
Some upper bounds for the 3-proper

index of graphs∗

Hong Chang, Xueliang Li, Zhongmei Qin

Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, P.R. China

Email: changh@mail.nankai.edu.cn, lxl@nankai.edu.cn, qinzhongmei90@163.com

Abstract

A tree T in an edge-colored graph is a proper tree if no two adjacent edges

of T receive the same color. Let G be a connected graph of order n and k be a

fixed integer with 2 ≤ k ≤ n. For a vertex subset S ⊆ V (G) with |S| ≥ 2, a tree

containing all the vertices of S in G is called an S-tree. An edge-coloring of G is

called a k-proper coloring if for every k-subset S of V (G), there exists a proper S-

tree in G. For a connected graph G, the k-proper index of G, denoted by pxk(G),

is the smallest number of colors that are needed in a k-proper coloring of G. In

this paper, we show that for every connected graph G of order n and minimum

degree δ ≥ 3, px3(G) ≤ n ln(δ+1)
δ+1 (1 + oδ(1)) + 2. We also prove that for every

connected graph G with minimum degree at least 3, px3(G) ≤ px3(G[D]) + 3

when D is a connected 3-way dominating set of G and px3(G) ≤ px3(G[D]) + 1

when D is a connected 3-dominating set of G. In addition, we obtain sharp upper

bounds of the 3-proper index for two special graph classes: threshold graphs and

chain graphs. Finally, we prove that px3(G) ≤ bn2 c for any 2-connected graph

with at least four vertices.

Keywords: edge-coloring; proper tree; 3-proper index; dominating set; ear-

decomposition.

AMS subject classification 2010: 05C05, 05C15, 05C40, 05C69.

∗Supported by NSFC No.11371205 and 11531011, “973” program No.2013CB834204, and PCSIRT.

1

1 Introduction

We follow [2] for graph theoretical notation and terminology not described here.

Let G be a graph, we use V (G), E(G),∆(G) and δ(G) to denote the vertex set, edge

set, maximum degree and minimum degree of G, respectively. For D ⊆ V (G), let

D = V (G)\D, and let G[D] denote the subgraph of G induced from D. For v ∈ V (G),

let N(v) denote the set of neighbors of v in G. For two disjoint subsets X and Y of

V (G), E[X, Y] denotes the set of edges of G between X and Y . The join of two graphs

G and H, denoted by G ∨H, is the graph obtained from a disjoint union of G and H

by adding edges joining every vertex of G to every vertex of H.

Let G be a nontrivial connected graph with an associated edge-coloring c : E(G)→
{1, 2, . . . , t}, t ∈ N, where adjacent edges may have the same color. If adjacent edges

of G are assigned different colors by c, then c is a proper (edge-)coloring. For a graph

G, the minimum number of colors needed in a proper coloring of G is referred to as

the chromatic number of G and denoted by χ′(G). A path in an edge-colored graph

G is said to be a rainbow path if no two edges on the path have the same color. The

graph G is called rainbow connected if for any two vertices there is a rainbow path

of G connecting them. An edge-coloring of a connected graph is a rainbow connecting

coloring if it makes the graph rainbow connected. For a connected graph G, the rainbow

connection number rc(G) of G is the smallest number of colors that are needed in order

to make G rainbow connected. These concepts of rainbow connection of graphs were

introduced by Chartrand et al. [7] in 2008. The readers who are interested in this topic

can see [14, 15] for a survey.

In [8], Chartrand et al. generalized the concept of rainbow connection to rainbow

index. A tree T in an edge-colored graph is a rainbow tree if no two edges of T receive

the same color. Let G be a connected graph of order n and k be a fixed integer with

2 ≤ k ≤ n. For a vertex subset S ⊆ V (G) with |S| ≥ 2, a tree containing all the vertices

of S in G is called an S-tree. An edge-coloring of G is called a k-rainbow coloring if for

every k-subset S of V (G), there exists a rainbow S-tree in G. For a connected graph

G, the k-rainbow index of G, denoted by rxk(G), is the minimum number of colors

that are needed in a k-rainbow coloring of G. We refer to [4, 5, 10, 17] for more details.

Motivated by rainbow coloring and proper coloring in graphs, Andrews et al. [1]

and Borozan et al. [3] introduced the concept of proper-path coloring. Let G be a

nontrivial connected graph with an edge-coloring. A path in G is called a proper path

if no two adjacent edges of the path are colored with the same color. An edge-coloring

of a connected graph G is a proper-path coloring if every pair of distinct vertices of G

are connected by a proper path in G. An edge-colored graph G is proper connected if

any two vertices of G are connected by a proper path. For a connected graph G, the

2

proper connection number of G, denoted by pc(G), is defined as the smallest number

of colors that are needed in order to make G proper connected. For more details, we

refer to [11, 12, 16] and a dynamic survey [13].

Inspired by the k-rainbow index and the proper-path coloring, Chen et al. [9]

introduced the concept of k-proper index of a connected graph G. A tree T in an edge-

colored graph is a proper tree if no two adjacent edges of T receive the same color. Let

G be a connected graph of order n and k be a fixed integer with 2 ≤ k ≤ n. An edge-

coloring of G is called a k-proper coloring if for every k-subset S of V (G), there exists

a proper S-tree in G. In this case, G is called k-proper connected. For a connected

graph, the k-proper index of G, denoted by pxk(G), is defined as the minimum number

of colors that are needed in a k-proper coloring of G. Clearly, when k = 2, px2(G) is

exactly the proper connection number pc(G) of G. Hence, we will study pxk(G) only

for k with 3 ≤ k ≤ n here. Let G be a nontrivial connected graph of order n and size

m, it is easy to see that pc(G) ≤ px3(G) ≤ · · · ≤ pxn(G) ≤ m.

The rest of this paper is organised as follows. In Section 2, we list some basic

definitions and fundamental results on the k-proper index of graphs. In Section 3, we

study the 3-proper index by using connected 3-way dominating sets and 3-dominating

sets. We first show that for every connected graph G with minimum degree at least 3,

px3(G) ≤ px3(G[D]) + 3 when D is a connected 3-way dominating set of G. Then, we

can easily get that for every connected graph G on n vertices with minimum degree

δ ≥ 3, px3(G) ≤ n ln(δ+1)
δ+1

(1 + oδ(1)) + 2. At last, we show that px3(G) ≤ px3(G[D]) + 1

when D is a connected 3-dominating set of G. In addition, we obtain the sharp upper

bounds of the 3-proper index for two special graph classes: threshold graphs and chain

graphs. In Section 4, we prove that px3(G) ≤ bn
2
c for any 2-connected graph with at

least four vertices.

2 Preliminaries

To begin with this section, we present the following basic concepts.

Definition 2.1 Given a graph G, a set D ⊆ V (G) is called a dominating set if every

vertex of D is adjacent to at least one vertex of D. Furthermore, if the subgraph G[D]

is connected, it is called a connected dominating set of G. The domination number

γ(G) is the number of vertices in a minimum dominating set of G. Similarly, the

connected dominating number γc(G) is the number of vertices in a minimum connected

dominating set of G.

3

Definition 2.2 Let s be a positive integer. A dominating set D in a graph G is called

an s-way dominating set if every vertex of D has at least s neighbours in G. In addition,

if G[D] is connected, we call D a connected s-way dominating set.

Definition 2.3 A set D ⊆ G is called an s-dominating set of G if every vertex of D

is adjacent to at least s distinct vertices of D. Furthermore, if G[D] is connected, then

D is called a connected s-dominating set. Obviously, a (connected) s-dominating set is

also a (connected) s-way dominating set.

Definition 2.4 BFS (breadth-first search) is an algorithm for traversing or searching

tree or graph data structures. It starts at the tree root and explores the neighbor vertices

first, before moving to the next level neighbors. A BFS-tree (breadth-first search tree) is

a spanning rooted tree returned by BFS. Let T be a BFS-tree with root r. For a vertex

v, the level of v is the length of the unique {v, r}-path in T , the ancestors of v are the

vertices on the unique {v, r}-path in T , the parent of v is its neighbor on the unique

{v, r}-path in T . Its other neighbors are called the children of v. The siblings of v are

the vertices in the same level as v. The left (resp. right) siblings of v are the siblings

of v visited before (resp. after) v in BFS.

Remark: BFS-trees have a nice property: every edge of the graph joins vertices on

the same level or consecutive levels. It is not possible for an edge to skip a level. Thus,

a neighbor of a vertex v has three possibilities: (1) a sibling of v; (2) the parent of v or

a right sibling of the parent of v; (3) a child of v or a left sibling of the children of v.

Next, we state some fundamental results on the k-proper index of graphs which will

be used in the sequel.

Proposition 2.5 [9] If G is a nontrivial connected graph of order n ≥ 3 and H is

a connected spanning subgraph of G, then pxk(G) ≤ pxk(H) for each integer k with

3 ≤ k ≤ n. In particular, pxk(G) ≤ pxk(T) for every spanning tree T of G.

Proposition 2.6 [9] If T is a nontrivial tree of order n ≥ 3, then pxk(T) = χ
′
(G) =

∆(G) for each integer k with 3 ≤ k ≤ n.

Propositions 2.5 and 2.6 provide an upper bound of the k-proper index for a graph.

Proposition 2.7 [9] Let G be a nontrivial connected graph of order n ≥ 3. Then,

2 ≤ px3(G) ≤ . . . ≤ pxn(G) ≤ min{∆(T) : T is a spanning tree of G}.

A Hamiltonian path in a graph G is a path containing every vertex of G and a

graph having a Hamiltonian path is a traceable graph. The following is an immediate

consequence of Proposition 2.7.

4

Corollary 2.8 [9] If G is a traceable graph of order n, then for each integer k with

3 ≤ k ≤ n, pxk(G) = 2.

Obviously, for any integer k with 3 ≤ k ≤ n, pxk(Pn) = pxk(Cn) = pxk(Wn) =

pxk(Kn) = pxk(Kn,n) = 2.

Lemma 2.9 If G is a connected graph with order nG and H is a connected subgraph of

G with order nH , then for each integer k with 3 ≤ k ≤ nH , we have pxk(G) ≤ pxk(H)+

nG−nH ; for each integer k with nH ≤ k ≤ nG, we have pxk(G) ≤ pxnH
(H) +nG−nH .

Proof. Let G′ be a graph obtained from G by contracting H to a single vertex. Then, G′

is a connected graph of order nG−nH+1. Thus, by Proposition 2.7, pxk′(G
′) ≤ nG−nH

for each integer k′ with 3 ≤ k′ ≤ nG−nH+1. Given an edge-coloring of G′ with nG−nH
colors such that G′ is k

′
-proper connected (3 ≤ k′ ≤ nG − nH + 1). Now, go back to

G, and color each edge outside H with the color of the corresponding edge in G′.

For H, if 3 ≤ k ≤ nH , then we assign pxk(H) new colors to the edges of H such

that H is k-proper connected; if nH ≤ k ≤ nG, then we assign pxnH
(H) new colors

to the edges of H such that H is nH-proper connected. The resulting edge-coloring

makes G k-proper connected. Therefore, for each integer k with 3 ≤ k ≤ nH , we

have pxk(G) ≤ pxk(H) + nG − nH ; for each integer k with nH ≤ k ≤ nG, we have

pxk(G) ≤ pxnH
(H) + nG − nH . This completes the proof. �

3 The 3-proper index and connected dominating

sets

In this section, we give some upper bounds of the 3-proper index for a graph G by

using connected 3-way dominating sets and 3-dominating sets.

Let G be a graph, D ⊆ V (G), and v ∈ D. We call a path P = v0v1 · · · vt a v −D
path if v0 = v and V (P)∩D = {vt}. Two or more paths are called internally disjoint if

none of them contains an inner vertex of another. If P is edge-colored, then we denote

by end(P) the color of the last edge vt−1vt. Now we give our main results.

Theorem 3.1 If D is a connected 3-way dominating set of a connected graph G, then

px3(G) ≤ px3(G[D]) + 3. Moreover, this bound is sharp.

Proof. Let D be a connected 3-way dominating set of a connected graph G. For v ∈ D,

its neighbors in D are called the feet of v, and the corresponding edges are called the

5

legs of v. A set of proper v − D paths {P1, P2, . . . , P`} are called strong-proper if

end(Pi) 6= end(Pj) (1 ≤ i < j ≤ `). For a vertex v in D, we call it good if there are

three internally disjoint strong-proper v −D paths. Otherwise, we call v bad. Denote

by c(e) the color of an edge e. Let T be a rooted BFS-tree. Pick a vertex v in T , and

let `(v) be the level of v, p(v) the parent of v, ch(v) the child of v, α(v) the ancestor

of v in the first level.

We now review the ideas in the proof. At first, we color the edges in E[D,D] and

E(G[D]) with three colors from {1, 2, 3} such that every vertex v of D is good. Then,

we extend the coloring to the whole graph by coloring the edges in G[D] with px3(G[D])

fresh colors. Finally, we prove this edge-coloring is a 3-proper coloring of G.

Assume that A1, . . . , As, B1, . . . , Bt, C1, . . . , Cq are the connected components of

the subgraph G −D such that |V (Ai)| = 1 (1 ≤ i ≤ s), |V (Bj)| = 2 (1 ≤ j ≤ t) and

|V (Ck)| ≥ 3 (1 ≤ k ≤ q), where s, t and q are nonnegative integers, and s = 0 or t = 0

or q = 0 means that there is no Ai-component or Bj-component or Ck-component.

For each Ai (1 ≤ i ≤ s), let v be an isolated vertex of Ai. Then, v has at least

three legs, we color one of them with 1, one of them with 2, and all the others with 3.

Thus, v is good.

For each Bj (1 ≤ j ≤ t), let uv be the edge of Bj. Then, u has at least two legs, we

color one of them with 1, and all the others with 2. Also, v has at least two legs. We

color one of them with 2, and all the others with 3. Finally, we color uv with 2. Thus,

both u and v are good.

For each Ck (1 ≤ k ≤ q), since |V (Ck)| ≥ 3, it follows that there exists a vertex v0

in Ck having at least two neighbors in Ck. Starting from v0, we construct a BFS-tree

T of Ck. Suppose that the neighbors of v0 in Ck are {v1, v2, . . . , vp} (p ≥ 2), which

form the first level of T . We call the subtree of T rooted at vi (1 ≤ i ≤ p − 1) of

type I and the subtree of T rooted at vp of type II. There may be many subtrees

of type I, but only one subtree of type II. For each vertex v in Ck, we denote one

leg of v by ev, the corresponding foot of v by t(v), the unique edge joining v and its

parent p(v) in T by fv. Now, we color the edges ev and fv as follows: c(ev0) = 3;

c(fvi) = 2 and c(evi) = 1 for (1 ≤ i ≤ p − 1); c(fvp) = 1 and c(evp) = 2; for each

vertex v in V (Ck)\{v1, v2, . . . , vp}, if α(v) = vp, then set c(fv) = 2 and c(ev) = 3 when

`(v) ≡ 0 (mod 3), c(fv) = 1 and c(ev) = 2 when `(v) ≡ 1 (mod 3), c(fv) = 3 and

c(ev) = 1 when `(v) ≡ 2 (mod 3); if α(v) = vi (1 ≤ i ≤ p− 1), then set c(fv) = 1 and

c(ev) = 3 when `(v) ≡ 0 (mod 3), c(fv) = 2 and c(ev) = 1 when `(v) ≡ 1 (mod 3),

c(fv) = 3 and c(ev) = 2 when `(v) ≡ 2 (mod 3). Note that the subtrees of the same

type are colored in the same way.

Now, for any non-leaf vertex v in T , there exist three internally disjoint strong-

6

proper v − D paths. As for the root v0, P
v0
1 = v0t(v0); P

v0
2 = v0v1t(v1); P

v0
3 =

v0vpt(vp). As for any other non-leaf vertex v in T , P v
1 = vt(v); P v

2 = vp(v)t(p(v));

P v
3 = vch(v)t(ch(v)). Hence, all the non-leaf vertices of T are good.

It remains to deal with the leaves of T . Pick a leaf w in T . Since w has no

children, it has exactly two internally disjoint strong-proper w−D paths: Pw
1 = wt(w);

Pw
2 = wp(w)t(p(w)). In order to make w good, we need to provide the third path Pw

3

which is internally disjoint with Pw
1 and Pw

2 . Since w ∈ D, we have d(w) ≥ 3. It follows

that w has another neighbor which is not t(w), p(w). Let W = {w = w1, w2, . . . , wa}
be the children of p(w) such that wi (1 ≤ i ≤ a) is a leaf of T and in the subtrees

of the same type. Then, G[W] contains a spanning subgraph H which consists of

the components of the following two types: (1) a star, (2) an isolated vertex, where

the isolated vertices of H are just the isolated vertices of G[W]. For each component

of type (1), let S be the star and V (S) = {wi1 , wi2 , . . . , wir} (r ≥ 2), where wi1
is the central vertex of S. Now we recolor the edge ewi1

and color all edges of S.

If wi1 is in the subtree of type I, then recolor ewi1
with 1 and color all edges of S

with 2 when `(wi1) ≡ 0 (mod 3); recolor ewi1
with 2 and color all edges of S with 3

when `(wi1) ≡ 1 (mod 3); recolor ewi1
with 3 and color all edges of S with 1 when

`(wi1) ≡ 2 (mod 3). If wi1 is in the subtree of type II, then recolor ewi1
with 2 and

color all edges of S with 1 when `(wi1) ≡ 0 (mod 3); recolor ewi1
with 1 and color all

edges of S with 3 when `(wi1) ≡ 1 (mod 3); recolor ewi1
with 3 and color all edges of

S with 2 when `(wi1) ≡ 2 (mod 3). Note that the recoloring of the edge ewi1
has no

influence on p(w) since p(w) has at least two children in this case. It is easy to check

that for the center wi1 of S, there exists a required path P
wi1
3 = wi1wi2t(wi2), and for

every vertex wit ∈ S (2 ≤ t ≤ r), there exists a required path P
wit
3 = witwi1t(wi1).

Thus, every leaf in the components of type (1) is good.

For each component of type (2), let w be the isolated vertex and w′ be another

neighbor of w. Note that w′ /∈ W . If w′ ∈ D, then we color the edge ww′ as follows:

if w is in the subtree of type I, then we color c(ww′) = 1 when `(w) ≡ 0 (mod 3),

c(ww′) = 2 when `(w) ≡ 1 (mod 3), c(ww′) = 3 when `(w) ≡ 2 (mod 3); if w is in the

subtree of type II, then we color c(ww′) = 2 when `(w) ≡ 0 (mod 3), c(ww′) = 1 when

`(w) ≡ 1 (mod 3), c(ww′) = 3 when `(w) ≡ 2 (mod 3). Note that for any vertex w in

the component of type (2) satisfying w′ ∈ D, we have Pw
3 = ww′. Thus, w is good.

Now we suppose w′ ∈ T . Then, w′ is either a non-leaf vertex of T or a leaf vertex

of T with p(w′) 6= p(w). Notice that if ew′ is recolored, then w′ is a good leaf, and w′

has a neighbor w′′ such that w′′ is a sibling of w′. We distinguish the following four

cases:

Case 1: w and w′ are in the subtree of type I.

7

Since T is a BFS-tree, we have that `(w′) = `(w) − 1 or `(w′) = `(w) or `(w′) =

`(w) + 1. Then, we consider the following three subcases.

Subcase 1.1: `(w) ≡ 0 (mod 3).

If `(w′) = `(w)− 1, then color ww′ with 1. Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, then Pw′
3 = w′wt(w).

If `(w′) = `(w), then color ww′ with 3. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

If `(w′) = `(w) + 1, then color ww′ with 2. If ew′ is recolored, then w′ is already

good. Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,

then Pw
3 = ww′t(w′). In this situation, if w′ is bad, then Pw′

3 = w′wp(w)t(p(w)).

Subcase 1.2: `(w) ≡ 1 (mod 3).

If `(w′) = `(w)− 1, then color ww′ with 2. Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, Pw′
3 = w′wt(w).

If `(w′) = `(w), then color ww′ with 1. If w and w′ are in the first level, then

w′ has at least one child since p(w′) = p(w) and is already good. Thus, Pw
3 =

ww′ch(w′)t(ch(w′)). Now suppose that w and w′ are not in the first level. Then, Pw
3 =

ww′p(w′)p(p(w′))t(p(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

If `(w′) = `(w) + 1, then color ww′ with 3. If ew′ is recolored, then w′ is already

good. Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,

then Pw
3 = ww′t(w′). In this case, if w′ is bad, then Pw′

3 = w′wp(w)t(p(w)).

Subcase 1.3: `(w) ≡ 2 (mod 3).

If `(w′) = `(w)− 1, then color ww′ with 3. Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, then Pw′
3 = w′wt(w).

If `(w′) = `(w), then color ww′ with 2. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

If `(w′) = `(w) + 1, then color ww′ with 1. If ew′ is recolored, then w′ is already

good. Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,

then Pw
3 = ww′t(w′). In this case, if w′ is bad, then Pw′

3 = w′wp(w)t(p(w)).

Thus, both w and w′ are good.

Case 2: w is in the subtrees of type I and w′ is in the subtree of type II.

Since T is a BFS-tree, it follows that `(w′) = `(w) − 1 or `(w′) = `(w). Then, we

consider the following three subcases.

Subcase 2.1: `(w) ≡ 0 (mod 3).

If `(w′) = `(w) − 1, then we distinguish two situations. If ew′ is not recolored,

then color ww′ with 2. Thus, Pw
3 = ww′t(w′). In this situation, if w′ is bad, then

8

Pw′
3 = w′wt(w). If ew′ is recolored, then color ww′ with 3 and w′ is already good.

Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′).

If `(w′) = `(w), then color ww′ with 3. Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is bad,

then Pw′
3 = w′wp(w)t(p(w)).

Subcase 2.2: `(w) ≡ 1 (mod 3).

If `(w′) = `(w)−1, then color ww′ with 3. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

If `(w′) = `(w), then we distinguish two situations. If ew′ is not recolored, then

color ww′ with 3. Thus, Pw
3 = ww′t(w′). In this situation, if w′ is bad, then Pw′

3 =

w′wt(w). If ew′ is recolored, then color ww′ with 2 and w′ is already good. Thus,

Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′).

Subcase 2.3: `(w) ≡ 2 (mod 3).

If `(w′) = `(w) − 1, then color ww′ with 2, Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, then Pw′
3 = w′wp(w)t(p(w)).

If `(w′) = `(w), then color ww′ with 1. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

Thus, both w and w′ are good.

Case 3: If w is in the subtrees of type II and w′ is the subtree of type I.

Since T is a BFS-tree, we have that `(w′) = `(w) or `(w′) = `(w) + 1. Then, we

consider the following three subcases.

Subcase 3.1: `(w) ≡ 0 (mod 3).

If `(w′) = `(w), then color ww′ with 3. Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is bad,

then Pw′
3 = w′wp(w)t(p(w)).

If `(w′) = `(w)+1, then color ww′ with 3. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

Subcase 3.2: `(w) ≡ 1 (mod 3).

If `(w′) = `(w), then we distinguish two situations. If ew′ is not recolored, then

color ww′ with 3. Thus, Pw
3 = ww′t(w′). In this situation, if w′ is bad, then Pw′

3 =

w′wt(w). If ew′ is recolored, then color ww′ with 2 and w′ is already good. Thus,

Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′).

If `(w′) = `(w) + 1, then color ww′ with 2, Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, then Pw′
3 = w′wp(w)t(p(w)).

Subcase 3.3: `(w) ≡ 2 (mod 3).

If `(w′) = `(w), then color ww′ with 1. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

9

If `(w′) = `(w) + 1, then we distinguish two situations. If ew′ is not recolored,

then color ww′ with 2. Thus, Pw
3 = ww′t(w′). In this situation, if w′ is bad, then

Pw′
3 = w′wt(w). If ew′ is recolored, then color ww′ with 3 and w′ is already good.

Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′).

Thus, both w and w′ are good.

Case 4: If w, w′ are in the subtree of type II.

Since T is a BFS-tree, it follows that `(w′) = `(w) − 1 or `(w′) = `(w) or `(w′) =

`(w) + 1. Then, we consider the following three subcases.

Subcase 4.1: `(w) ≡ 0 (mod 3).

If `(w′) = `(w)− 1, then color ww′ with 2. Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, then Pw′
3 = w′wt(w).

If `(w′) = `(w), then color ww′ with 3. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

If `(w′) = `(w) + 1, then color ww′ with 1. If ew′ is recolored, then w′ is already

good. Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,

then Pw
3 = ww′t(w′). In this case, if w′ is bad, then Pw′

3 = w′wp(w)t(p(w)).

Subcase 4.2: `(w) ≡ 1 (mod 3).

If `(w′) = `(w)− 1, then color ww′ with 1. Thus, Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, then Pw′
3 = w′wt(w).

If `(w′) = `(w), then color ww′ with 2. If w and w′ are in the first level, then

w′ has at least one child since p(w′) = p(w) and is already good. Thus, Pw
3 =

ww′ch(w′)t(ch(w′)). Now suppose that w and w′ are not in the first level. Then, Pw
3 =

ww′p(w′)p(p(w′))t(p(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

If `(w′) = `(w) + 1, then color ww′ with 3. If ew′ is recolored, then w′ is already

good. Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,

then Pw
3 = ww′t(w′). In this case, if w′ is bad, then Pw′

3 = w′wp(w)t(p(w)).

Subcase 4.3: `(w) ≡ 2 (mod 3).

If `(w′) = `(w) − 1, then color ww′ with 3. Thus Pw
3 = ww′p(w′)t(p(w′)). If w′ is

bad, then Pw′
3 = w′wt(w).

If `(w′) = `(w), then color ww′ with 1. Thus, Pw
3 = ww′p(w′)p(p(w′))t(p(p(w′))).

If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t(p(p(w))).

If `(w′) = `(w) + 1, then color ww′ with 2. If ew′ is recolored, then w′ is already

good. Thus, Pw
3 = ww′w′′t(w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,

then Pw
3 = ww′t(w′). In this case, if w′ is bad, then Pw′

3 = w′wp(w)t(p(w)).

Thus, both w and w′ are good.

10

After the above process, w becomes good, and so does w′ if w′ is bad. Note that

all the good vertices are still good since we just color the edge ww′. As a result, every

vertex in T is good.

If there still remain uncolored edges in E[D,D] and E(G[D]), then color them with

1. Now we have a coloring of all the edges in E[D,D] and E(G[D]) using three colors

from {1, 2, 3} such that all the vertices in D are good. Next, we color the edges in

G[D] with px3(G[D]) fresh colors such that for each triple of vertices in D, there is a

proper tree in G[D] connecting them. Thus, we provide an edge-coloring c of G using

px3(G[D]) + 3 colors.

Now we show that this edge-coloring c is a 3-proper coloring of G, which implies

px3(G) ≤ px3(G[D]) + 3. We first claim that for any three vertices u, v, w in D, there

exists a proper u−D path P u, a proper v −D path P v and a proper w −D path Pw

such that P u∪P v∪Pw is also proper. Since this edge-coloring makes every vertex of D

good, we only need to consider the situation that u, v, w are in the same component of

G−D. So, u, v, w ∈ Ck (1 ≤ k ≤ q). Note that for any vertex x 6= v0 ∈ Ck, there are

three internally disjoint strong-proper x − D paths P x
1 , P

x
2 , P

x
3 such that P x

1 = xt(x)

and P x
2 = xp(x)t(p(x)). For v0 ∈ Ck, the three internally disjoint strong-proper v0−D

paths are P v0
1 = v0t(v0), P

v0
2 = v0v1t(v1) and P v0

3 = v0vpt(vp). If {c(eu), c(ev), c(ew)}
contains three distinct colors, then P u

1 ∪P v
1 ∪Pw

1 is also proper. If {c(eu), c(ev), c(ew)}
contains two distinct colors, without loss of generality, assume c(eu) 6= c(ev), then it is

easy to check that either P u
1 ∪ P v

1 ∪ Pw
2 or P u

1 ∪ P v
1 ∪ Pw

3 is proper. Now we assume

that c(eu) = c(ev) = c(ew). If u, v, w are in the subtrees of the same type, then we

distinguish the following situations. If one of {eu, ev, ew} is recolored, without loss of

generality, assume that eu is recolored, then P u
2 ∪P v

1 ∪Pw
2 is proper. If two of {eu, ev, ew}

are recolored, without loss of generality, assume ew is not recolored, then P u
2 ∪P v

1 ∪Pw
2

is proper. If eu, ev and ew are simultaneously recolored or not recolored, without loss of

generality, assume v is visited before w in T , then P u
1 ∪P v

2 ∪Pw
3 is proper. Now suppose

that u, v, w are in the subtrees of different types. Without loss of generality, assume

u, v are in the subtree of the same type, and w is in the subtree of the other type. If eu,

ev and ew are simultaneously recolored or not recolored, then P u
1 ∪ P v

2 ∪ Pw
2 is proper.

If eu and ev are recolored, ew is not recolored, then P u
1 ∪ P v

3 ∪ Pw
2 is proper. If one of

{eu, ev} is recolored, ew is recolored, without loss of generality, assume eu is recolored,

then P u
2 ∪P v

1 ∪Pw
2 is proper. If one of {eu, ev} is recolored, ew is not recolored, without

loss of generality, assume eu is recolored, then P u
1 ∪P v

2 ∪Pw
2 is proper. If eu and ev are

not recolored, ew is recolored, then P u
1 ∪ P v

2 ∪ Pw
3 is proper. Thus, the claim holds.

Next, it is sufficient to show that for any three vertices u, v, w of G, there exists a

proper tree connecting them. If all of them are in D, then there is already a proper tree

connecting them in G[D]. If one of them is in D, without loss of generality, say u ∈ D,

11

then any leg of u (colored by 1, 2 or 3) together with the proper tree connecting v, w,

and the corresponding foot of u in G[D] forms a proper {u, v, w}-tree. If two of them

are in D, without loss of generality, say u, v ∈ D, then there exists a proper u − D

path P u, a proper v −D path P v such that P u ∪ P v is also proper. Assume that the

endvertices of P u, P v in D are u′, v′, respectively. Then, the proper tree connecting

u′, v′ and w together with the paths P u and P v forms a proper {u, v, w}-tree. If all

of them are in D, then there exists a proper u−D path P u, a proper v −D path P v

and a proper w−D path Pw such that P u ∪ P v ∪ Pw is also proper. Assume that the

endvertices of P u, P v and Pw in D are u′, v′, w′, respectively. Then, the proper tree

in G[D] connecting u′, v′, w′ together with the paths P u, P v and Pw forms a proper

{u, v, w}-tree.

To complete the proof of Theorem 3.1, we show the sharpness of the bound with the

graph class G. Let p be an integer with p ≥ 3, G = {G: G is a graph obtained by taking

p complete graphs Ki1 , Ki2 , . . . , Kip with just a vertex in common, say v0 for ij ≥ 4

when 1 ≤ j ≤ p}. For any graph G in G, it is obvious that D = {v0} is a connected

3-way dominating set. By Theorem 3.1, we have px3(G) ≤ px3(G[D]) + 3 = 3. On the

other hand, it is easy to show that px3(G) = 3. Thus, the bound is sharp. �

Corollary 3.2 Let G be a connected graph with minimum degree δ(G) ≥ 3. Then,

px3(G) ≤ γc(G) + 2.

Proof. Since δ(G) ≥ 3, every connected dominating set of G is a connected 3-way

dominating set. Consider a minimum connected dominating set D with size γc(G).

Then, px3(G[D]) ≤ |D| − 1 = γc(G) − 1. We have that px3(G) ≤ px3(G[D]) + 3 ≤
γc(G) + 2 by Theorem 3.1. �

Caro et al. [6] showed that for every connected graph G of order n and minimum

degree δ, γc(G) = n ln(δ+1)
δ+1

(1 + oδ(1)). With the help of Corollary 3.2, we obtain the

following result.

Corollary 3.3 Let G be a connected graph with minimum degree δ(G) ≥ 3. Then,

px3(G) ≤ n ln(δ+1)
δ+1

(1 + oδ(1)) + 2.

Next, we will give another upper bound for the 3-proper index of graphs with

respect to the connected 3-dominating set.

Theorem 3.4 If D is a connected 3-dominating set of a connected graph G with min-

imum degree δ(G) ≥ 3, then px3(G) ≤ px3(G[D]) + 1. Moreover, the bound is sharp.

12

Proof. Since D is a connected 3-dominating set, every vertex in D has at least three

neighbors in D. Let t = px3(G[D]). We first color the edges in G[D] with t different

colors from {2, 3, . . . , t + 1} such that for every triple of vertices in D, there exists a

proper tree in G[D] connecting them. Then, we color the remaining edges with color

1.

Next, we will show that this edge-coloring makes G 3-proper connected. For any

triple {u, v, w} of vertices in G, if all of them are in D, then there is already a proper

tree connecting them in G[D]. If one of them is in D, without loss of generality, say

u ∈ D, then let u1 be the neighbor of u in D. Thus, the proper tree connecting u1, v, w

in G[D] together with the edge uu1 forms a proper {u, v, w}-tree in G. If two of them

are in D, without loss of generality, say u, v ∈ D, then let u1, v1 be the two distinct

neighbors of u, v in D, respectively. Thus, the proper tree connecting u1, v1, w in G[D]

together with two edges uu1, vv1 forms a proper {u, v, w}-tree in G. If all of them are

in D, then let u1, v1, w1 be the three distinct neighbors of u, v, w in D, respectively.

Thus, the proper tree connecting u1, v1, w1 in G[D] together with three edges uu1, vv1,

ww1 forms a proper {u, v, w}-tree in G.

The sharpness of the bound can be seen from the following corollaries. �

Next, we give some sharp upper bounds for the 3-proper index of two special graph

classes: threshold graphs and chain graphs, which implies the sharpness of the bound

in Theorem 3.4. A graph G is called a threshold graph, if there exists a weight function

w: V (G)→ R and a real constant t such that two vertices u, v ∈ V (G) are adjacent if

and only if w(u) + w(v) ≥ t. We call t the threshold of G. A bipartite graph G(U, V)

is called a chain graph, if the vertices of U can be ordered as U = {u1, u2, . . . , us} such

that N(u1) ⊆ N(u2) ⊆ · · · ⊆ N(us).

Corollary 3.5 Let G be a connected threshold graph with δ(G) ≥ 3. Then, px3(G) ≤ 3,

and the bound is sharp.

Proof. Suppose that V (G) = {v1, v2, . . . , vn} where w(v1) ≥ w(v2) ≥ · · · ≥ w(vn).

Since δ(G) ≥ 3, v1, v2, v3 are adjacent to all the other vertices in G. Thus, D =

{v1, v2, v3} is a connected 3-dominating set ofG. SinceG[D] = K3, we have px3(G[D]) =

2. It follows that px3(G) ≤ px3(G[D]) + 1 = 3 by Theorem 3.4.

Next, we give a class of threshold graphs which have px3(G) = 3. Consider the

graph G = rK1 ∨ K3, where r ≥ 2 × 23 + 1. Let V (rK1) = {v1, v2, . . . , vr} and

V (K3) = {u1, u2, u3}. Obviously, it is a threshold graph (u1, u2, u3 can be given a

weight 1, others a weight 0 and the threshold 1). We will show that px3(G) ≥ 3. By

contradiction, we assume that G has a 3-proper coloring with 2 colors. For each vertex

vi ∈ rK1, there exists a 3-tuple Ci = (c1, c2, c3) so that c(viuj) = cj for 1 ≤ j ≤ 3.

13

Therefore, each vertex vi ∈ rK1 has 23 different ways of coloring its incident edges

using 2 colors. Since r ≥ 2 × 23 + 1, there exist at least three vertices vi, vj, vk ∈ V
such that Ci = Cj = Ck. It is easy to check that there is no proper tree connecting vi,

vj, vk in G, a contradiction. �

Corollary 3.6 Let G be a connected chain graph with δ(G) ≥ 3. Then, px3(G) ≤ 3,

and the bound is sharp.

Proof. Let G = G(U, V) be a connected chain graph, where U = {u1, u2, . . . , us},
V = {v1, v2, . . . , vt} such that N(u1) ⊆ N(u2) ⊆ · · · ⊆ N(us). Since the minimum

degree of G is at least three, ui(s− 2 ≤ i ≤ s) is adjacent to all the vertices in V , and

N(u1) has at least three vertices, say {v1, v2, v3}. Clearly, v1, v2, v3 are adjacent to all

the vertices in U . Therefore, D = {v1, v2, v3, us−2, us−1, us} is a connected 3-dominating

set of G. Moreover, G[D] = K3,3 is a traceable graph, we have px3(K3,3) = 2. By

Theorem 3.4 we have that px3(G) ≤ px3(K3,3) + 1 ≤ 3.

Now, we give a class of chain graphs which have px3(G) = 3. Consider the chain

graph G = G[U, V], where U = {u1, u2, . . . , us}, V = {v1, v2, . . . vt} such that N(u1) =

N(u2) = · · · = N(us−3) = {v1, v2, v3}, N(us−2) = N(us−1) = N(us) = {v1, v2, . . . , vt}
and t ≥ 2×23+4. Next, we show that px3(G) ≥ 3. Suppose not, we assume that G has

a 3-proper coloring with 2 colors. For each vertex vi ∈ V for 4 ≤ i ≤ t, there exists a

3-tuple Ci = (c1, c2, c3) such that c(ujvi) = cj for s− 2 ≤ j ≤ s. Therefore, each vertex

vi ∈ V (4 ≤ i ≤ t) has 23 different ways of coloring its incident edges using 2 colors.

Since t − 3 ≥ 2 × 23 + 1, there exist at least three vertices vi, vj, vk ∈ V \ {v1, v2, v3}
such that Ci = Cj = Ck. It is easy to check that there is no proper tree connecting vi,

vj, vk in G, a contradiction. �

4 The 3-proper index of 2-connected graphs

In this section, we give an upper bound for the 3-proper index of 2-connected graphs.

The following notation and terminology are needed in the sequel.

Definition 4.1 Let F be a subgraph of a graph G. An ear of F in G is a nontrivial path

in G whose endvertices are in F but whose internal vertices are not. A nested sequence

of graphs is a sequence (G0, G1, . . . , Gk) of graphs such that Gi ⊂ Gi+1, 0 ≤ i < k.

An ear-decomposition of a 2-connected graph G is a nested sequence (G0, G1, . . . , Gk)

of 2-connected subgraphs of G such that: (1) G0 is a cycle; (2) Gi = Gi−1 ∪ Pi, where

Pi is an ear of Gi−1 in G, 1 ≤ i ≤ k; (3) Gk = G.

14

From Corollary 2.8, we have that if G is a 2-connected Hamiltonian graph of order

n (n ≥ 3), then px3(G) = 2. Thus, we only need to consider the non-Hamiltonian

graphs.

Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4). Then, G must

have an even cycle. In fact, since G is 2-connected, G must have a cycle C. If C is an

even cycle, we are done. Otherwise, C is an odd cycle, we then choose an ear P of C

such that V (C) ∩ V (P) = {a, b}. Since the lengths of the two segments between a, b

on C have different parities, P joining one of the two segments forms an even cycle.

Then, starting from an even cycle G0, there exists a nonincreasing ear-decomposition

(G0, G1, . . . , Gt, Gt+1, . . . , Gk) of G, such that Gi = Gi−1 ∪ Pi (1 ≤ i ≤ k) and Pi is a

longest ear of Gi−1, i.e., `(P1) ≥ `(P2) ≥ · · · ≥ `(Pk), where `(Pi) denotes the length of

Pi. Suppose that V (Pi) ∩ V (Gi−1) = {ai, bi} (1 ≤ i ≤ k). We call the distinct vertices

ai, bi (1 ≤ i ≤ k) the endpoints of the ear Pi, the edges incident to the endpoints in Pi

the end-edges of Pi, the other edges the internal edges of Pi. Without loss of generality,

suppose that `(Pt) ≥ 2 and `(Pt+1) = · · · = `(Pk) = 1. So, Gt is a 2-connected spanning

subgraph of G. Since G is non-Hamiltonian graph, we have t ≥ 2. Denote the order of

Gi (0 ≤ i ≤ k) by ni.

Theorem 4.2 Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4).

Then, px3(G) ≤ bn
2
c.

Proof. Since Gt (t ≥ 2) in the nonincreasing ear-decomposition is a 2-connected span-

ning subgraph of G, it only needs to show that Gt has a 3-proper coloring with at most

bn
2
c colors by Proposition 2.5.

Next, we will give an edge-coloring c of Gt using at most bn
2
c colors. Since G1 is

Hamiltonian, It follows from Corollary 2.8 that we can color the edges of G1 with two

different colors from {1, 2} such that for every triple of vertices in G1, there exists a

proper tree in G1 connecting them. Then, we color the end-edges of P2j−4 and P2j−3

with fresh color j for 3 ≤ j ≤ d t+3
2
e. Finally, we color the internal edges of Pi (2 ≤ i ≤ t)

with two colors from {1, 2} such that Pi is a proper path if `(Pi) ≥ 3. One can see

that we color all the edges of Gt with d t+3
2
e colors. Since n0 +

∑t
i=1(`(Pi) − 1) = n

and n0 ≥ 4, we have that d t+3
2
e ≤ bn

2
c, the equality holds if and only if n0 = 4 and

`(Pi) = 2.

Now we show that this edge-coloring is a 3-proper coloring of Gt. We apply in-

duction on t (t ≥ 2). If t = 2, then let u, v, w be any three vertices of G2. If all of

{u, v, w} are in G1, then there is already a proper tree connecting them in G1. If two

of {u, v, w} are in G1, without loss of generality, assume that u ∈ V (P2)\{a2, b2}, then

the proper tree connecting a2, v, w in G1 together with the proper path uP2a2 forms

15

a proper {u, v, w}-tree in G2. If one of {u, v, w} is in G1, without loss of generality,

assume that u, v ∈ V (P2) \ {a2, b2} and v is on the proper path uP2a2, then the prop-

er tree connecting a2, w in G1 together with the proper path uP2a2 forms a proper

{u, v, w}-tree in G2. If none of {u, v, w} is in G1, then {u, v, w} ⊂ V (P2) \ {a2, b2}.
Thus, there is already a proper path connecting them in P2. Now we assume that this

edge-coloring makes Gi (1 ≤ i ≤ t−1) 3-proper connected. It is sufficient to show that

this edge-coloring makes Gt 3-proper connected. For any three vertices {u, v, w} of Gt,

if all of them are in Gt−1, then there is already a proper tree in Gt−1 connecting them.

If two of {u, v, w} are in Gt−1, without loss of generality, say u ∈ V (Pt)\{at, bt}. If t is

even, then the color of the end-edges of Pt does not appear in Gt−1. Thus, the proper

tree connecting at, v, w in Gt−1 together with the proper path uPtat forms a proper

{u, v, w}-tree in Gt. If t is odd, then the end-edges of Pt−1 and Pt have the same color

which does not appear in Gt−2. We consider the following two cases.

Case 1. |[V (Pt) ∩ V (Pt−1)] \ V (Gt−2)| ≤ 1.

Without loss of generality, assume that at ∈ V (Gt−2) and at 6= bt−1. If both

of v and w are in Gt−2, then the proper tree connecting at, v, w in Gt−2 together

with the proper path uPtat forms a proper {u, v, w}-tree in Gt. If v ∈ V (Gt−2) and

w ∈ V (Pt−1) \ {at−1, bt−1}, then the proper tree connecting at, v, bt−1 in Gt−2 together

with the proper paths uPtat and wPt−1bt−1 forms a proper {u, v, w}-tree in Gt. If

v, w ∈ V (Pt−1) \ {at−1, bt−1}, without loss of generality, assume that v is on the proper

path wPt−1bt−1. Thus, the proper tree connecting at, bt−1 in Gt−2 together with the

proper paths uPtat and wPt−1bt−1 forms a proper {u, v, w}-tree in Gt.

Case 2. |[V (Pt) ∩ V (Pt−1)] \ V (Gt−2)| = 2.

One can see that `(Pt−1) ≥ 3. Without loss of generality, assume that at is on

the proper path of btPt−1at−1 and bt is on the proper path of atPt−1bt−1. If both of

v and w are in Gt−2, then the proper tree connecting bt−1, v, w in Gt−2 together with

the proper path uPtatPt−1bt−1 forms a proper {u, v, w}-tree in Gt. If v ∈ V (Gt−2) and

w ∈ V (Pt−1) \ {at−1, bt−1}, without loss of generality, assume that w is on the proper

path atPt−1bt−1, then the proper tree connecting v, bt−1 in Gt−2 together with the proper

path uPtatPt−1bt−1 forms a proper {u, v, w}-tree in Gt. If v, w ∈ V (Pt−1) \ {at−1, bt−1},
without loss of generality, assume that v is on the proper path atPt−1bt−1. If w is on

the proper path atPt−1bt−1, then the path uPtatPt−1bt−1 is a proper path connecting

u, v, w in Gt. If w is on the proper path atPt−1at−1, then the proper tree connecting

at−1, bt−1 in Gt−2 together with the proper paths uPtatPt−1bt−1 and wPt−1at−1 forms a

proper {u, v, w}-tree in Gt.

If one of {u, v, w} is in Gt−1, then we can easily get a proper {u, v, w}-tree in Gt in

a way similar to the situation that two of {u, v, w} are in Gt−1. If none of {u, v, w} is

16

in Gt−1, then {u, v, w} ⊂ V (Pt) \ {at, bt}. Thus, there is also already a proper path in

Pt connecting them. Hence, we complete the proof. �

Acknowledgement: The authors would like to thank the reviewers for their helpful

suggestions and comments.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in

graphs, J. Combin. Math. Combin. Comput., to appear.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Zs.

Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550–2560.

[4] Q. Cai, X. Li, Y. Zhao, The 3-rainbow index and connected dominating sets, J.

Comb. Optim. 31(2) (2016) 1142–1159.

[5] Q. Cai, X. Li, Y. Zhao, Note on the upper bound of the rainbow index of a graph,

Discrete Appl. Math. 209 (2016) 68–74.

[6] Y. Caro, D.B. West, R. Yuster, Connected domination and spanning trees with

many leaves, SIAM J. Discrete Math. 13(2) (2000) 202–211.

[7] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs,

Math. Bohem. 133 (2008) 85–98.

[8] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized

connectivity, Networks 55 (2010) 360–367.

[9] L. Chen, X. Li, J. Liu, The k-proper index of graphs, arXiv:1601.06236.

[10] L. Chen, X. Li, K. Yang, Y. Zhao, The 3-rainbow index of a graph, Discuss. Math.

Graph Theory 35 (2015) 81–94.

[11] R. Gu, X. Li, Z. Qin, Proper connection number of random graphs, Theoret.

Comput. Sci. 609(2) (2016) 336–343.

[12] E. Laforge, C. Lumduanhom, P. Zhang, Characterizations of graphs having large

proper connection numbers, Discuss. Math. Graph Theory 36(2) (2016) 439–453.

[13] X. Li, C. Magnant, Properly colored notions of connectivity - a dynamic survey,

Theory & Appl. Graphs 0(1) (2015), Art. 2.

17

[14] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs & Combin.

29 (2013) 1–38.

[15] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in math., Springer,

New York, 2012.

[16] X. Li, M. Wei, J. Yue, Proper connection number and connected dominating sets,

Theoret. Comput. Sci. 607 (2015) 480–487.

[17] X. Li, I. Schiermeyer, K. Yang, Y. Zhao, Graphs with 3-rainbow index n− 1 and

n− 2, Discuss. Math. Graph Theory 35 (2015) 105–120.

18

