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Abstract

A path in an edge-colored graph is called a proper path if no two adjacent edges
of the path are colored with one same color. An edge-colored graph is proper con-
nected if any two vertices of the graph are connected by a proper path in the graph.
The smallest number of colors that are needed in order to make GG proper connected
is called the proper connection number of G, denoted by pc(G). In this paper, we
present an upper bound for the proper connection number of a graph G in terms of
the bridge-block tree of G. We also use this bound as an efficient tool to investigate

the Erdos-Gallai-type problems for proper connection number of a graph G.

Keywords: proper connection number, bridge-block tree, Erdos-Gallai-type prob-
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1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow the
terminology and the notation of Bondy and Murty [2]. For a graph G = (V, E) and two
disjoint subsets X and Y of V, denote by Bg[X, Y] the bipartite subgraph of G with
vertex set X UY and edge set E(X,Y), where F(X,Y) is the set of edges of G that
have one end in X and the other in Y. An induced subgraph denoted by G[X] is the

subgraph of G whose vertex set is X and whose edge set consists of all edges of G which
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have both ends in X. For a vertex set D, let N(D) = {u € V(G) : dist(u, D) = 1} and
D* = G[DUN(D)]. A vertex is called a simplical vertex if G[N(v)] is a clique.

An edge-coloring of a graph G is an assignment ¢ of colors to the edges of G, one color
to each edge of G. If adjacent edges of G are assigned different colors by ¢, then c is a
proper (edge-)coloring. For a graph G, the minimum number of colors needed in a proper
coloring of G is referred to as the chromatic index of edge-chromatic number of G and
denoted by x'(G). A path in an edge-colored graph with no two edges sharing the same
color is called a rainbow path. An edge-colored graph G is said to be rainbow connected
if every pair of distinct vertices of G is connected by at least one rainbow path in G.
Such a coloring is called a rainbow coloring of the graph. For a connected graph G, the
minimum number of colors needed in a rainbow coloring of G is referred to as the raimbow
connection number of G and denoted by rc(G). The concept of rainbow coloring was first
introduced by Chartrand et al. in [5]. In recent years, the rainbow coloring has been
extensively studied and a variety of nice results have been obtained, see [4, [6l, 10}, 12 [15]
for examples. For more details we refer to a survey paper [16] and a book [17].

Inspired by the rainbow coloring and proper coloring of graphs, Andrews et al. [I]
introduced the concept of proper-path coloring. Let G be an edge-colored graph, where
adjacent edges may be colored with the same color. A path in G is called a proper path
if no two adjacent edges of the path are colored with a same color. Similarly, we call
a cycle proper cycle in G if no two adjacent edges of the cycle are colored with a same
color. An edge-coloring c is a proper-path coloring of a connected graph G if every pair
of distinct vertices u,v of G is connected by a proper u — v path in G. A graph with a
proper-path coloring is said to be proper connected. If k colors are used, then c is referred
to as a proper-path k-coloring. An edge-colored graph G is k-proper connected if any
two vertices are connected by k internally pairwise vertex-disjoint proper paths. For a
k-connected graph G, the k-proper connection number of G, denoted by pc(G), is defined
as the smallest number of colors that are needed in order to make G k-proper connected.
Clearly, if a graph is k-proper connected, then it is also k-connected. Conversely, any
k-connected graph has an edge-coloring that makes it k-proper connected; the number of
colors is easily bounded by the edge-chromatic number which is well known to be at most
A(G) or A(G) + 1 by Vizings Theorem [19] (where A(G), or simply A, is the maximum
degree of G). Thus pcg(G) < A(G) +1 for any k-connected graph G. For k = 1, we write
pc(G) as opposed to pei(G), and call it the proper connection number of G.

Let G be a nontrivial connected graph of order n and size m. Then the proper



connection number of G has the following apparent bounds:
1 < pe(G) < min{x'(G), re(G)} < m.

Furthermore, pc(G) = 1 if and only if G = K,, and pc(G) = m if and only if G = K, is
a star of size m.

The Erdos-Gallai-type problem is an important and interesting problem in extremal
graph theory, which is to determine the maximum or minimum value of a graph parameter
with some given properties. The Erdos-Gallai-type questions for rainbow connection
number r¢(G) were considered in [9), [TT], T3], 14 1§].

The paper is organized as follows: In Section 2, we give the basic definitions and some
useful lemmas. In Section 3, we present an upper bound max{3, A*(G)} of the proper
connection number of a graph G, where A*(G) is the maximum degree of the bridge-block
tree of G. In Section 4, we study two kinds of Erdés-Gallai-type problems for pc(G) by

using the upper bound we give in Section 3.

2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path

coloring.

Lemma 2.1. [1] If G is a connected graph and H is a connected spanning subgraph of G,
then pc(G) < pc(H). In particular, pc(G) < pe(T') for every spanning tree T of G.

Lemma 2.2. [1] If T is a tree, then pc(T) = x'(T') = A(T).

Given a colored path P = vyvy ... vs_1vs between any two vertices v; and v,, we denote
by start(P) the color of the first edge in the path, i.e., ¢(vivs), and by end(P) the last
color, i.e., c(vs_1vs). If P is just the edge vyvg, then start(P) = end(P) = c(vyvg).

Definition 2.1. Let ¢ be an edge-coloring of G that makes G proper connected. We say
that G has the strong property under c if for any pair of vertices u,v € V(G), there exist
two proper paths Py, Py between them (not necessarily disjoint) such that start(Py) #
start(Py) and end(Py) # end(P,).

In 3], the authors studied the proper-connection numbers in 2-connected graphs. Also,
they presented a result which improves the upper bound A(G) + 1 of pe(G) to the best

possible whenever the graph G is 2-connected.



Lemma 2.3. [3] Let G be a graph. If G is bipartite and 2(-edge)-connected, then pc(G) =
2 and there exists a 2-edge-coloring ¢ of G such that G has the strong property under c.

As a result of Lemma [2.3] the authors in [3] obtained a corollary.

Corollary 2.4. [3] Let G be a graph. If G is 3-connected and noncomplete, then pc(G) = 2
and there exists a 2-edge-coloring ¢ of G such that G has the strong property under c.

Lemma 2.5. [1] Let G be a connected graph and v a vertex not in G. If pc(G) = 2, then
pc(GUw) =2 as long as d(v) > 2, that is, we connect v to G by using at least two edges.

Lemma 2.6. [3] Let G be a graph. If G is 2(-edge)-connected, then pc(G) < 3 and there
exists a 3-edge-coloring ¢ of G such that G has the strong property under c.

Lemma 2.7. [§] Let H = G U {v1} U{vy}. If there is a proper-path k-coloring ¢ of G
such that G has the strong property under c¢. Then pc(H) < k as long as H is connected.

As a result of Lemma 2.7, we obtain the following corollary.

Corollary 2.8. Let H be the graph that is obtained by identifying u; of G to v; of a path
Pt fori = 1,2, where v; is an end vertex of P,. If there is a proper-path k-coloring ¢ of G
such that G has the strong property under ¢, then pc(H) < k.

3 Upper bounds of proper connection number

Let B C E be the set of cut-edges of a graph GG. Let C denote the set of connected
components of G’ = (V; E \ B). There are two types of elements in C, singletons and
connected bridgeless subgraphs of G. Let S C C denote the singletons and let D =C\ S.
Each element of S is, therefore, a vertex, and each element of D is a connected bridgeless
subgraph of G.

Contracting each element of D to a vertex, we obtain a new graph G*. It is easy to
see that G* is the well-known bridge-block tree of GG, and the edge set of G* is B.

Lemma 3.1. Let G be a graph and H = G — PV(G), where PV(G) is the set of the
pendent vertices of G. If H is bridgeless, then pc(G) < max{3, |PV(G)|}.

Proof. Since H is bridgeless, one has that pc(H) < 3 and there is a proper-path 3-
coloring ¢ of H such that H has the strong property under ¢ by Lemma [2.6] Assume
that PV(G) = {v1,v2,...,v5}. If k <2, we have that pc(G) < 3 by Lemma 2.7, So we
consider the case that k > 3. Let u; be the neighbor of v; in G for ¢ = 1,2,... k, and let
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{1,2,3} be the color-set of c. We first assign color j to u;v; for j = 4,..., k. Then we
color the remaining edges wu;vy, usvs, usvs by colors 1,2, 3 by the following strategy.

If w1 = uy = ug, we assign color ¢ to ww; for © = 1,2,3. If uy = us # ug, let P
be a proper path of G connecting u; and us. Then there are two different colors in
{1,2,3} \ {start(P)}. We assign these two colors to ujv; and wugvs, respectively, and
choose a color that is distinct from end(P) in {1,2,3} for usvs. If u; # wu; for 1 <
i # j < 3, suppose that F;; is a proper path of G between w; and u;. We choose a
color that is distinct from start(Py2) and start(Pys) in {1,2,3} for wjvy. Similarly, we
color ugvy by a color in {1,2,3} \ {end(Pi2), start(Pa3)}, and color uzvs by a color in
{1,2,3} \ {end(P13), end(Py3)}.

One can see that in all these cases, v; and v; are proper connected for 1 < i # j <k.
Moreover, as H has the strong property under edge-coloring c, it is obvious that v; and u
are proper connected for 1 <i < k and u € V(H). Therefore, we have that pc(H) < k =
|PV(G)|. Hence, we obtain that pc(G) < max{3, |PV(G)|}. O

Lemma 3.2. Let G be a graph with a cut-edge vivy, and G; be the connected graph
obtained from G by contracting the connected component containing v; of G — v1v9 to a
vertex v;, where i = 1,2. Then pc(G) = max{pc(G1), pc(G2)}

Proof. First, it is obvious that pc(G) > max{pc(G;),pc(G2)}. Let pc(G1) = ki and
pc(Ga) = ko. Without loss of generality, suppose k1 > ky. Let ¢; be a ky-proper coloring
of G and ¢y be a ky-proper coloring of Go such that ¢;(v1v) = co(v1v2) and {cz(e) : e €
E(G2)} C{cale) e € E(Gy)}. Let ¢ be the edge-coloring of G such that ¢(e) = ¢;(e) for
any e € F(Gy) and c¢(e) = co(e) otherwise. Then ¢ is an edge-coloring of G using k; colors.
We will show that ¢ is a proper-path coloring of G. For any pair of vertices u,v € V(G),
we can easily find a proper path between them if u,v € V(G;) or u,v € V(Gs). Hence
we only need to consider that v € V(Gy) \ {vi,v2} and v € V(G2) \ {v1,v2}. Since ¢ is
a ki-proper coloring of GG1, there is a proper path P, in G; connecting v and v;. Since
Co is a ko-proper coloring of GGy, there is a proper path P, in Gy connecting v and v,. As
c1(v1vg) = co(vivg), then we know that P = uPyvyv Pov is a proper path connecting u

and v in G. Therefore, we have that pc(G) < k;, and the proof is thus complete. ]
Theorem 3.3. If G is a connected graph, then pc(G) < max{3, A(G*)}.

Proof. If G is bridgeless, we have that pc(G) < 3 by Lemma [2.6] Otherwise, let B C E
be the set of cut-edges of graph GG. Let C denote the set of connected components of
G' = (V;E\ B). We claim that pc(D*) < max{3, A(G*)} for any D € C. Note that if D
is a singleton, it is obvious that D* = K |y(py and pc(D*) = |[N(D)| < max{3, A(G*)}. If
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D is bridgeless, by Lemma 3.1 we have that pc(D*) < max{3, [N(D)|} < max{3, A(G*)}.
Hence by Lemma we have that pc(G) = maxpec pe(D*) < 3. O

Let rK; be the disjoint union of r copies of the complete graph K;, We use S! to
denote the graph obtained from rK; by adding an extra vertex v and joining v to one

vertex of each Kj.

Corollary 3.4. If G is a connected graph with n vertices and minimum degree 6 > 2,
then pe(G) < max{3,%=}. Moreover, if %= > 3, and n > 6(5 + 1) + 1, we have that

pc(G) = ZT_ll if and only if G =2 S', wheret —1=0 and rt +1 =n.

Proof. Since the minimum degree of GG is § > 2, we know that each leaf of G* is obtained
by contracting an element with at least o + 1 vertices of D. Therefore, D has at most ’(;T_ll
such elements, and so, one can see that A(G*) < %' From Theorem , we know that
pe(G) < max{3, %= }.

If 2= > 3 and pc(G) = %=, one can see that G* is a star with A(G*) = %=, and
each leaf of G* is obtained by contracting an element with 6 + 1 vertices of D, that is,
G =2 8!, where t = 6 and rt +1 = n. On the other hand, if G = S, where ¢t = ¢ and

rt 4+ 1=mn, we can easily check that pc(G) = r = 4. O

4 Erdos-Gallai-type results for proper connection num-

bers of graphs

In this section, we study two kinds of Erdds-Gallai-type problems for pe(G). We
consider the following two problems:
Problem A. For every k with 2 < k < n —1, compute and minimize the function f(n, k)
with the following property: for any connected graph G with n vertices, if |E(G)| >
f(n, k), then pc(G) < k.
Problem B. For every k with 2 < k < n— 1, compute and maximize the function g(n, k)
with the following property: for any connected graph G with n vertices, if |E(G)| <
g(n, k), then pc(G) > k.

It is worth mentioning that the two parameters f(n, k) and g(n, k) are equivalent to

another two parameters. For 2 < k <n —1, let
s(n, k) = max{|E(G)| : [V(G) = n,pc(G) = k}

and
t(n, k) = min{|E(G)| : |V(G)| = n,pc(G) < k}.
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It is easy to see that g(n,k) =t(n,k —1) — 1 and f(n,k) = s(n,k+1) + 1.

Since the graphs considered here are connected, we have that t(n, k) > n — 1. On the
other hand, we can get that t(n, k) < n — 1 since pc(P,) =2 < k. Hence, t(n,k) =n —1
for any 2 < k < n—1. This implies that g(n, k) = n—2 for 3 < k < n—1. Hence we know
that g(n, k) is meaningless for 3 < k < n—1. For k = 2, we can get that g(n,2) = (}) — 1
from the definition of g(n, k).

We now show a lower bound for f(n, k).
Proposition 4.1. f(n,k) > ("57") + &k +2.

Proof. We construct a graph Gy, as follows: Take a K,, 1 and a star S 5. Identify the
center-vertex of Si.o with an arbitrary vertex of K, ;. The resulting graph Gj has
order n and size E(Gy) = (", = ")+ k + 1. It can be easily checked that pc(Gy) = k + 1.
Hence, f(n,k) > ("7 b 1) +k+2. ]

By using Theorem , the value of f(n, k) for k > 3 can be completely determined.
Theorem 4.2. For k > 3, one has that f(n,k) = (", k= 1) +k+2.

Proof. By the definition of f(n,k), we need to prove that pc(G) < k when E(G) >
(”_5_1) + k + 2. Suppose to the contrary that pc(G) > k + 1. From Theorem , we
know that A(G*) > k + 1, where G* is the bridge-block tree of G. By some simple
computations, we know that |E(G)| < ("757') + &+ 1, which contradicts the assumption.

Hence, pc(G) < k. O
To compute the value of f(n,2), we need the following Lemmas.

Lemma 4.3. Let G be a graph with n (n > 6) vertices and at least (”;1) + 3 edges. Then
for any u,v € V(G), there is a 2-connected bipartite spanning subgraph of G with u,v in

the same part.

Proof. Let G be the complement of G. Then we have that |E(G)| < n—4. Let S = N(u)N
N (v), we have that |S| > 2. Otherwise, |S| < 1, then for any w € V(G) \ (S U {u,v}),
either uw € E(G) or vw € E(G), and thus |E(G)| > n — 3, which contradicts the fact
that |E(G)| < n — 4. Therefore, we know that Bg[S, {u,v}] is a 2-connected bipartite
subgraph of G with u, v in the same part.

Suppose that H = Bg[X,Y] is a 2-connected bipartite subgraph of G with u, v in the
same part and H has as many vertices as possible. Then, if V(G) \ V(H) # (), one has
that there exists a vertex w € V(G)\ V(H), such that |[N(w)NX| > 2 or |[N(w)NY| > 2.
Since otherwise,

[E(G)] = (n— [V(H))(V(H)| - 2) = n -3,
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which contradicts the fact that |E(G)| < n—4. Then w can be added to X if |[N(w)NX| >
2 or added to Y otherwise, which contradicts the maximality of H. So, we know that
H is a 2-connected bipartite spanning subgraph of G with w, v in the same part, which

completes the proof. O

Lemma 4.4. Every 2-connected graph on n (n > 12) vertices with at least (”;1) —5 edges

contains a 2-connected bipartite spanning subgraph.

Proof. The result is trivial if G is complete. We will prove our result by induction on n for
noncomplete graphs. First, if |[V(G)| = 12 and |E(G)| > 50, one can find a 2-connected
bipartite spanning subgraph of G. So we suppose that the result holds for all 2-connected

no—1
2

G on n vertices with |[E(G)| > (",') — 5, let v be a vertex with minimum degree of G,
and let H = G —v. If d(v) = 2, then |E(H)| > (",') — 7. Let Ng(v) = {v1,v2}. We know

that H contains a 2-connected bipartite spanning subgraph with vy, v9 in the same part by

graphs on ng (13 < ng < n) vertices with at least ( ) —5 edges. For a 2-connected graph

Lemma [4.3] Clearly, G contains a 2-connected bipartite spanning subgraph. Otherwise,
3<d(v) <n—2,then |[E(H)| > (";)=5-(n-2)= ("D ~5and 6(H) >2. If H
has a cut vertex u, then each connected component of H — u contains at least 2 vertices.
We have that |E(H)| < (",%) +3 < (",?) — 5, a contradiction. Hence, H is 2-connected.
By the induction hypothesis, we know that H contains a 2-connected bipartite spanning
subgraph By[X,Y]. Since d(v) > 3, at least one of X and Y contains at least 2 neighbors

of v. Hence, G contains a 2-connected bipartite spanning subgraph. O

Theorem 4.5. Let G be a connected graph of order n > 14. If (";3) +4 < |E(G)| <
(g) — 1, then pe(G) = 2.

Proof. The result clearly holds if G is 3-connected by Corollary 2.4, We only consider
of the graphs with connectivity at most 2. So we can partition V(G) into three parts
V1, Vo, S such that 1 < |S| < 2, |Vi| < |Vs]|, and there is no edge between V; and V, in G.

If V4| > 4, then we must have |V}| = 4, |S| = 2 and both G[V; US| and G[V, U 5]
must be complete graphs since n > 14 and |E(G)| > (") +4. In this case, we can easily
check that pc(G) = 2 from the structure of G. Thus we may assume that |V;| < 3. It
follows that 0(G) < 4.

Let v be a vertex with the minimum degree in G, and let H = G —v. Then |V(H)| =
n—1and [E(H)| > (",%) +4—4 = (",°). Note that if H is 3-connected, one can get
that pc(H) < 2 by Corollary 2.4 Then from Lemma [2.7, one has that pe(G) < 2. So we
may assume that the connectivity of H is at most 2. By the similar analysis, we can get

that 6(H) < 3.



Let u be a vertex with the minimum degree in H, and let F' = H—u = G—v—wu. Then
\V(F)| =n—2and |E(F)| > (",%)-3 = (("73)71) —3. If F'is 2-connected, we know that F'
contains a bipartite 2-connected spanning subgraph by Lemma and hence pc(H) < 2.
By Lemma [2.7, we have that pc(G) < 2. Now we assume that the connectivity of F is
at most 1. Since |E(F)| > ("}°) —3 = (("_2)_1) — 3, we know that F' has a vertex w

2
with dp(w) < 1. Let F' = F —w = G —u—v — w, then |[E(F")| > ("}°) — 4. From
Lemma [£.3] we know that F’ contains a 2-connected bipartite spanning subgraph, and
so pc(F') < 2. If dg(w) = 1, then u and v are also pendent vertices in G. We have that
|E(G)| < (",%) +3, which contradicts the fact that [E(G)| > (",°) +4. Thus, dg(w) > 2.
If uv € E(G), one can see that pc(G) = 2 by Corollary 2.8 If uv ¢ E(G), we have that
u has a neighbor in F”. Since otherwise, dg(u) = 1 and dg(v) = 1, |E(G)| < (",%)+3, a
contradiction. So we know that either v has a neighbor in F’ or wv € E(G). By Corollary
2.8 we have that pc(G) = 2. The proof is thus complete.

[
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