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Abstract

A path in an edge-colored graph is called a proper path if no two adjacent edges

of the path are colored with one same color. An edge-colored graph is proper con-

nected if any two vertices of the graph are connected by a proper path in the graph.

The smallest number of colors that are needed in order to make G proper connected

is called the proper connection number of G, denoted by pc(G). In this paper, we

present an upper bound for the proper connection number of a graph G in terms of

the bridge-block tree of G. We also use this bound as an efficient tool to investigate

the Erdös-Gallai-type problems for proper connection number of a graph G.

Keywords: proper connection number, bridge-block tree, Erdös-Gallai-type prob-

lem
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1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow the

terminology and the notation of Bondy and Murty [2]. For a graph G = (V,E) and two

disjoint subsets X and Y of V , denote by BG[X, Y ] the bipartite subgraph of G with

vertex set X ∪ Y and edge set E(X, Y ), where E(X, Y ) is the set of edges of G that

have one end in X and the other in Y . An induced subgraph denoted by G[X] is the

subgraph of G whose vertex set is X and whose edge set consists of all edges of G which
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have both ends in X. For a vertex set D, let N(D) = {u ∈ V (G) : dist(u,D) = 1} and

D∗ = G[D ∪N(D)]. A vertex is called a simplical vertex if G[N(v)] is a clique.

An edge-coloring of a graph G is an assignment c of colors to the edges of G, one color

to each edge of G. If adjacent edges of G are assigned different colors by c, then c is a

proper (edge-)coloring. For a graph G, the minimum number of colors needed in a proper

coloring of G is referred to as the chromatic index of edge-chromatic number of G and

denoted by χ′(G). A path in an edge-colored graph with no two edges sharing the same

color is called a rainbow path. An edge-colored graph G is said to be rainbow connected

if every pair of distinct vertices of G is connected by at least one rainbow path in G.

Such a coloring is called a rainbow coloring of the graph. For a connected graph G, the

minimum number of colors needed in a rainbow coloring of G is referred to as the rainbow

connection number of G and denoted by rc(G). The concept of rainbow coloring was first

introduced by Chartrand et al. in [5]. In recent years, the rainbow coloring has been

extensively studied and a variety of nice results have been obtained, see [4, 6, 10, 12, 15]

for examples. For more details we refer to a survey paper [16] and a book [17].

Inspired by the rainbow coloring and proper coloring of graphs, Andrews et al. [1]

introduced the concept of proper-path coloring. Let G be an edge-colored graph, where

adjacent edges may be colored with the same color. A path in G is called a proper path

if no two adjacent edges of the path are colored with a same color. Similarly, we call

a cycle proper cycle in G if no two adjacent edges of the cycle are colored with a same

color. An edge-coloring c is a proper-path coloring of a connected graph G if every pair

of distinct vertices u, v of G is connected by a proper u − v path in G. A graph with a

proper-path coloring is said to be proper connected. If k colors are used, then c is referred

to as a proper-path k-coloring. An edge-colored graph G is k-proper connected if any

two vertices are connected by k internally pairwise vertex-disjoint proper paths. For a

k-connected graph G, the k-proper connection number of G, denoted by pck(G), is defined

as the smallest number of colors that are needed in order to make G k-proper connected.

Clearly, if a graph is k-proper connected, then it is also k-connected. Conversely, any

k-connected graph has an edge-coloring that makes it k-proper connected; the number of

colors is easily bounded by the edge-chromatic number which is well known to be at most

∆(G) or ∆(G) + 1 by Vizings Theorem [19] (where ∆(G), or simply ∆, is the maximum

degree of G). Thus pck(G) ≤ ∆(G) + 1 for any k-connected graph G. For k = 1, we write

pc(G) as opposed to pc1(G), and call it the proper connection number of G.

Let G be a nontrivial connected graph of order n and size m. Then the proper
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connection number of G has the following apparent bounds:

1 ≤ pc(G) ≤ min{χ′(G), rc(G)} ≤ m.

Furthermore, pc(G) = 1 if and only if G = Kn and pc(G) = m if and only if G = K1,m is

a star of size m.

The Erdös-Gallai-type problem is an important and interesting problem in extremal

graph theory, which is to determine the maximum or minimum value of a graph parameter

with some given properties. The Erdös-Gallai-type questions for rainbow connection

number rc(G) were considered in [9, 11, 13, 14, 18].

The paper is organized as follows: In Section 2, we give the basic definitions and some

useful lemmas. In Section 3, we present an upper bound max{3,∆∗(G)} of the proper

connection number of a graph G, where ∆∗(G) is the maximum degree of the bridge-block

tree of G. In Section 4, we study two kinds of Erdös-Gallai-type problems for pc(G) by

using the upper bound we give in Section 3.

2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path

coloring.

Lemma 2.1. [1] If G is a connected graph and H is a connected spanning subgraph of G,

then pc(G) ≤ pc(H). In particular, pc(G) ≤ pc(T ) for every spanning tree T of G.

Lemma 2.2. [1] If T is a tree, then pc(T ) = χ′(T ) = ∆(T ).

Given a colored path P = v1v2 . . . vs−1vs between any two vertices v1 and vs, we denote

by start(P ) the color of the first edge in the path, i.e., c(v1v2), and by end(P ) the last

color, i.e., c(vs−1vs). If P is just the edge v1vs, then start(P ) = end(P ) = c(v1vs).

Definition 2.1. Let c be an edge-coloring of G that makes G proper connected. We say

that G has the strong property under c if for any pair of vertices u, v ∈ V (G), there exist

two proper paths P1, P2 between them (not necessarily disjoint) such that start(P1) 6=
start(P2) and end(P1) 6= end(P2).

In [3], the authors studied the proper-connection numbers in 2-connected graphs. Also,

they presented a result which improves the upper bound ∆(G) + 1 of pc(G) to the best

possible whenever the graph G is 2-connected.
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Lemma 2.3. [3] Let G be a graph. If G is bipartite and 2(-edge)-connected, then pc(G) =

2 and there exists a 2-edge-coloring c of G such that G has the strong property under c.

As a result of Lemma 2.3, the authors in [3] obtained a corollary.

Corollary 2.4. [3] Let G be a graph. If G is 3-connected and noncomplete, then pc(G) = 2

and there exists a 2-edge-coloring c of G such that G has the strong property under c.

Lemma 2.5. [1] Let G be a connected graph and v a vertex not in G. If pc(G) = 2, then

pc(G ∪ v) = 2 as long as d(v) ≥ 2, that is, we connect v to G by using at least two edges.

Lemma 2.6. [3] Let G be a graph. If G is 2(-edge)-connected, then pc(G) ≤ 3 and there

exists a 3-edge-coloring c of G such that G has the strong property under c.

Lemma 2.7. [8] Let H = G ∪ {v1} ∪ {v2}. If there is a proper-path k-coloring c of G

such that G has the strong property under c. Then pc(H) ≤ k as long as H is connected.

As a result of Lemma 2.7, we obtain the following corollary.

Corollary 2.8. Let H be the graph that is obtained by identifying ui of G to vi of a path

P i for i = 1, 2, where vi is an end vertex of Pi. If there is a proper-path k-coloring c of G

such that G has the strong property under c, then pc(H) ≤ k.

3 Upper bounds of proper connection number

Let B ⊆ E be the set of cut-edges of a graph G. Let C denote the set of connected

components of G′ = (V ;E \ B). There are two types of elements in C, singletons and

connected bridgeless subgraphs of G. Let S ⊆ C denote the singletons and let D = C \ S.

Each element of S is, therefore, a vertex, and each element of D is a connected bridgeless

subgraph of G.

Contracting each element of D to a vertex, we obtain a new graph G∗. It is easy to

see that G∗ is the well-known bridge-block tree of G, and the edge set of G∗ is B.

Lemma 3.1. Let G be a graph and H = G − PV (G), where PV (G) is the set of the

pendent vertices of G. If H is bridgeless, then pc(G) ≤ max{3, |PV (G)|}.

Proof. Since H is bridgeless, one has that pc(H) ≤ 3 and there is a proper-path 3-

coloring c of H such that H has the strong property under c by Lemma 2.6. Assume

that PV (G) = {v1, v2, . . . , vk}. If k ≤ 2, we have that pc(G) ≤ 3 by Lemma 2.7. So we

consider the case that k ≥ 3. Let ui be the neighbor of vi in G for i = 1, 2, . . . , k, and let
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{1, 2, 3} be the color-set of c. We first assign color j to ujvj for j = 4, . . . , k. Then we

color the remaining edges u1v1, u2v2, u3v3 by colors 1, 2, 3 by the following strategy.

If u1 = u2 = u3, we assign color i to uivi for i = 1, 2, 3. If u1 = u2 6= u3, let P

be a proper path of G connecting u1 and u3. Then there are two different colors in

{1, 2, 3} \ {start(P )}. We assign these two colors to u1v1 and u2v2, respectively, and

choose a color that is distinct from end(P ) in {1,2,3} for u3v3. If ui 6= uj for 1 ≤
i 6= j ≤ 3, suppose that Pij is a proper path of G between ui and uj. We choose a

color that is distinct from start(P12) and start(P13) in {1,2,3} for u1v1. Similarly, we

color u2v2 by a color in {1, 2, 3} \ {end(P12), start(P23)}, and color u3v3 by a color in

{1, 2, 3} \ {end(P13), end(P23)}.
One can see that in all these cases, vi and vj are proper connected for 1 ≤ i 6= j ≤ k.

Moreover, as H has the strong property under edge-coloring c, it is obvious that vi and u

are proper connected for 1 ≤ i ≤ k and u ∈ V (H). Therefore, we have that pc(H) ≤ k =

|PV (G)|. Hence, we obtain that pc(G) ≤ max{3, |PV (G)|}.

Lemma 3.2. Let G be a graph with a cut-edge v1v2, and Gi be the connected graph

obtained from G by contracting the connected component containing vi of G − v1v2 to a

vertex vi, where i = 1, 2. Then pc(G) = max{pc(G1), pc(G2)}

Proof. First, it is obvious that pc(G) ≥ max{pc(G1), pc(G2)}. Let pc(G1) = k1 and

pc(G2) = k2. Without loss of generality, suppose k1 ≥ k2. Let c1 be a k1-proper coloring

of G1 and c2 be a k2-proper coloring of G2 such that c1(v1v2) = c2(v1v2) and {c2(e) : e ∈
E(G2)} ⊆ {c1(e) : e ∈ E(G1)}. Let c be the edge-coloring of G such that c(e) = c1(e) for

any e ∈ E(G1) and c(e) = c2(e) otherwise. Then c is an edge-coloring of G using k1 colors.

We will show that c is a proper-path coloring of G. For any pair of vertices u, v ∈ V (G),

we can easily find a proper path between them if u, v ∈ V (G1) or u, v ∈ V (G2). Hence

we only need to consider that u ∈ V (G1) \ {v1, v2} and v ∈ V (G2) \ {v1, v2}. Since c1 is

a k1-proper coloring of G1, there is a proper path P1 in G1 connecting u and v1. Since

c2 is a k2-proper coloring of G2, there is a proper path P2 in G2 connecting v and v2. As

c1(v1v2) = c2(v1v2), then we know that P = uP1v2v1P2v is a proper path connecting u

and v in G. Therefore, we have that pc(G) ≤ k1, and the proof is thus complete.

Theorem 3.3. If G is a connected graph, then pc(G) ≤ max{3,∆(G∗)}.

Proof. If G is bridgeless, we have that pc(G) ≤ 3 by Lemma 2.6. Otherwise, let B ⊆ E

be the set of cut-edges of graph G. Let C denote the set of connected components of

G′ = (V ;E \B). We claim that pc(D∗) ≤ max{3,∆(G∗)} for any D ∈ C. Note that if D

is a singleton, it is obvious that D∗ ∼= K1,|N(D)| and pc(D∗) = |N(D)| ≤ max{3,∆(G∗)}. If
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D is bridgeless, by Lemma 3.1, we have that pc(D∗) ≤ max{3, |N(D)|} ≤ max{3,∆(G∗)}.
Hence by Lemma 3.2, we have that pc(G) = maxD∈C pc(D

∗) ≤ 3.

Let rKt be the disjoint union of r copies of the complete graph Kt, We use Str to

denote the graph obtained from rKt by adding an extra vertex v and joining v to one

vertex of each Kt.

Corollary 3.4. If G is a connected graph with n vertices and minimum degree δ ≥ 2,

then pc(G) ≤ max{3, n−1
δ+1
}. Moreover, if n−1

δ+1
> 3, and n ≥ δ(δ + 1) + 1, we have that

pc(G) = n−1
δ+1

if and only if G ∼= Str, where t− 1 = δ and rt+ 1 = n.

Proof. Since the minimum degree of G is δ ≥ 2, we know that each leaf of G∗ is obtained

by contracting an element with at least δ+ 1 vertices of D. Therefore, D has at most n−1
δ+1

such elements, and so, one can see that ∆(G∗) ≤ n−1
δ+1

. From Theorem 3.3, we know that

pc(G) ≤ max{3, n−1
δ+1
}.

If n−1
δ+1

> 3 and pc(G) = n−1
δ+1

, one can see that G∗ is a star with ∆(G∗) = n−1
δ+1

, and

each leaf of G∗ is obtained by contracting an element with δ + 1 vertices of D, that is,

G ∼= Str, where t = δ and rt + 1 = n. On the other hand, if G ∼= Str, where t = δ and

rt+ 1 = n, we can easily check that pc(G) = r = n−1
δ+1

.

4 Erdös-Gallai-type results for proper connection num-

bers of graphs

In this section, we study two kinds of Erdös-Gallai-type problems for pc(G). We

consider the following two problems:

Problem A. For every k with 2 ≤ k ≤ n−1, compute and minimize the function f(n, k)

with the following property: for any connected graph G with n vertices, if |E(G)| ≥
f(n, k), then pc(G) ≤ k.

Problem B. For every k with 2 ≤ k ≤ n−1, compute and maximize the function g(n, k)

with the following property: for any connected graph G with n vertices, if |E(G)| ≤
g(n, k), then pc(G) ≥ k.

It is worth mentioning that the two parameters f(n, k) and g(n, k) are equivalent to

another two parameters. For 2 ≤ k ≤ n− 1, let

s(n, k) = max{|E(G)| : |V (G) = n, pc(G) ≥ k}

and

t(n, k) = min{|E(G)| : |V (G)| = n, pc(G) ≤ k}.
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It is easy to see that g(n, k) = t(n, k − 1)− 1 and f(n, k) = s(n, k + 1) + 1.

Since the graphs considered here are connected, we have that t(n, k) ≥ n− 1. On the

other hand, we can get that t(n, k) ≤ n− 1 since pc(Pn) = 2 ≤ k. Hence, t(n, k) = n− 1

for any 2 ≤ k ≤ n−1. This implies that g(n, k) = n−2 for 3 ≤ k ≤ n−1. Hence we know

that g(n, k) is meaningless for 3 ≤ k ≤ n−1. For k = 2, we can get that g(n, 2) =
(
n
2

)
−1

from the definition of g(n, k).

We now show a lower bound for f(n, k).

Proposition 4.1. f(n, k) ≥
(
n−k−1

2

)
+ k + 2.

Proof. We construct a graph Gk as follows: Take a Kn−k−1 and a star Sk+2. Identify the

center-vertex of Sk+2 with an arbitrary vertex of Kn−k−1. The resulting graph Gk has

order n and size E(Gk) =
(
n−k−1

2

)
+ k + 1. It can be easily checked that pc(Gk) = k + 1.

Hence, f(n, k) ≥
(
n−k−1

2

)
+ k + 2.

By using Theorem 3.3, the value of f(n, k) for k ≥ 3 can be completely determined.

Theorem 4.2. For k ≥ 3, one has that f(n, k) =
(
n−k−1

2

)
+ k + 2.

Proof. By the definition of f(n, k), we need to prove that pc(G) ≤ k when E(G) ≥(
n−k−1

2

)
+ k + 2. Suppose to the contrary that pc(G) ≥ k + 1. From Theorem 3.3, we

know that ∆(G∗) ≥ k + 1, where G∗ is the bridge-block tree of G. By some simple

computations, we know that |E(G)| ≤
(
n−k−1

2

)
+k+ 1, which contradicts the assumption.

Hence, pc(G) ≤ k.

To compute the value of f(n, 2), we need the following Lemmas.

Lemma 4.3. Let G be a graph with n (n ≥ 6) vertices and at least
(
n−1
2

)
+ 3 edges. Then

for any u, v ∈ V (G), there is a 2-connected bipartite spanning subgraph of G with u, v in

the same part.

Proof. Let G be the complement of G. Then we have that |E(G)| ≤ n−4. Let S = N(u)∩
N(v), we have that |S| ≥ 2. Otherwise, |S| ≤ 1, then for any w ∈ V (G) \ (S ∪ {u, v}),
either uw ∈ E(G) or vw ∈ E(G), and thus |E(G)| ≥ n − 3, which contradicts the fact

that |E(G)| ≤ n − 4. Therefore, we know that BG[S, {u, v}] is a 2-connected bipartite

subgraph of G with u, v in the same part.

Suppose that H = BG[X, Y ] is a 2-connected bipartite subgraph of G with u, v in the

same part and H has as many vertices as possible. Then, if V (G) \ V (H) 6= ∅, one has

that there exists a vertex w ∈ V (G)\V (H), such that |N(w)∩X| ≥ 2 or |N(w)∩Y | ≥ 2.

Since otherwise,

|E(G)| ≥ (n− |V (H1)|)(|V (H1)| − 2) ≥ n− 3,
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which contradicts the fact that |E(G)| ≤ n−4. Then w can be added to X if |N(w)∩X| ≥
2 or added to Y otherwise, which contradicts the maximality of H. So, we know that

H is a 2-connected bipartite spanning subgraph of G with u, v in the same part, which

completes the proof.

Lemma 4.4. Every 2-connected graph on n (n ≥ 12) vertices with at least
(
n−1
2

)
−5 edges

contains a 2-connected bipartite spanning subgraph.

Proof. The result is trivial if G is complete. We will prove our result by induction on n for

noncomplete graphs. First, if |V (G)| = 12 and |E(G)| ≥ 50, one can find a 2-connected

bipartite spanning subgraph of G. So we suppose that the result holds for all 2-connected

graphs on n0 (13 < n0 < n) vertices with at least
(
n0−1
2

)
−5 edges. For a 2-connected graph

G on n vertices with |E(G)| ≥
(
n−1
2

)
− 5, let v be a vertex with minimum degree of G,

and let H = G−v. If d(v) = 2, then |E(H)| ≥
(
n−1
2

)
−7. Let NG(v) = {v1, v2}. We know

that H contains a 2-connected bipartite spanning subgraph with v1, v2 in the same part by

Lemma 4.3. Clearly, G contains a 2-connected bipartite spanning subgraph. Otherwise,

3 ≤ d(v) ≤ n− 2, then |E(H)| ≥
(
n−1
2

)
− 5− (n− 2) =

(
(n−1)−1

2

)
− 5 and δ(H) ≥ 2. If H

has a cut vertex u, then each connected component of H − u contains at least 2 vertices.

We have that |E(H)| ≤
(
n−3
2

)
+ 3 <

(
n−2
2

)
− 5, a contradiction. Hence, H is 2-connected.

By the induction hypothesis, we know that H contains a 2-connected bipartite spanning

subgraph BH [X, Y ]. Since d(v) ≥ 3, at least one of X and Y contains at least 2 neighbors

of v. Hence, G contains a 2-connected bipartite spanning subgraph.

Theorem 4.5. Let G be a connected graph of order n ≥ 14. If
(
n−3
2

)
+ 4 ≤ |E(G)| ≤(

n
2

)
− 1, then pc(G) = 2.

Proof. The result clearly holds if G is 3-connected by Corollary 2.4. We only consider

of the graphs with connectivity at most 2. So we can partition V (G) into three parts

V1, V2, S such that 1 ≤ |S| ≤ 2, |V1| ≤ |V2|, and there is no edge between V1 and V2 in G.

If |V1| ≥ 4, then we must have |V1| = 4, |S| = 2 and both G[V1 ∪ S] and G[V2 ∪ S]

must be complete graphs since n ≥ 14 and |E(G)| ≥
(
n−3
2

)
+ 4. In this case, we can easily

check that pc(G) = 2 from the structure of G. Thus we may assume that |V1| ≤ 3. It

follows that δ(G) ≤ 4.

Let v be a vertex with the minimum degree in G, and let H = G− v. Then |V (H)| =
n − 1 and |E(H)| ≥

(
n−3
2

)
+ 4 − 4 =

(
n−3
2

)
. Note that if H is 3-connected, one can get

that pc(H) ≤ 2 by Corollary 2.4. Then from Lemma 2.7, one has that pc(G) ≤ 2. So we

may assume that the connectivity of H is at most 2. By the similar analysis, we can get

that δ(H) ≤ 3.
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Let u be a vertex with the minimum degree in H, and let F = H−u = G−v−u. Then

|V (F )| = n−2 and |E(F )| ≥
(
n−3
2

)
−3 =

(
(n−2)−1

2

)
−3. If F is 2-connected, we know that F

contains a bipartite 2-connected spanning subgraph by Lemma 4.4, and hence pc(H) ≤ 2.

By Lemma 2.7, we have that pc(G) ≤ 2. Now we assume that the connectivity of F is

at most 1. Since |E(F )| ≥
(
n−3
2

)
− 3 =

(
(n−2)−1

2

)
− 3, we know that F has a vertex w

with dF (w) ≤ 1. Let F ′ = F − w = G − u − v − w, then |E(F ′)| ≥
(
n−3
2

)
− 4. From

Lemma 4.3, we know that F ′ contains a 2-connected bipartite spanning subgraph, and

so pc(F ′) ≤ 2. If dG(w) = 1, then u and v are also pendent vertices in G. We have that

|E(G)| ≤
(
n−3
2

)
+3, which contradicts the fact that |E(G)| ≥

(
n−3
2

)
+4. Thus, dG(w) ≥ 2.

If uv ∈ E(G), one can see that pc(G) = 2 by Corollary 2.8. If uv 6∈ E(G), we have that

u has a neighbor in F ′. Since otherwise, dG(u) = 1 and dG(v) = 1, |E(G)| ≤
(
n−3
2

)
+3, a

contradiction. So we know that either v has a neighbor in F ′ or wv ∈ E(G). By Corollary

2.8, we have that pc(G) = 2. The proof is thus complete.
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