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Abstract

The Wiener polarity index of a graph G, denoted by Wp(G), is defined
as the number of unordered pairs of vertices that are at distance 3 in G.
As one of the classic topological indices, properties of Wp(G) have been
extensively studied for various graphs in the recent years. In this note
we limit our attention to trees. First we characterize the extremal trees
with given degree sequence with respect to the Wiener polarity index.
Then we compare the extremal trees with different degree sequences.
As a result, extremal statements on the Wiener polarity index of differ-
ent families of trees follow as immediate consequences. We also briefly
discuss the generalization of the Wiener polarity index.

1 Introduction

The so-called topological indices have received much attention in recent years, as they

provide a strong correlation between a chemical compound’s molecular structure and
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its properties. Some examples include, but not limited to Randić index [23], degree

distance [15], connective eccentricity index [33,35], Kirchhoff index [16,34], and Balaban

index [11]. One of the oldest and well-studied such indices is the Wiener index, defined

as the sum of distances over all unordered vertex pairs in a graph G [32] and denoted

by

W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

where dG(u, v) (or simply d(u, v)) is the distance between u and v in G.

Throughout the years the Wiener index has been extensively studied and has become

one of the best known (if not the best known) topological indices. In the same paper,

another topological index was also introduced by Wiener, called the Wiener polarity

index Wp(G), which is defined as the number of unordered pairs of vertices that are at

distance 3 in G:

Wp(G) = |{(u, v)|dG(u, v) = 3, u, v ∈ V (G)}|. (1.1)

Like the Wiener index, the Wiener polarity index has attracted much attention in

recent years. By using the Wiener polarity index, Lukovits and Linert demonstrated

quantitative structure-property relationships in a series of acyclic and cycle-containing

hydrocarbons in [25]. Hosoya [18] found a physical-chemical interpretation of Wp(G).

Du et al. [13] described a linear time algorithm for computing the Wiener polarity index

of trees and characterized the trees maximizing the index among all the trees of the

given order. Later, Deng, Xiao and Tang characterized the extremal trees with respect

to this index among all trees of order n and diameter k [12]. While for cycle-containing

graphs, the maximum Wiener polarity index of unicyclic graphs and the corresponding

extremal graphs were determined in [19]. In [26] Ma et al. determined the sharp upper

bound of the Wiener polarity index among all bicyclic networks based on some graph

transformations. Moreover, the extremal values of catacondensed hexagonal systems,

hexagonal cacti and polyphenylene chains with respect to the Wiener polarity index

were computed in [6]. It was proved that the Wiener polarity index of fullerenes with

n carbon atoms is (9n− 60)/2 in the same paper.



We will focus on the property of the Wiener polarity index in trees where a unique

path exists between any pair of vertices. From the mathematical point of view, the

evaluation of the Wiener polarity index may also be considered as enumerating sub-

graphs isomorphic to a length-3 path. More generally, consider two graphs G and H

and let N(G,H) denote the number of subgraphs of G that are isomorphic to H. Given

an integer m ≥ 0, define

N(m,H) = max{N(G,H) | G is a graph of size m}.

Erdös [14] obtained the exact value of N(m,Kk) where Kk is the complete graph of

order k. Alon [2] and Füredi [17] also considered N(m,H) when H is isomorphic to the

disjoint union of stars. Bollobás and Sarkar considered the case where H is a path of

length s ≥ 2 in [8,9]. Furthermore, Alon [1] presented the asymptotically best possible

results of N(m,H) if H has a spanning subgraph that is a disjoint union of cycles and

isolated edges. Ahlswede and Katona [3], Bollobás and Erdös [7] also studied the case

of paths of fixed length.

Due to the correlation between vertex degrees and valences of atoms, trees of given

degree sequence (nonincreasing sequence of vertex degrees) appear to be an important

family of structures. In Section 2, we first introduce related concepts and some previ-

ously established results. The extremal trees with respect to the Wiener polarity index

then follows as a consequence. By introducing an ordering on the degree sequences,

we compare the extremal trees of different degree sequences in Section 3. As a re-

sult, many extremal structures can be identified in various families of trees. Lastly, we

briefly discuss the generalization of the Wiener polarity index in Section 4. In Section 5

we summarize our work and propose some open problems.

2 Trees of given degree sequence

For a graph G = (V, E) with d(u) denoting the degree of u ∈ V , the first Zagreb index

is defined as

M1(G) =
∑
v∈V

d(v)2,



which is a special case of the general zeroth-order Randić index [20, 21]. The second

Zagreb index is defined as

M2(G) =
∑
uv∈E

d(u)d(v),

which is a special case of the general Randić index [7, 23].

First note the following expression (as a corollary of Theorem 2.1 in [24]) of the

Wiener polarity index in terms of M1 and M2, which is also provided in [22].

Theorem 2.1 For a tree T of order n, we have

WP (T ) = M2(T )−M1(T ) + (n− 1)

where M1(T ) and M2(T ) are the first and second Zagreb indices, respectively.

For trees with a given degree sequence, M1(T ) and n are constants. Then WP (T )

is maximized or minimized exactly when M2(T ) is maximized or minimized. It has

been established in [30] that M2(T ) is maximized by the greedy tree (Definition 2.2)

and minimized by the alternating greedy tree (Definition 2.4).

Definition 2.2 (Greedy Tree) With given vertex degrees, the greedy tree is con-

structed through the following “greedy algorithm”:

(i) Label the vertex with the largest degree as v (the root);

(ii) Label the neighbors of v as v1, v2, ..., assign the largest degrees available to them

such that deg(v1) ≥ deg(v2) ≥ . . .;

(iii) Label the neighbors of v1 (except v) as v11,v12, . . ., such that they take all the

largest degrees available and that deg(v11) ≥ deg(v12) ≥ . . ., then do the same for

v2, v3, ...;

(iv) Repeat (iii) for all the newly labeled vertices. Always start with the neighbors of

the labeled vertex with largest degree whose neighbors are not labeled yet.



v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 2.1. A greedy tree with degree sequence (4,4,4,3,3,3,3,3,3,3,2,2,1,. . .,1).

Figure 2.1 shows an example of a greedy tree.

The greedy tree has been shown to be extremal with respect to many topological

indices, among which the Wiener index (minimized) and the second Zagreb index

(maximized). Consequently we immediately have the following.

Theorem 2.3 Among all trees with a given degree sequence, WP (T ) is maximized by

the greedy tree.

With a given degree sequence, the tree with minimum M2 was shown to be the

following structure.

Definition 2.4 (Alternating greedy tree) Given the non-increasing sequence

(d1, d2, . . . , dm) of internal vertex degrees, the alternating greedy tree is constructed

through the following recursive algorithm:

• If m−1 ≤ dm, then the alternating greedy tree is simply obtained by a tree rooted

at r with dm children, dm −m + 1 of which are leaves and the rest with degrees

d1, . . . , dm−1;

• Otherwise, m − 1 ≥ dm + 1. We produce a subtree T1 rooted at r with dm − 1

children with degrees d1, . . . , ddm−1;



• Consider the alternating greedy tree S with degree sequence (ddm , . . . , dm− 1), let

v be a leaf with the smallest neighbor degree. Identify the root of T1 with v.

Theorem 2.5 Among all trees with a given degree sequence, WP (T ) is minimized by

the alternating greedy tree.

3 Comparing greedy trees and applications

Comparing greedy trees of different degree sequences with respect to various topological

indices (including the Wiener index and second Zagreb index) has been shown to be

an effective way of understanding the properties of a particular topological index as

well as characterizing other extremal tree structures. First we define an ordering of the

degree sequences of trees of the same number of vertices.

Definition 3.1 (Majorization) Given two nonincreasing degree sequences π and π′

with π = (d1, d2, ..., dn) and π′ = (d′1, d
′
2, ..., d

′
n), we say that π′ majors π and write π/π′

if the following conditions are met:

• ∑k
i=1 di 6

∑k
i=1 d′i for 1 6 k 6 n− 1;

• ∑n
i=1 di =

∑n
i=1 d′i.

The following fact provides a convenient tool in the study related to degree se-

quences.

Proposition 3.2 [31] Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two non-

increasing graphical degree sequences. If π / π′, then there exists a series of graphical

degree sequences π1, . . . , πk such that π / π1 / . . . πk / π′, where πi and πi+1 differ at

exactly two entries, say dj (d∗j) and dk (d∗k) of πi (πi+1), with d∗j = dj + 1, d∗k = dk − 1

and j < k.

As an example, it is known that:



Given two degree sequences π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) with π / π′.

Let T ∗
π and T ∗

π′ be the greedy trees with degree sequences π and π′ respectively. Then,

M2(T
∗
π ) ≤ M2(T

∗
π′).

3.1 Comparing greedy trees of different degree sequences

Unlike in the case of Theorems 2.3 and 2.5, we cannot directly apply the above state-

ment to make analogous conclusions for the Wiener polarity index, as M1(T ) changes

with the degree sequence and hence Wp and M2 do not have the monotonic functional

relationship anymore. However, with more detailed analysis, one can still achieve the

following. The proof is similar in nature as that of Theorem 2.1 in [37], but additional

analysis is needed because of the change in M1(.).

Theorem 3.3 Given two nonincreasing degree sequences π = (d1, d2, . . . , dn) and π′ =

(d′1, d
′
2, . . . , d

′
n) with π / π′. Let T ∗

π and T ∗
π′ be the greedy trees with degree sequences π

and π′ respectively. Then,

WP (T ∗
π ) ≤ WP (T ∗

π′).

Proof. By Proposition 3.2 we may assume the degree sequences π and π′ differ at only

two entrices, say dj0(d
′
j0

) and dk0(d
′
k0

) with d′j0 = dj0 +1, d′k0
= dk0−1 for some j0 < k0.

Let u1 and u2 be the vertices of T ∗
π with degrees A := dj0 and C := dk0 respectively

(note that A ≥ C). We will use the following notations:

• let the parent of u1 have degree B;

• let the children of u1 have degrees B1 ≥ B2 ≥ . . . ≥ BA−1;

• let the parent of u2 have degree D;

• let the children of u2 have degrees D1 ≥ D2 ≥ . . . ≥ DC−1.

From the structure of greedy trees it is easy to see that D ≤ B and Di ≤ Bj for any

1 ≤ i ≤ C − 1 and 1 ≤ j ≤ A− 1.



Now let

Tπ′ = T ∗
π − {u2u3}+ {u1u3}

as in Figure 3.2, where u3 is a child of u2 with degree D1. Note that Tπ′ has degree

sequences π′ but is not necessarily a greedy tree.

u1

u2

u1

u2

u3

u3

T
∗

π
T
π
′

Figure 3.2. π=(4, 4, 3, 3, 3, 3, 2, 2, 1, . . . , 1) and π′=(4, 4, 4, 3, 3, 2, 2, 2, 1, . . . , 1).

From T ∗
π to Tπ′ , the change in M1(.) is

M1(Tπ′)−M1(T
∗
π ) = (A+ 1)2 + (C − 1)2 − (A2 + C2) = 2(A− C + 1).

The change in M2(.) can also be directly computed. We make use Theorem 2.1 of [37]

and have

M2(Tπ′)−M2(T
∗
π ) = B −D + (A− C + 1)D1 +

A−1∑
i=1

Bi −
C−1∑
j=2

Dj.

Thus

WP (T ′
π)−WP (T ∗

π ) =(M2(Tπ′)−M1(Tπ′) + n− 1)− (M2(T
∗
π )−M1(T

∗
π ) + n− 1)

=M2(Tπ′)−M2(T
∗
π )− (M1(Tπ′)−M1(T

∗
π ))

=B −D + (D1 − 2)(A− C + 1) +
A−1∑
i=1

Bi −
C−1∑
j=2

Dj. (2.1)

Note that B−D ≥ 0 and
∑A−1

i=1 Bi−
∑C−1

j=2 Dj ≥ 0 from the definition of a greedy tree.

We now consider two cases:

• D1 ≥ 2. Clearly, (2.1) ≥ 0;



• D1 = 1. In this case, we have Dj = 1 for 2 ≤ j ≤ C − 1. Then (2.1) can be

rewritten as

WP (T ′
π)−WP (T ∗

π ) =B −D − (A− C + 1) +
A−1∑
i=1

Bi − (C − 2)

≥B −D − (A− C + 1) +A− 1− (C − 2) = B −D ≥ 0.

Hence,

WP (T ∗
π ) ≤ WP (Tπ′).

We have WP (Tπ′) ≤ WP (T ∗
π′) by Theorem 2.3. Therefore

WP (T ∗
π ) ≤ WP (T ∗

π′).

3.2 Applications

As mentioned earlier, the importance of Theorem 3.3 lies in the fact that the char-

acterization of many other extremal structures follows immediately. We list a few of

them here. For convenience we say that a degree sequence is optimal if it majorizes all

other degree sequences under the given constraints. The key to all the proofs below is

to identify the optimal degree sequence and apply Theorems 2.3 and 3.3.

• Among all trees of order n, the degree sequence (n− 1, 1, . . . , 1) is optimal. The

corresponding greedy tree, the star, maximizes WP (.);

• Among all trees of order n with given maximum degree ∆, the degree sequence

(∆, ∆, . . . , ∆, q, 1, . . . , 1) (where 1 ≤ q ≤ ∆ − 1) is optimal. Hence the corre-

sponding greedy tree maximizes WP (.). In different literatures such a tree is also

called a “complete ∆-ary tree”, “good ∆-ary tree”, or “Volkmann trees”.

• Among all trees of order n with s leaves, the degree sequence


s, 2, . . . , 2, 1, . . . , 1︸ ︷︷ ︸

s 1’s




is optimal, the corresponding “star like tree” maximizes WP (.).



• Among all trees of order n with independence number α, the greedy tree with

degree sequence (α, 2, . . . , 2, 1, . . . , 1) maximizes WP (.). This is because:

– If I is an independent set of T of exactly α vertices. For any leaf u /∈ I, the

unique neighbor v of u must be in I and I∪{u}−{v} is also an independent

set of T . Hence there exists an independent set of α vertices that contains

all leaves. Consequently there are at most α leaves. Under this condition,

the degree sequence (α, 2, . . . , 2, 1, . . . , 1) is optimal.

• Among all trees of order n with matching number β, the greedy tree with degree

sequence (n− β, 2, . . . , 2, 1, . . . , 1) maximizes WP (.). This is because:

– If M is a matching of T of exactly β edges, each of these edges con-

tains at least one vertex of degree at least 2. Hence there are at least β

vertices of degree at least 2. Under this condition, the degree sequence

(n− β, 2, . . . , 2, 1, . . . , 1) is optimal.

4 Generalizations

In [22], the authors introduced the generalized Wiener polarity index WPk
(G) as the

number of unordered pairs of vertices {u, v} at distance k in G. This is, in fact, the

k-th coefficient in the Wiener polynomial. In the case of k = 3 this is exactly the

original Wiener polarity index. For a tree T , WPk
(T ) is just the number of paths

with length k in T . If the diameter of T is less than k, then WPk
(T ) = 0. Thus the

minimum value of WPk
(T ) is zero, achieved by all trees with diam(T ) < k. In [22], the

authors proved that the maximum value of WPk
(T ) is achieved for a tree with diameter

k and with all pendent vertices with eccentricity (the largest distance from a vertex

to any other vertex) k. A linear algorithm for computing WPk
(T ) of trees was also

designed. Bollobás and Tyomkyn [10] considered the maximum number of walks or

paths of certain lengths in trees and they proved the following.

Theorem 4.1 [10] For a tree T of order n and every integer k, there is a p such that

the maximal value of WPk
(T ) is attained for a p-broom.



To continue the effort of understanding the generalized Wiener polarity index, we

start with finding expressions that relate it to other topological indices. We will gen-

eralize Theorem 2.1 for k ≥ 4. First we define a generalization of the Zagreb indices

Mk(T ) =
∑

d(u,v)=k−1

d(u)d(v)

for k ≥ 3.

Theorem 4.2 For a tree T and integer k ≥ 3, we have Moreover,

WPk
(T ) = (−1)k

(
k − 1

2
M1(T ) +

k−1∑
i=2

(−1)i+1(k − i)Mi(T )− (n− 1)

)
.

Proof. First we also define

Lk(T ) =
∑

d(u,v)=k−1

(d(u) + d(v)) =
∑
u∈V

∑

d(u,w)=k−1

d(u),

then

WPk
(T ) =

∑

d(u,v)=k−2

(d(u)− 1)(d(v)− 1)

=
∑

d(u,v)=k−2

d(u)d(v)−
∑

d(u,v)=k−2

(d(u) + d(v)) +
∑

d(u,v)=k−2

1

=Mk−1(T )− Lk−1(T ) + WPk−2
(T ). (4.1)

Further examining Lk−1(T ) shows

Lk(T ) =
∑

d(u,v)=k−1

(d(u) + d(v)) =
∑
u∈V


d(u) ·

∑

d(u,w)=k−2

(d(w)− 1)




=
∑
u∈V

∑

d(u,w)=k−2

d(u)d(w)−
∑
u∈V

∑

d(u,w)=k−2

d(u)

=2Mk−1(T )− Lk−1(T ). (4.2)

For even k, repeatedly applying (4.1) yields

WPk
(T ) =

k−1∑

i=3,odd

Mi(T )−
k−1∑

i=3,odd

Li(T ) + WP2(T ). (4.3)



Similarly, by (4.2), we have for odd i ≥ 3

Li = 2
i−1∑
j=2

(−1)jMj(T )−M1(T ). (4.4)

Substitute (4.4) into (4.3), then

WPk
(T ) =

k−1∑

i=3,odd

Mi(T )−
k−1∑

i=3,odd

(
2

i−1∑
j=2

(−1)jMj(T )−M1(T )

)
+ WP2(T )

=
k−1∑

i=3,odd

Mi(T )− 2
k−1∑

i=3,odd

i−1∑
j=2

(−1)jMj(T ) +
k − 2

2
M1(T ) +

M1(T )

2
− (n− 1)

=
k−1∑

i=3,odd

Mi(T )−
k−2∑

i=2,even

(k − i)Mi(T ) +
k−3∑

i=3,odd

(k − i− 1)Mi(T )

+
k − 1

2
M1(T )− (n− 1)

=
k−1∑
i=2

(−1)i+1(k − i)Mi(T ) +
k − 1

2
M1(T )− (n− 1).

Similarly, for odd k we have

WPk
(T ) =

k−1∑
i=2

(−1)i(k − i)Mi(T )− k − 1

2
M1(T ) + (n− 1).

Hence

WPk
(T ) = (−1)k

(
k−1∑
i=2

(−1)i+1(k − i)Mi(T ) +
k − 1

2
M1(T )− (n− 1)

)
.

5 Concluding remarks

In this note we examined the properties of the Wiener polarity index of trees. In

particular, we point out that the extremal trees with a given degree sequence with

respect to the Wiener polarity index are the greedy trees and alternating greedy trees.

This follows directly from the correlation between the Wiener polarity index and other

previously studied indices such as the Zagreb indices. We then compared the values of



the Wiener polarity index of greedy trees with different degree sequences. As immediate

consequences we listed a number of extremal results for different families of trees.

Lastly, we discussed the generalization of the Wiener polarity index, for which some

basic extremal results were established before. We provided formulas that express the

generalized Wiener polarity index in terms of other graph invariants.

Characterizing the extremal trees for the generalization of the Wiener polarity index

appears to be difficult. For instance, it is easy to find counter examples to Theorems 2.3

and 3.3 for WP4(T ). Among trees with a given degree sequence, the extremal problems

for general WPk
(T ) and Mk(T ) remain wide open.
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[22] A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener

index, Graphs Combin. 29(5)(2013) 1403–1416.

[23] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput.
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Math. 308(2008) 3407–3411.



[29] H. Wang, The extremal values of the Wiener index of a tree with given degree

sequence, Discrete Appl. Math. 156(2008) 2647–2654.

[30] H. Wang, Functions on adjacent vertex degrees of trees with given degree sequence,

Cent. Eur. J. Math. 12(11)(2014) 1656–1663.

[31] W.D. Wei, The class U(R,S) of (0,1) matrices, Discrete Math. 39(1982) 201–205.

[32] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc.

69(1947) 17–20.
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