Upper bounds of proper connection number of graphs*

Fei Huang, Xueliang Li, Shujing Wang
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
Email: huangfei06@126.com; lx1@nankai.edu.cn; wang06021@126.com

Abstract

A path in an edge-colored graph is called a proper path if no two adjacent edges of the path are colored with one same color. An edge-colored graph is proper connected if any two vertices of the graph are connected by a proper path in the graph. The smallest number of colors that are needed in order to make G proper connected is called the proper connection number of G, denoted by $p c(G)$. In this paper, we present an upper bound for the proper connection number of a graph G in terms of the bridge-block tree of G. We also use this bound as an efficient tool to investigate the Erdös-Gallai-type problems for proper connection number of a graph G.

Keywords: proper connection number, bridge-block tree, Erdös-Gallai-type problem
AMS subject classification 2010: 05C15, 05C35, 05C38, 05C40.

1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow the terminology and the notation of Bondy and Murty [2]. For a graph $G=(V, E)$ and two disjoint subsets X and Y of V, denote by $B_{G}[X, Y]$ the bipartite subgraph of G with vertex set $X \cup Y$ and edge set $E(X, Y)$, where $E(X, Y)$ is the set of edges of G that have one end in X and the other in Y. An induced subgraph denoted by $G[X]$ is the subgraph of G whose vertex set is X and whose edge set consists of all edges of G which

[^0]have both ends in X. For a vertex set D, let $N(D)=\{u \in V(G): \operatorname{dist}(u, D)=1\}$ and $D^{*}=G[D \cup N(D)]$. A vertex is called a simplical vertex if $G[N(v)]$ is a clique.

An edge-coloring of a graph G is an assignment c of colors to the edges of G, one color to each edge of G. If adjacent edges of G are assigned different colors by c, then c is a proper (edge-)coloring. For a graph G, the minimum number of colors needed in a proper coloring of G is referred to as the chromatic index of edge-chromatic number of G and denoted by $\chi^{\prime}(G)$. A path in an edge-colored graph with no two edges sharing the same color is called a rainbow path. An edge-colored graph G is said to be rainbow connected if every pair of distinct vertices of G is connected by at least one rainbow path in G. Such a coloring is called a rainbow coloring of the graph. For a connected graph G, the minimum number of colors needed in a rainbow coloring of G is referred to as the rainbow connection number of G and denoted by $r c(G)$. The concept of rainbow coloring was first introduced by Chartrand et al. in [5]. In recent years, the rainbow coloring has been extensively studied and a variety of nice results have been obtained, see [4, 6, 10, 12, 15] for examples. For more details we refer to a survey paper [16] and a book [17].

Inspired by the rainbow coloring and proper coloring of graphs, Andrews et al. [1] introduced the concept of proper-path coloring. Let G be an edge-colored graph, where adjacent edges may be colored with the same color. A path in G is called a proper path if no two adjacent edges of the path are colored with a same color. Similarly, we call a cycle proper cycle in G if no two adjacent edges of the cycle are colored with a same color. An edge-coloring c is a proper-path coloring of a connected graph G if every pair of distinct vertices u, v of G is connected by a proper $u-v$ path in G. A graph with a proper-path coloring is said to be proper connected. If k colors are used, then c is referred to as a proper-path k-coloring. An edge-colored graph G is k-proper connected if any two vertices are connected by k internally pairwise vertex-disjoint proper paths. For a k-connected graph G, the k-proper connection number of G, denoted by $p c_{k}(G)$, is defined as the smallest number of colors that are needed in order to make $G k$-proper connected. Clearly, if a graph is k-proper connected, then it is also k-connected. Conversely, any k-connected graph has an edge-coloring that makes it k-proper connected; the number of colors is easily bounded by the edge-chromatic number which is well known to be at most $\Delta(G)$ or $\Delta(G)+1$ by Vizings Theorem [19] (where $\Delta(G)$, or simply Δ, is the maximum degree of G). Thus $p c_{k}(G) \leq \Delta(G)+1$ for any k-connected graph G. For $k=1$, we write $p c(G)$ as opposed to $p c_{1}(G)$, and call it the proper connection number of G.

Let G be a nontrivial connected graph of order n and size m. Then the proper
connection number of G has the following apparent bounds:

$$
1 \leq p c(G) \leq \min \left\{\chi^{\prime}(G), r c(G)\right\} \leq m
$$

Furthermore, $p c(G)=1$ if and only if $G=K_{n}$ and $p c(G)=m$ if and only if $G=K_{1, m}$ is a star of size m.

The Erdös-Gallai-type problem is an important and interesting problem in extremal graph theory, which is to determine the maximum or minimum value of a graph parameter with some given properties. The Erdös-Gallai-type questions for rainbow connection number $r c(G)$ were considered in [9, 11, 13, 14, 18].

The paper is organized as follows: In Section 2, we give the basic definitions and some useful lemmas. In Section 3, we present an upper bound $\max \left\{3, \Delta^{*}(G)\right\}$ of the proper connection number of a graph G, where $\Delta^{*}(G)$ is the maximum degree of the bridge-block tree of G. In Section 4, we study two kinds of Erdös-Gallai-type problems for $p c(G)$ by using the upper bound we give in Section 3.

2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path coloring.

Lemma 2.1. [1] If G is a connected graph and H is a connected spanning subgraph of G, then $p c(G) \leq p c(H)$. In particular, $p c(G) \leq p c(T)$ for every spanning tree T of G.

Lemma 2.2. [1] If T is a tree, then $p c(T)=\chi^{\prime}(T)=\Delta(T)$.
Given a colored path $P=v_{1} v_{2} \ldots v_{s-1} v_{s}$ between any two vertices v_{1} and v_{s}, we denote by $\operatorname{start}(P)$ the color of the first edge in the path, i.e., $c\left(v_{1} v_{2}\right)$, and by $\operatorname{end}(P)$ the last color, i.e., $c\left(v_{s-1} v_{s}\right)$. If P is just the edge $v_{1} v_{s}$, then $\operatorname{start}(P)=\operatorname{end}(P)=c\left(v_{1} v_{s}\right)$.

Definition 2.1. Let c be an edge-coloring of G that makes G proper connected. We say that G has the strong property under c if for any pair of vertices $u, v \in V(G)$, there exist two proper paths P_{1}, P_{2} between them (not necessarily disjoint) such that start $\left(P_{1}\right) \neq$ $\operatorname{start}\left(P_{2}\right)$ and $\operatorname{end}\left(P_{1}\right) \neq \operatorname{end}\left(P_{2}\right)$.

In [3], the authors studied the proper-connection numbers in 2-connected graphs. Also, they presented a result which improves the upper bound $\Delta(G)+1$ of $p c(G)$ to the best possible whenever the graph G is 2 -connected.

Lemma 2.3. [3] Let G be a graph. If G is bipartite and 2 (-edge)-connected, then $p c(G)=$ 2 and there exists a 2-edge-coloring c of G such that G has the strong property under c.

As a result of Lemma 2.3, the authors in [3] obtained a corollary.
Corollary 2.4. [3] Let G be a graph. If G is 3-connected and noncomplete, then $p c(G)=2$ and there exists a 2-edge-coloring c of G such that G has the strong property under c.

Lemma 2.5. [1] Let G be a connected graph and v a vertex not in G. If $p c(G)=2$, then $p c(G \cup v)=2$ as long as $d(v) \geq 2$, that is, we connect v to G by using at least two edges.

Lemma 2.6. [3] Let G be a graph. If G is 2 (-edge)-connected, then $p c(G) \leq 3$ and there exists a 3-edge-coloring c of G such that G has the strong property under c.

Lemma 2.7. [8] Let $H=G \cup\left\{v_{1}\right\} \cup\left\{v_{2}\right\}$. If there is a proper-path k-coloring c of G such that G has the strong property under c. Then $p c(H) \leq k$ as long as H is connected.

As a result of Lemma 2.7, we obtain the following corollary.
Corollary 2.8. Let H be the graph that is obtained by identifying u_{i} of G to v_{i} of a path P^{i} for $i=1,2$, where v_{i} is an end vertex of P_{i}. If there is a proper-path k-coloring c of G such that G has the strong property under c, then $p c(H) \leq k$.

3 Upper bounds of proper connection number

Let $B \subseteq E$ be the set of cut-edges of a graph G. Let \mathcal{C} denote the set of connected components of $G^{\prime}=(V ; E \backslash B)$. There are two types of elements in \mathcal{C}, singletons and connected bridgeless subgraphs of G. Let $\mathcal{S} \subseteq \mathcal{C}$ denote the singletons and let $\mathcal{D}=\mathcal{C} \backslash \mathcal{S}$. Each element of \mathcal{S} is, therefore, a vertex, and each element of \mathcal{D} is a connected bridgeless subgraph of G.

Contracting each element of \mathcal{D} to a vertex, we obtain a new graph G^{*}. It is easy to see that G^{*} is the well-known bridge-block tree of G, and the edge set of G^{*} is B.

Lemma 3.1. Let G be a graph and $H=G-P V(G)$, where $P V(G)$ is the set of the pendent vertices of G. If H is bridgeless, then $p c(G) \leq \max \{3,|P V(G)|\}$.

Proof. Since H is bridgeless, one has that $p c(H) \leq 3$ and there is a proper-path 3coloring c of H such that H has the strong property under c by Lemma 2.6. Assume that $P V(G)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. If $k \leq 2$, we have that $p c(G) \leq 3$ by Lemma 2.7. So we consider the case that $k \geq 3$. Let u_{i} be the neighbor of v_{i} in G for $i=1,2, \ldots, k$, and let
$\{1,2,3\}$ be the color-set of c. We first assign color j to $u_{j} v_{j}$ for $j=4, \ldots, k$. Then we color the remaining edges $u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}$ by colors $1,2,3$ by the following strategy.

If $u_{1}=u_{2}=u_{3}$, we assign color i to $u_{i} v_{i}$ for $i=1,2,3$. If $u_{1}=u_{2} \neq u_{3}$, let P be a proper path of G connecting u_{1} and u_{3}. Then there are two different colors in $\{1,2,3\} \backslash\{\operatorname{start}(P)\}$. We assign these two colors to $u_{1} v_{1}$ and $u_{2} v_{2}$, respectively, and choose a color that is distinct from $\operatorname{end}(P)$ in $\{1,2,3\}$ for $u_{3} v_{3}$. If $u_{i} \neq u_{j}$ for $1 \leq$ $i \neq j \leq 3$, suppose that $P_{i j}$ is a proper path of G between u_{i} and u_{j}. We choose a color that is distinct from $\operatorname{start}\left(P_{12}\right)$ and $\operatorname{start}\left(P_{13}\right)$ in $\{1,2,3\}$ for $u_{1} v_{1}$. Similarly, we color $u_{2} v_{2}$ by a color in $\{1,2,3\} \backslash\left\{\operatorname{end}\left(P_{12}\right), \operatorname{start}\left(P_{23}\right)\right\}$, and color $u_{3} v_{3}$ by a color in $\{1,2,3\} \backslash\left\{\operatorname{end}\left(P_{13}\right), \operatorname{end}\left(P_{23}\right)\right\}$.

One can see that in all these cases, v_{i} and v_{j} are proper connected for $1 \leq i \neq j \leq k$. Moreover, as H has the strong property under edge-coloring c, it is obvious that v_{i} and u are proper connected for $1 \leq i \leq k$ and $u \in V(H)$. Therefore, we have that $p c(H) \leq k=$ $|P V(G)|$. Hence, we obtain that $p c(G) \leq \max \{3,|P V(G)|\}$.

Lemma 3.2. Let G be a graph with a cut-edge $v_{1} v_{2}$, and G_{i} be the connected graph obtained from G by contracting the connected component containing v_{i} of $G-v_{1} v_{2}$ to a vertex v_{i}, where $i=1,2$. Then $p c(G)=\max \left\{p c\left(G_{1}\right), p c\left(G_{2}\right)\right\}$

Proof. First, it is obvious that $p c(G) \geq \max \left\{p c\left(G_{1}\right), p c\left(G_{2}\right)\right\}$. Let $p c\left(G_{1}\right)=k_{1}$ and $p c\left(G_{2}\right)=k_{2}$. Without loss of generality, suppose $k_{1} \geq k_{2}$. Let c_{1} be a k_{1}-proper coloring of G_{1} and c_{2} be a k_{2}-proper coloring of G_{2} such that $c_{1}\left(v_{1} v_{2}\right)=c_{2}\left(v_{1} v_{2}\right)$ and $\left\{c_{2}(e): e \in\right.$ $\left.E\left(G_{2}\right)\right\} \subseteq\left\{c_{1}(e): e \in E\left(G_{1}\right)\right\}$. Let c be the edge-coloring of G such that $c(e)=c_{1}(e)$ for any $e \in E\left(G_{1}\right)$ and $c(e)=c_{2}(e)$ otherwise. Then c is an edge-coloring of G using k_{1} colors. We will show that c is a proper-path coloring of G. For any pair of vertices $u, v \in V(G)$, we can easily find a proper path between them if $u, v \in V\left(G_{1}\right)$ or $u, v \in V\left(G_{2}\right)$. Hence we only need to consider that $u \in V\left(G_{1}\right) \backslash\left\{v_{1}, v_{2}\right\}$ and $v \in V\left(G_{2}\right) \backslash\left\{v_{1}, v_{2}\right\}$. Since c_{1} is a k_{1}-proper coloring of G_{1}, there is a proper path P_{1} in G_{1} connecting u and v_{1}. Since c_{2} is a k_{2}-proper coloring of G_{2}, there is a proper path P_{2} in G_{2} connecting v and v_{2}. As $c_{1}\left(v_{1} v_{2}\right)=c_{2}\left(v_{1} v_{2}\right)$, then we know that $P=u P_{1} v_{2} v_{1} P_{2} v$ is a proper path connecting u and v in G. Therefore, we have that $p c(G) \leq k_{1}$, and the proof is thus complete.

Theorem 3.3. If G is a connected graph, then $p c(G) \leq \max \left\{3, \Delta\left(G^{*}\right)\right\}$.
Proof. If G is bridgeless, we have that $p c(G) \leq 3$ by Lemma 2.6. Otherwise, let $B \subseteq E$ be the set of cut-edges of graph G. Let \mathcal{C} denote the set of connected components of $G^{\prime}=(V ; E \backslash B)$. We claim that $p c\left(D^{*}\right) \leq \max \left\{3, \Delta\left(G^{*}\right)\right\}$ for any $D \in \mathcal{C}$. Note that if D is a singleton, it is obvious that $D^{*} \cong K_{1,|N(D)|}$ and $p c\left(D^{*}\right)=|N(D)| \leq \max \left\{3, \Delta\left(G^{*}\right)\right\}$. If
D is bridgeless, by Lemma 3.1, we have that $p c\left(D^{*}\right) \leq \max \{3,|N(D)|\} \leq \max \left\{3, \Delta\left(G^{*}\right)\right\}$. Hence by Lemma 3.2, we have that $p c(G)=\max _{D \in \mathcal{C}} p c\left(D^{*}\right) \leq 3$.

Let $r K_{t}$ be the disjoint union of r copies of the complete graph K_{t}, We use S_{r}^{t} to denote the graph obtained from $r K_{t}$ by adding an extra vertex v and joining v to one vertex of each K_{t}.

Corollary 3.4. If G is a connected graph with n vertices and minimum degree $\delta \geq 2$, then $p c(G) \leq \max \left\{3, \frac{n-1}{\delta+1}\right\}$. Moreover, if $\frac{n-1}{\delta+1}>3$, and $n \geq \delta(\delta+1)+1$, we have that $p c(G)=\frac{n-1}{\delta+1}$ if and only if $G \cong S_{r}^{t}$, where $t-1=\delta$ and $r t+1=n$.

Proof. Since the minimum degree of G is $\delta \geq 2$, we know that each leaf of G^{*} is obtained by contracting an element with at least $\delta+1$ vertices of \mathcal{D}. Therefore, \mathcal{D} has at most $\frac{n-1}{\delta+1}$ such elements, and so, one can see that $\Delta\left(G^{*}\right) \leq \frac{n-1}{\delta+1}$. From Theorem 3.3, we know that $p c(G) \leq \max \left\{3, \frac{n-1}{\delta+1}\right\}$.

If $\frac{n-1}{\delta+1}>3$ and $p c(G)=\frac{n-1}{\delta+1}$, one can see that G^{*} is a star with $\Delta\left(G^{*}\right)=\frac{n-1}{\delta+1}$, and each leaf of G^{*} is obtained by contracting an element with $\delta+1$ vertices of \mathcal{D}, that is, $G \cong S_{r}^{t}$, where $t=\delta$ and $r t+1=n$. On the other hand, if $G \cong S_{r}^{t}$, where $t=\delta$ and $r t+1=n$, we can easily check that $p c(G)=r=\frac{n-1}{\delta+1}$.

4 Erdös-Gallai-type results for proper connection numbers of graphs

In this section, we study two kinds of Erdös-Gallai-type problems for $p c(G)$. We consider the following two problems:
Problem A. For every k with $2 \leq k \leq n-1$, compute and minimize the function $f(n, k)$ with the following property: for any connected graph G with n vertices, if $|E(G)| \geq$ $f(n, k)$, then $p c(G) \leq k$.
Problem B. For every k with $2 \leq k \leq n-1$, compute and maximize the function $g(n, k)$ with the following property: for any connected graph G with n vertices, if $|E(G)| \leq$ $g(n, k)$, then $p c(G) \geq k$.

It is worth mentioning that the two parameters $f(n, k)$ and $g(n, k)$ are equivalent to another two parameters. For $2 \leq k \leq n-1$, let

$$
s(n, k)=\max \{|E(G)|: \mid V(G)=n, p c(G) \geq k\}
$$

and

$$
t(n, k)=\min \{|E(G)|:|V(G)|=n, p c(G) \leq k\}
$$

It is easy to see that $g(n, k)=t(n, k-1)-1$ and $f(n, k)=s(n, k+1)+1$.
Since the graphs considered here are connected, we have that $t(n, k) \geq n-1$. On the other hand, we can get that $t(n, k) \leq n-1$ since $p c\left(P_{n}\right)=2 \leq k$. Hence, $t(n, k)=n-1$ for any $2 \leq k \leq n-1$. This implies that $g(n, k)=n-2$ for $3 \leq k \leq n-1$. Hence we know that $g(n, k)$ is meaningless for $3 \leq k \leq n-1$. For $k=2$, we can get that $g(n, 2)=\binom{n}{2}-1$ from the definition of $g(n, k)$.

We now show a lower bound for $f(n, k)$.
Proposition 4.1. $f(n, k) \geq\binom{ n-k-1}{2}+k+2$.
Proof. We construct a graph G_{k} as follows: Take a K_{n-k-1} and a star S_{k+2}. Identify the center-vertex of S_{k+2} with an arbitrary vertex of K_{n-k-1}. The resulting graph G_{k} has order n and size $E\left(G_{k}\right)=\binom{n-k-1}{2}+k+1$. It can be easily checked that $p c\left(G_{k}\right)=k+1$. Hence, $f(n, k) \geq\binom{ n-k-1}{2}+k+2$.

By using Theorem 3.3, the value of $f(n, k)$ for $k \geq 3$ can be completely determined.
Theorem 4.2. For $k \geq 3$, one has that $f(n, k)=\binom{n-k-1}{2}+k+2$.
Proof. By the definition of $f(n, k)$, we need to prove that $p c(G) \leq k$ when $E(G) \geq$ $\binom{n-k-1}{2}+k+2$. Suppose to the contrary that $p c(G) \geq k+1$. From Theorem 3.3. we know that $\Delta\left(G^{*}\right) \geq k+1$, where G^{*} is the bridge-block tree of G. By some simple computations, we know that $|E(G)| \leq\binom{ n-k-1}{2}+k+1$, which contradicts the assumption. Hence, $p c(G) \leq k$.

To compute the value of $f(n, 2)$, we need the following Lemmas.
Lemma 4.3. Let G be a graph with $n(n \geq 6)$ vertices and at least $\binom{n-1}{2}+3$ edges. Then for any $u, v \in V(G)$, there is a 2-connected bipartite spanning subgraph of G with u, v in the same part.

Proof. Let \bar{G} be the complement of G. Then we have that $|E(\bar{G})| \leq n-4$. Let $S=N(u) \cap$ $N(v)$, we have that $|S| \geq 2$. Otherwise, $|S| \leq 1$, then for any $w \in V(G) \backslash(S \cup\{u, v\})$, either $u w \in E(\bar{G})$ or $v w \in E(\bar{G})$, and thus $|E(\bar{G})| \geq n-3$, which contradicts the fact that $|E(\bar{G})| \leq n-4$. Therefore, we know that $B_{G}[S,\{u, v\}]$ is a 2-connected bipartite subgraph of G with u, v in the same part.

Suppose that $H=B_{G}[X, Y]$ is a 2-connected bipartite subgraph of G with u, v in the same part and H has as many vertices as possible. Then, if $V(G) \backslash V(H) \neq \emptyset$, one has that there exists a vertex $w \in V(G) \backslash V(H)$, such that $|N(w) \cap X| \geq 2$ or $|N(w) \cap Y| \geq 2$. Since otherwise,

$$
|E(\bar{G})| \geq\left(n-\left|V\left(H_{1}\right)\right|\right)\left(\left|V\left(H_{1}\right)\right|-2\right) \geq n-3
$$

which contradicts the fact that $|E(\bar{G})| \leq n-4$. Then w can be added to X if $|N(w) \cap X| \geq$ 2 or added to Y otherwise, which contradicts the maximality of H. So, we know that H is a 2-connected bipartite spanning subgraph of G with u, v in the same part, which completes the proof.

Lemma 4.4. Every 2-connected graph on $n(n \geq 12)$ vertices with at least $\binom{n-1}{2}-5$ edges contains a 2-connected bipartite spanning subgraph.

Proof. The result is trivial if G is complete. We will prove our result by induction on n for noncomplete graphs. First, if $|V(G)|=12$ and $|E(G)| \geq 50$, one can find a 2-connected bipartite spanning subgraph of G. So we suppose that the result holds for all 2-connected graphs on $n_{0}\left(13<n_{0}<n\right)$ vertices with at least $\binom{n_{0}-1}{2}-5$ edges. For a 2-connected graph G on n vertices with $|E(G)| \geq\binom{ n-1}{2}-5$, let v be a vertex with minimum degree of G, and let $H=G-v$. If $d(v)=2$, then $|E(H)| \geq\binom{ n-1}{2}-7$. Let $N_{G}(v)=\left\{v_{1}, v_{2}\right\}$. We know that H contains a 2 -connected bipartite spanning subgraph with v_{1}, v_{2} in the same part by Lemma 4.3. Clearly, G contains a 2 -connected bipartite spanning subgraph. Otherwise, $3 \leq d(v) \leq n-2$, then $|E(H)| \geq\binom{ n-1}{2}-5-(n-2)=\binom{(n-1)-1}{2}-5$ and $\delta(H) \geq 2$. If H has a cut vertex u, then each connected component of $H-u$ contains at least 2 vertices. We have that $|E(H)| \leq\binom{ n-3}{2}+3<\binom{n-2}{2}-5$, a contradiction. Hence, H is 2-connected. By the induction hypothesis, we know that H contains a 2-connected bipartite spanning subgraph $B_{H}[X, Y]$. Since $d(v) \geq 3$, at least one of X and Y contains at least 2 neighbors of v. Hence, G contains a 2-connected bipartite spanning subgraph.

Theorem 4.5. Let G be a connected graph of order $n \geq 14$. If $\binom{n-3}{2}+4 \leq|E(G)| \leq$ $\binom{n}{2}-1$, then $p c(G)=2$.

Proof. The result clearly holds if G is 3 -connected by Corollary 2.4. We only consider of the graphs with connectivity at most 2 . So we can partition $V(G)$ into three parts V_{1}, V_{2}, S such that $1 \leq|S| \leq 2,\left|V_{1}\right| \leq\left|V_{2}\right|$, and there is no edge between V_{1} and V_{2} in G.

If $\left|V_{1}\right| \geq 4$, then we must have $\left|V_{1}\right|=4,|S|=2$ and both $G\left[V_{1} \cup S\right]$ and $G\left[V_{2} \cup S\right]$ must be complete graphs since $n \geq 14$ and $|E(G)| \geq\binom{ n-3}{2}+4$. In this case, we can easily check that $p c(G)=2$ from the structure of G. Thus we may assume that $\left|V_{1}\right| \leq 3$. It follows that $\delta(G) \leq 4$.

Let v be a vertex with the minimum degree in G, and let $H=G-v$. Then $|V(H)|=$ $n-1$ and $|E(H)| \geq\binom{ n-3}{2}+4-4=\binom{n-3}{2}$. Note that if H is 3-connected, one can get that $p c(H) \leq 2$ by Corollary 2.4. Then from Lemma 2.7, one has that $p c(G) \leq 2$. So we may assume that the connectivity of H is at most 2. By the similar analysis, we can get that $\delta(H) \leq 3$.

Let u be a vertex with the minimum degree in H, and let $F=H-u=G-v-u$. Then $|V(F)|=n-2$ and $|E(F)| \geq\binom{ n-3}{2}-3=\binom{n-2)-1}{2}-3$. If F is 2 -connected, we know that F contains a bipartite 2-connected spanning subgraph by Lemma 4.4, and hence $p c(H) \leq 2$. By Lemma 2.7, we have that $p c(G) \leq 2$. Now we assume that the connectivity of F is at most 1. Since $|E(F)| \geq\binom{ n-3}{2}-3=\binom{(n-2)-1}{2}-3$, we know that F has a vertex w with $d_{F}(w) \leq 1$. Let $F^{\prime}=F-w=G-u-v-w$, then $\left|E\left(F^{\prime}\right)\right| \geq\binom{ n-3}{2}-4$. From Lemma 4.3, we know that F^{\prime} contains a 2-connected bipartite spanning subgraph, and so $p c\left(F^{\prime}\right) \leq 2$. If $d_{G}(w)=1$, then u and v are also pendent vertices in G. We have that $|E(G)| \leq\binom{ n-3}{2}+3$, which contradicts the fact that $|E(G)| \geq\binom{ n-3}{2}+4$. Thus, $d_{G}(w) \geq 2$. If $u v \in E(G)$, one can see that $p c(G)=2$ by Corollary 2.8. If $u v \notin E(G)$, we have that u has a neighbor in F^{\prime}. Since otherwise, $d_{G}(u)=1$ and $d_{G}(v)=1,|E(G)| \leq\binom{ n-3}{2}+3$, a contradiction. So we know that either v has a neighbor in F^{\prime} or $w v \in E(G)$. By Corollary 2.8, we have that $p c(G)=2$. The proof is thus complete.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput, to appear.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Monteroa, Z. Tuza, Proper connection of graphs, Discrete Math. 312 (17) (2012), 2550-2560.
[4] L. Chandran, A. Das, D.Rajendraprasad, N. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), 206-218.
[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (1) (2008), 5-98.
[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2) (2009), 75-81.
[7] F. Harary, Graph Theory, Addison-Wesley, Massachusetts, 1972.
[8] F. Huang, X. Li, S. Wang, Proper connection numbers of complementary graphs, arXiv:1504.02414v2 [math.CO].
[9] A. Kemnitz, I. Schiermeyer, Graphs with rainbow connection number two, Discus. Math. Graph Theory 31(2011), 313-320.
[10] M. Kriveleich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 71 (2012), 206-218.
[11] A. Lo, A note on the minimum size of k-rainbow-connected graphs, Discrete Math. 331 (2014), 20-21.
[12] H. Li, X. Li, S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math. 312 (2012), 1453-1457.
[13] H. Li, X. Li, Y. Sun, Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs \& Combin. 30 (4)(2014), 949-955.
[14] X. Li, M. Liu, I. Schiermeyer, Rainbow connection number of dense graphs, Discus. Math. Graph Theory 33 (2013), 603-611.
[15] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs \& Combin. 29 (5) (2013), 1471-1475.
[16] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs \& Combin. 29 (2013), 1-38.
[17] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[18] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161 (2013), 702-705.
[19] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. (3) (1964), 25-30.

[^0]: *Supported by NSFC No. 11371205 and 11531011, and PCSIRT.

