2]). Let X be a symmetric random matriz satisfying that the
entries X;5, 1 < i < j, are a collection of i.i.d. random wvariables with E(X12) =
0,Var(X12) =1 and E(X},) < 0. Define S := diag(d_,; . Xij)i<i<n and let M = S — X,

where diag{-} denotes diagonal matriz. Denote by || M || the spectral radius of M. Then

lim 7H M =1
n—oo \/2nlogn
(M|

i.e., with probability 1, Tantogn Converges weakly to 1 as n tends to infinity.

a.s.,

Lemma 5 (Weyl [22]). Let X, Y and Z be nxn Hermitian matrices such that X =Y +Z.
Suppose that X,Y,Z have eigenvalues, respectively, A\1(X) > - > Ap(X), (V) >--- >
M(Y), M(Z) > > M(Z). Then fori=1,2,...,n the following inequalities hold:

Theorem 3. Let G5, 5, (P) € Gnipy,...5.(0). Then almost surely

(n—1+ e*np)enp(Zi-ll B7 —maxi <i<r{Bi})+o(1)n

< (n—1+e )P iy B o(n

Proof. Define an auxiliary matrix

Ly = Ly = p(n = DI+ p(Jn = I) = (Do = p(n = V1) = (An = p(Jn — I)),

where J, is the all-ones matrix. Let

1
S = p(l—p) [Dn_p(n_l)In]
and
1
X = —— [An — p(Jn — I)]:



Then E(Xlg) = O, VCL’I”(X12) = 1, and

E(X{) = ———(p—4p* + 6p° — 3p*) < .
( 12) pQ(l _p)Q( )
By Lemma 4, we have s
L
[ Lo | =1 a.s.
n—o0 \ /2p(1 — p)nlogn
Then .
L
lim | Lo | =0 a.s.,
n—o00 n
i.e.,

| Ly ||=o()n  a.s.

Let R, :==p(n—1)I, —p(J, — I,,). Then E:L + R, = L,. Suppose that L,, 1?1, R,, have
eigenvalues, respectively, i1 (Ln) > -+ > fin(Ln), M(Ln) > -+ = An(Ln), M (Rn) > -+ >
An(Ry). It follows from Lemma 5 that

Xi(Rp) 4 An(Ln) < p1i(Ln) < Xi(Ry) + M (L), fori=1,2,... n.
Notice that \j(R,) =pn fori=1,2,...,n—1 and A\,(R,) = 0. We have
wi(Ly) =(p+o(l))n as., forl1 <i<n-—1 (3.1)
and
tn(Ly) =o(1)n a.s. (3.2)

In the following, we first evaluate the eigenvalues of L,, ;, according to the spectral distri-
bution of L,, and L’n’k.

Since Ly = L, — L/

n,k’

Lemma 5 implies that for 1 < i <mn,

11i(Ln) 4 pn(=Lyy ) < pi(Lng) < pi( L) + pa (=L i), (3.3)

where fi,(—Ly, ;) and pi(—L;, ;) are the minimum and maximum eigenvalues of —L; ,

respectively. By (3.1), (3.2) and (3.3), we have

mp(1 = i {8.3) + o(1)n < (L) < np+o(n as., (3.4
and
—np @ag)i{ﬂi} +o(1)n < pin(Ln k) <o()n  a.s. (3.5)

Now we consider the trace Tr(Dy, i) of D,, ;. Note that Tr(D, ) = 22¢>j(An,k)ij-
Since that (A4,);;(¢ > j) are i.i.d. with mean p and variance /p(1 —p). According to
Lemma 2, we obtain that with probability 1,

lim Zoij(An)ii _
n—00 n(nz—l) =D

10



i.€.,
Then

Similarly, for i =1,...,k,

Thus,

Do) =2 (Ang)ij =2 (A

i>j i>j

=2 (An)iy—2) (4
i>7 ©>7

=2 > (A2 Y A+t > (Aeg)y|  B7)
n>i>j>1 np1>i>5>1 nf>i>j>1

= (p+o(1))n* = [(p+ o(1))(nB1)* + -+ + (p+ 0(1))(nB)?]

k
=p(l — Zﬂf)rﬂ + o(l)n2 a.s.
=1

TT(Dn,k)

Note that Ly, j — — T Then pii(Lyy) — SPnt) — ¢/ 00, for i =1,...,m,

where 11;(Ln k), &(Lnk) are eigenvalues of Ly, and Ly, ; respectively. By (3.4), (3.5) and
(3.7), we have

k
Zﬁz —max {B;})+o(1)n < &(Lny) < an,B?%—o(l)n a.s., forl <i<n-1, (3.8)

1<i<k .
i=1

and

k k
np(Y 87 — max {8} — 1) + o(1)n < &u(Lny) <mp(d_ B — 1) +o(l)n  as. (3.9)
=1

1<i<k ;
1=1

Hence we have

n—1
(n—1)emP(Zizy B -maxicici{BiD)+o(n < Ze&(m) < (n—1)eP iz Biton ¢ o (3.10)
i=1
and
(i B —maxi<ici{Bi}=1)+o()n < en(Lnk) < (i B-D+o()n ) o (3.11)

Then (3.10) and (3.11) imply that

LEE(Grip,u(p)) 2 (0 — 1) Smesasese (G ol
4 (i B ~maxi <i<{Bi}~1)+o(L)n (3.12)

= (n— 1+ e )il Ai—maxicici{BiD o o

11



and

LEE(Grip(9) < (n = D Sl ol gnp(loy 5210400000

(3.13)
=(n—-1+ e_"p)e”pZ;C:l Bi+o(n (.
This completes the proof. O
Corollary 1. Let Gp.8,...8.(P) € Gn:a,,...8.(p). Then
LEE(Gpgp,,.5,(p) = (n—1+e ")’ a.s. (3.14)
if and only if max{npf,...,nBx} = o(1)n.
Proof. By (3.8), (3.9), (3.10) and (3.11), we have that (3.14) holds if and only if
&i(Lpg) =o()n as.,forl1<i<n-—1 (3.15)
and
én(Lng) = -—np+o(l)n a.s. (3.16)

By (3.4) and (3.5), (3.15) and (3.16) hold if and only if max{npi,...,nfk} =o(l)n. O

Note that if k = n, then Gpp, . 5, (p) = Gn(p), that is, 8; = 1, 1 < i < k. By

Corollary 1, we have the following result immediately.

Corollary 2. Let Gy (p) € Gn(p) be a random graph. Then almost surely LEE(G,(p)) =
(n —1+e)eo)n,

Corollary 3. Let Gp.,,.8.(P) € Gnpi,...5.(p) satisfying li_{n max{S1, B2, -, Bk} > 0
n—oo
and lim 2t =1. Then

n—o00 Bj

(n—14 e ™) < LEE(Gn,,...3,(p)) < (n — 1+ e PP kton g

Corollary 4. Let G5, 5.(P) € Gnp,....8.(p) satisfying nlg]go max{f1, B2, -+, Bk} > 0,

and there exist 3; and [3; such that 1i_>m % < 1, that is, there exists an integer r > 1 such
n o0
that \Vi|,...,|Vy| are of order O(n) and |Vy41l,...,|Vk| are of order o(n). Then

IN

LEE(Gng,,...5(p))

(n— 1+ e P)emP(Eiz B)ron 4 o

IN

12
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