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Abstract. Let m and n be positive integers. Let
(
m
n

)
= m!

n!(m−n)! denote the

binomial coefficient indexed by m and n, where n! is the factorial of n. For any
prime p, let νp(n) denote the largest nonnegative integer r such that pr divides
n. In this paper, we use the p-adic method to show the following identity:

gcd(
{(mn

k

)
: 1 ≤ k ≤ mn, gcd(k,m) = 1

}
) = m

∏
prime p| gcd(m,n)

pνp(n).

This extends greatly the identities obtained by Mendelsoh et al in 1971 and by
Albree in 1972, respectively.
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1 Introduction

Let n ≥ 1 and k ≥ 0 be integers. The binomial coefficient, indexed by n and k,
is as usual written as

(
n
k

)
, and can defined to be the coefficient of the xk term in

the polynomial expansion of the binomial power (1 + x)n. In other words, one
has

(
n
k

)
= n!

k! (n−k)! with n! being the factorial of n, i.e. the product of all the

integers between 1 and n, and 0! = 1. For any finite set S of integers, we denote
the greatest common divisor of all the elements of S by gcd(S). For any prime
p, by νp(n) we denote the largest nonnegative integer e such that pe divides n,
and νp(n) is called the normalized p-adic valuation of n. Ram [5] proved that
the integer gcd({

(
n
k

)
: 1 ≤ k ≤ n− 1}) equals p if n is a positive power of p, and

is equal to 1 otherwise. This result was later strengthened by Joris, Oestreicher
and Steinig in [3]. On the other hand, Mendelsoh et al [4] showed the following
elegant identity:

gcd(
{(2n

1

)
,

(
2n

3

)
, ...,

(
2n

2n− 1

)}
) = 21+ν2(n). (1.1)
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Albree [1] generalized the identity (1.1) by showing that if p is a prime, then

gcd(
{(pn

k

)
: 1 ≤ k ≤ pn, p 6 |k

}
) = p1+νp(n). (1.2)

Our main goal in this paper is to extend (1.2) from the prime number p
case to the general composite number case. Let m be a positive integer. An
explicit formula for the greatest common divisor of the sequence of the binomial
coefficients

(
mn
k

)
, where k runs over all the integers between 1 and mn which are

coprime to m, is given in this paper. That is, our main result is the following:
Theorem 1.1. Let m and n be positive integers. Then

gcd(
{(mn

k

)
: 1 ≤ k ≤ mn, gcd(k,m) = 1

}
) = m

∏
prime p| gcd(m,n)

pνp(n).

The method of the proof of Theorem 1.1 is p-adic in character. Furthermore,
we have the following interesting corollaries.

Corollary 1.2. Let r and n be positive integers. If p1, ..., pr are r distinct
prime numbers, then

gcd(
{(p1...prn

k

)
: 1 ≤ k ≤ p1...prn, gcd(k, p1...pr) = 1

}
) = p

1+νp1 (n)
1 ...p

1+νpr (n)
r .

Corollary 1.3. Let m and n be two relatively prime positive integers. Then

gcd(
{(mn

k

)
: 1 ≤ k ≤ mn, gcd(k,m) = 1

}
) = m.

Evidently, if one picks r = 1, then Corollary 1.2 becomes Albree’s identity
(1.2). This paper is organized as follows. In Section 2, we will show several
preliminary lemmas. Then we use these lemmas to show Theorem 1.1 in Section
3. In the final section, we propose two interesting open problems.

2 Preliminary lemmas

In this section, we prove three lemmas that are needed in the proof of Theorem
1.1. We begin with the following result which is Theorem 1.1 when n = 1.

Lemma 2.1. Let n be a positive integer. Then

gcd(
{(n

k

)
: 1 ≤ k ≤ n, gcd(k, n) = 1

}
) = n.

Proof. Let Gn = {
(
n
k

)
: 1 ≤ k ≤ n, gcd(k, n) = 1}. Then n ∈ Gn and so one

has gcd(Gn)|n. Let k be an integer with 1 ≤ k ≤ n and gcd(k, n) = 1. Then we
have

k

(
n

k

)
= k

n!

k!(n− k)!
= n

(n− 1)!

(k − 1)!(n− k)!
= n

(
n− 1

k − 1

)
.
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Thus n divides the integer k
(
n
k

)
. But n is coprime to k. It follows that n

divides
(
n
k

)
. So one has n| gcd(Gn) and the desired result gcd(Gn) = n follows

immediately. The proof of Lemma 2.1 is complete. 2

In the sequel, we investigate the p-adic valuations of the binomial coefficients.
Let us recall the so-called Legendre formula on the p-adic valuations of factorials.

Lemma 2.2. [2] Let n be an integer and let p be a prime number. Then

νp(n!) =
n− σp(n)

p− 1
,

where σp(n) stands for the sum of the standard base-p digits of n. Namely, one
has σp(n) :=

∑r
i=0 ai if n =

∑r
i=0 aip

i with r and ai being integers such that
r ≥ 0, ar > 0 and 0 ≤ ai ≤ p− 1 for all integers i with 0 ≤ i ≤ r.

Lemma 2.3. Let p be a prime number and let n ≥ 1 and e ≥ 0 be integers
such that e ≤ νp(n). Then

νp(

(
n

pe

)
) = νp(n)− e.

Proof. First let p 6 |n. Then νp(n) = 0. Since 0 ≤ e ≤ νp(n), one has e = 0.
It follows that

νp(

(
n

pe

)
) = νp(

(
n

1

)
) = νp(n) = 0

as desired.
In what follows we assume that p|n. Then νp(n) ≥ 1. Let n = pνp(n)n̄ with

p 6 |n̄. Write n̄ =
∑r
i=0 nip

i, where r ≥ 0 is an integer and 0 ≤ ni ≤ p − 1 for
all integers i with 0 ≤ i ≤ r, p - n0 and nr 6= 0. Then σp(n) =

∑r
i=0 ni. Since

p - n0, one has n0 ≥ 1. But e ≤ νp(n). One then deduces that

n− pe =

r∑
i=0

nip
i+νp(n) − pe

=(pνp(n) − pe) + (n0 − 1)pνp(n) +

r∑
i=1

nip
i+νp(n)

=

νp(n)−1∑
i=e

(p− 1)pi + (n0 − 1)pνp(n) +

r∑
i=1

nip
i+νp(n). (2.1)

The right-hand side of (2.1) is the p-adic representation of n−pe. It then follows
that

σp(n− pe) =(p− 1)(νp(n)− 1− (e− 1)) + n0 − 1 +

r∑
i=1

ni

=(p− 1)(νp(n)− e)− 1 +

r∑
i=0

ni

=(p− 1)(νp(n)− e)− 1 + σp(n).
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In other words, we have

σp(n− pe)− σp(n) = (p− 1)(νp(n)− e)− 1. (2.2)

So by Lemma 2.2 together with (2.2), one gets that

νp(

(
n

pe

)
) =

σp(p
e) + σp(n− pe)− σp(n)

p− 1

=
1 + (p− 1)(νp(n)− e)− 1

p− 1

=νp(n)− e

as required. So Lemma 2.3 is proved. 2

Lemma 2.4. Let m,n and k be positive integers such that k ≤ mn and k is
coprime to m. Then for any prime divisor p of m, we have

νp(

(
mn

k

)
) ≥ νp(m) + νp(n).

Proof. First of all, one has

k

(
mn

k

)
= mn

(
mn− 1

k − 1

)
. (2.3)

Now let p be a prime divisor of m. Then pνp(m)+νp(n) divides the right-hand
side of (2.3), which implies that

pνp(m)+νp(n)
∣∣∣k(mn

k

)
. (2.4)

But k is coprime to m and p|m. So k is coprime to p, which implies that
gcd(pνp(m)+νp(n), k) = 1. It then follows from (2.4) that pνp(m)+νp(n) divides
the binomial coefficient

(
mn
k

)
. Hence the desired result follows immediately.

This ends the proof of Lemma 2.4. 2

3 Proof of Theorem 1.1

We are now in a position to give the proof of Theorem 1.1.
Proof of Theorem 1.1. Let

Gmn =
{(mn

k

)
: 1 ≤ k ≤ mn, gcd(k,m) = 1

}
.

If m = 1, then 1 ∈ Gmn and so gcd(Gmn) = 1 as desired. If n = 1, then by
Lemma 2.1, one has gcd(Gmn) = m as required. In the following we let m ≥ 2
and n ≥ 2.

First we let n|m. Then gcd(m,n) = n and
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Gmn =
{(mn

k

)
: 1 ≤ k ≤ mn, gcd(k,mn) = 1

}
.

Hence Lemma 2.1 applied to mn gives us that

gcd(Gmn) = mn = m
∏

prime p|n

pνp(n) = m
∏

prime p| gcd(m,n)

pνp(n)

as desired. Namely, Theorem 1.1 is true if n|m.
Consequently, we let n 6 |m. Since

(
mn
1

)
= mn is one term of Gmn, it follows

that gcd(Gmn) divides mn. So one needs only to compute the p-adic valuation
νp(gcd(Gmn)) for all prime divisors p of mn that will be done in the following.
Let p be a prime number such that p|mn. Then one has either p|m or p|n. We
divide the computation of νp(gcd(Gmn)) into the following two cases:

Case 1. p|n and p 6 |m. Then gcd(pνp(n),m) = 1 and 1 < pνp(n) ≤ n < mn
since m ≥ 2 and p ≥ 2 and p|n implying that νp(n) > 0. This implies that(
mn
pνp(n)

)
is one term of Gmn. On the other hand, one has νp(mn) = νp(n) since

p 6 |m. Thus with n replaced by mn and e replaced by νp(mn) in Lemma 2.3,
we obtain that

νp(

(
mn

pνp(n)

)
) = νp(

(
mn

pνp(mn)

)
) = 0.

One can then deduce that

νp(gcd(Gmn)) = min
{
νp(

(
mn

k

)
) : 1 ≤ k ≤ mn, gcd(k,m) = 1

}
= 0. (3.1)

Case 2. p|m. For all integers k with 1 ≤ k ≤ mn and gcd(k,m) = 1, by
Lemma 2.4 one gets that

νp(

(
mn

k

)
) ≥ νp(m) + νp(n). (3.2)

Notice that

νp(

(
mn

1

)
) = νp(m) + νp(n). (3.3)

It then follows from (3.2) and (3.3) that

min
{
νp(

(
mn

k

)
) : 1 ≤ k ≤ mn, gcd(k,m) = 1

}
= νp(m) + νp(n).

That is, one has
νp(gcd(Gmn)) = νp(m) + νp(n). (3.4)

Finally, from (3.1) together with (3.4) we derive that

gcd(Gmn) =
∏

prime p| gcd(Gmn)

pνp(gcd(Gmn))

=
∏

prime p|mn

pνp(gcd(Gmn))
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=
( ∏

prime p|m

pνp(gcd(Gmn))
)( ∏

prime p|n,p 6|m

pνp(gcd(Gmn))
)

=
( ∏

prime p|m

pνp(m)+νp(n)
)( ∏

prime p|n,p 6|m

p0
)

=
∏

prime p|m

pνp(m)+νp(n)

=
( ∏

prime p|m

pνp(m)
)( ∏

prime p|m

pνp(n)
)

= m
∏

prime p|m

pνp(n)

= m
∏

prime p| gcd(m,n)

pνp(n)

as required. This concludes the proof of Theorem 1.1. 2

4 Concluding remarks

Let n ≥ 2 be an integer. Then by Ram’s theorem [5], we know that

gcd(
{(n

k

)
: 1 ≤ k ≤ n− 1

}
) =

{
p, if n is a power of p,
1, otherwise.

On the other hand, Lemma 2.1 tells us that

gcd(
{(n

k

)
: 1 ≤ k ≤ n− 1, gcd(k, n) = 1

}
) = n.

The following interesting question arises naturally:
Problem 4.1. Let n ≥ 2 be an integer. Find an explicit formula for

gcd(
{(n

k

)
: 1 ≤ k ≤ n− 1, gcd(k, n) > 1

}
).

As in Soulé’s interesting paper [6], in what follows we denote by b(n) the
smallest nonnegative integer b such that the set of the binomial coefficients

(
n
k

)
,

where k is an integer with b < k < n − b, has a nontrivial common divisor.
Granville found that the integer b(n) is the smallest integer of the form n− pe,
where pe is a prime power less or equal to n (see Theorem 3 of [6]). Furthermore,
one may ask the following interesting question.

Problem 4.2. Let n ≥ 2 be an integer and b(n) be defined as above. Find
the explicit formula for

gcd(
{(n

k

)
: b(n) < k < n− b(n)

}
),
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gcd(
{(n

k

)
: b(n) < k < n− b(n), gcd(k, n) = 1

}
)

and

gcd(
{(n

k

)
: b(n) < k < n− b(n), gcd(k, n) > 1

}
),

respectively.
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References

[1] J. Albree, The gcd of certain binomial coefficients, Math. Mag. 45
(1972), 259-261.

[2] K. Ireland and M. Rosen, A classical introduction to modern number
theory, Graduate Texts in Math. 84, Springer-Verlag, New York, 1990.

[3] H. Joris, C. Oestreicher and J. Steinig, The greatest common divisor
of certain sets of binomial coefficients, J. Number Theory 21 (1985),
101-119.

[4] N.S. Mendelsohn and St. Olaf College Students, Divisors of binomial
coefficients, Amer. Math. Monthly 78 (1971), 201-202.

[5] B. Ram, Common factors of n!/m!(n − m)!, (m = 1, 2, ..., n − 1), J.
Indian Math. Club (Madras) 1 (1909), 39-43.
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