Arc-transitive graphs of square-free order and small valency

Cai Heng Li ${ }^{\text {a }}$, Zai Ping Lu ${ }^{\text {b,* }}$, Gaixia Wang ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
${ }^{\mathrm{b}}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China
${ }^{\text {c }}$ Department of Applied Mathematics, Anhui University of Technology, Maanshan 243002, PR China

ARTICLE INFO

Article history:

Received 16 November 2015
Received in revised form 26 April 2016
Accepted 5 June 2016

Keywords:

Arc-transitive graph
Normal quotient
Vertex stabilizer
Locally primitive
(Almost) simple group

Abstract

This paper is one of a series of papers devoted to characterizing edge-transitive graphs of square-free order. It presents a complete list of locally-primitive arc-transitive graphs of square-free order and valency $d \in\{5,6,7\}$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs and groups considered in this paper are assumed to be finite.
Let $\Gamma=(V, E)$ be a simple connected graph with vertex set V and edge set E. The number of vertices $|V|$ is called the order of Γ. Let Aut Γ be the automorphism group of Γ and let G be a subgroup of Aut Γ, written as $G \leq A u t \Gamma$. Then the graph Γ is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V and E, respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. The graph Γ is said to be G-arc-transitive if G acts transitively on the set of all arcs in Γ. For $\alpha \in V$, we denote by G_{α} and $\Gamma(\alpha)$ respectively the stabilizer of α in G and the set of neighbors of α in Γ, that is,

$$
G_{\alpha}=\left\{g \in G \mid \alpha^{g}=\alpha\right\} \quad \text { and } \quad \Gamma(\alpha)=\{\beta \in V \mid\{\alpha, \beta\} \in E\} .
$$

The graph Γ is called G-locally-primitive if for every $\alpha \in V$ the stabilizer G_{α} acts primitively on $\Gamma(\alpha)$. It is easy to see that Γ is G-edge-transitive if it is G-locally-primitive. Moreover, if Γ is both G-vertex-transitive and G-locally-primitive, then Γ must be G-arc-transitive; in this case, Γ is said to be G-locally-primitive arc-transitive.

The study of graphs with square-free order has a long history, see for example $[1,16,17,19]$ for those graphs of order being a product of two primes. This paper is devoted to classifying arc-transitive graphs of square-free order and small valency.

In recent work [14], the authors gave a reduction for connected locally-primitive arc-transitive of square-free order. We proved that, for a connected locally-primitive arc-transitive graph Γ of square-free order and valency d, if it is not a complete bipartite graph then either Aut Γ is soluble, or Γ is a cover of one of the 'basic' graphs associated with $\operatorname{PSL}(2, p)$, $\operatorname{PGL}(2, p)$ and a finite number (depending only on the valency d) of other almost simple groups. Then for some small values of d we may determine most 'basic' graphs, which makes it possible to give a classification of such graphs of small valencies.

[^0]Thus a natural question is to find a classification of locally-primitive arc-transitive graphs of square-free order and small valency d. This question was solved for $d=3$ and 4 in [13] and [15], respectively. In this paper we deal with the case where $d \in\{5,6,7\}$. Our main result is stated as follows.

Theorem 1.1. Let Γ be a connected G-locally-primitive arc-transitive graph of square-free order and valency $d=5,6$ or 7 . Then one of the following statements holds.
(i) $G=\mathrm{D}_{2 n}: \mathbb{Z}_{d}$ with $d \in\{5,7\}$, and Γ is a graph given by Construction 4.1.
(ii) Γ is isomorphic to one of the following graphs:
$\mathrm{K}_{6}, \mathrm{~K}_{7}, \mathrm{~K}_{5,5}, \mathrm{~K}_{7,7}$ and $\mathrm{K}_{7,7}-7 \mathrm{~K}_{2}$;
the incidence graphs of $\operatorname{PG}(3,2), \mathrm{PG}(2,4), \mathrm{PG}(2,5)$ and $\mathrm{GQ}(4)$;
the graphs given in Examples 4.2-4.5.
(iii) $G=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$ for odd prime p, and for an edge $\{\alpha, \beta\}$ of Γ the pair $\left(G_{\alpha}, G_{\alpha \beta}\right)$ is listed in Table 3.

For groups, we follow the notation used in the Atlas [6] while we sometimes use \mathbb{Z}_{l} and \mathbb{Z}_{p}^{k} to denote respectively the cyclic group of order l and the elementary abelian group of order p^{k}.

2. Preliminaries

Let $\Gamma=(V, E)$ be a graph of valency d, let $\{\alpha, \beta\} \in E$ and $G \leq$ Aut Γ. Set $G_{\alpha \beta}=G_{\alpha} \cap G_{\beta}$, call the arc-stabilizer of (α, β) (and (β, α)). Assume that Γ is G-arc-transitive. Then G_{α} is transitive on $\Gamma(\alpha)$, and $d=|\Gamma(\alpha)|=\left|G_{\alpha}: G_{\alpha \beta}\right|$. Take $x \in G$ with $(\alpha, \beta)^{x}=(\beta, \alpha)$. Then

$$
x \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right) \backslash G_{\alpha \beta}, \quad x^{2} \in G_{\alpha \beta} .
$$

(In particular, the index $\left|\mathbf{N}_{G}\left(G_{\alpha \beta}\right): G_{\alpha \beta}\right|$ is even.) Obviously, this x may be chosen as a 2-element in the normalizer $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)$. Moreover, Γ is connected if and only if $\left\langle x, G_{\alpha}\right\rangle=G$. Since G is transitive on V, the map $\alpha^{g} \mapsto G_{\alpha} g$ is a bijection between V and $\left[G: G_{\alpha}\right.$], the set of right cosets of G_{α} in G. It is easy to show that this map is an isomorphism from the graph Γ to a coset graph defined as follows.

Let G be a finite group and H be a core-free subgroup of G, where core-free means that $\cap_{g \in G} H^{g}=1$. For $x \in G \backslash H$, the coset graph $\operatorname{Cos}\left(G, H, H\left\{x, x^{-1}\right\} H\right)$ is defined on $[G: H]$ such that $H g_{1}$ and $H g_{2}$ are adjacent whenever $g_{2} g_{1}^{-1} \in H x H \cup H x^{-1} H$. Note that G may be viewed as a subgroup of $\operatorname{Aut} \operatorname{Cos}\left(G, H, H\left\{x, x^{-1}\right\} H\right)$, where G acts on $[G: H]$ by right multiplication. The following statements for coset graphs are well-known.

Lemma 2.1. Let G be a finite group and H a core-free subgroup of G. Set $\Gamma=\operatorname{Cos}\left(G, H, H\left\{x, x^{-1}\right\} H\right)$, where $x \in G \backslash H$. Then Γ is both G-vertex-transitive and G-edge-transitive, and
(i) Γ is G-arc-transitive if and only if $H x H=H y H$ for some 2-element $y \in \mathbf{N}_{G}\left(H \cap H^{x}\right) \backslash H$ with $y^{2} \in H \cap H^{x}$; in this case, Γ has valency $\left|H:\left(H \cap H^{y}\right)\right|$;
(ii) Γ is connected if and only if $\langle H, x\rangle=G$.

Let $\Gamma=(V, E)$ be a connected graph and $G \leq$ Aut Γ. For $\alpha \in V$, the stabilizer G_{α} induces a permutation group $G_{\alpha}^{\Gamma(\alpha)}$. Let $G_{\alpha}^{[1]}$ be the kernel of this action. Then $G_{\alpha}^{\Gamma(\alpha)} \cong G_{\alpha} / G_{\alpha}^{[1]}$. Consider the actions of Sylow subgroups of $G_{\alpha}^{[1]}$ on V. It is easily shown that the next lemma holds, see [5] for example.

Lemma 2.2. Let $\Gamma=(V, E)$ be a connected regular graph, $G \leq$ Aut Γ and $\alpha \in V$. Assume that $G_{\alpha} \neq 1$. Let p be a prime divisor of $\left|G_{\alpha}\right|$. Then $p \leq|\Gamma(\alpha)|$. If further Γ is G-vertex-transitive, then p divides $\left|G_{\alpha}^{\Gamma(\alpha)}\right|$ and, for $\beta \in \Gamma(\alpha)$, each prime divisor of $\left|G_{\alpha \beta}\right|$ is less than $|\Gamma(\alpha)|$.

Lemma 2.3. Assume that $\Gamma=(V, E)$ is a connected G-vertex-transitive graph. Let $N \triangleleft G$ be a normal subgroup of G such that $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular for some $\alpha \in V$. Then $N_{\alpha}^{[1]}=1$, that is, N_{α} is faithful on $\Gamma(\alpha)$.
Proof. Let $\beta \in \Gamma(\alpha)$. Then $\beta=\alpha^{x}$ for some $x \in G$, and hence $N_{\beta}=N \cap G_{\alpha^{x}}=\left(N_{\alpha}\right)^{x}$. It follows that $N_{\beta}^{\Gamma(\beta)}$ and $N_{\alpha}^{\Gamma(\alpha)}$ are permutation isomorphic; in particular, $N_{\beta}^{\Gamma(\beta)}$ is semiregular on $\Gamma(\beta)$. Thus $N_{\alpha}^{[1]}$ acts trivially on $\Gamma(\beta)$, and so $N_{\alpha}^{[1]}=N_{\beta}^{[1]}$. Since Γ is connected, $N_{\alpha}^{[1]}$ fixes each vertex of Γ, and hence $N_{\alpha}^{[1]}=1$.

Lemma 2.4. Let $\Gamma=(V, E)$ be a connected graph, $N \triangleleft G \leq$ Aut Γ and $\alpha \in V$. Assume that either N is regular on V, or Γ is a bipartite graph such that N is regular on both the bipartition subsets of Γ. Then $G_{\alpha}^{[1]}=1$.

Proof. Set $X=N G_{\alpha}^{[1]}$. Then $X_{\alpha}=G_{\alpha}^{[1]}$ and $X_{\alpha}^{[1]}=G_{\alpha}^{[1]}$, and hence $X_{\alpha}^{\Gamma(\alpha)}=1$.
Assume first that N is regular on V. Then $G=N G_{\alpha}$. It follows that X is normal in G. Thus our result follows from Lemma 2.3.
Now assume that Γ is a bipartite graph with bipartition subsets U and W, and that N is regular on both U and W. For each $\delta \in U \cup W$, we have $N X_{\alpha}=X=N X_{\delta}$, and $\left|X_{\delta}\right|=\left|X_{\alpha}\right|$. Since $X_{\alpha}=G_{\alpha}^{[1]}$ acts trivially on $\Gamma(\alpha)$, we have $X_{\alpha} \leq X_{\beta}$ for
each $\beta \in \Gamma(\alpha)$, and so $X_{\alpha}=X_{\beta}$ as $\left|X_{\beta}\right|=\left|X_{\alpha}\right|$. For $\alpha^{\prime} \in U$, there exists some $x \in N$ such that $\alpha^{\prime}=\alpha^{x}$. Then $X_{\alpha^{\prime}}=X_{\alpha^{x}}=X_{\alpha}^{x}$ and $\Gamma\left(\alpha^{\prime}\right)=\Gamma(\alpha)^{x}$. It follows that $X_{\beta^{\prime}}=X_{\alpha^{\prime}}$ for every $\beta^{\prime} \in \Gamma\left(\alpha^{\prime}\right)$. This implies that $X_{\delta}=X \gamma$ for an arbitrary edge $\{\delta, \gamma\}$ of Γ. By the connectedness of Γ, we conclude that $G_{\alpha}^{[1]}$ fixes each vertex of Γ. Thus $G_{\alpha}^{[1]}=1$.

Let $\Gamma=(V, E)$ be a connected G-locally-primitive graph, where $G \leq$ Aut Γ. Then Γ is G-edge-transitive, and G has at most two orbits on V. Let N be a normal subgroup of G. Note that $G_{\alpha}^{\Gamma(\alpha)}$ is a primitive permutation group for each $\alpha \in V$. If Γ is G-vertex-transitive then, by Lemma 2.3, either N is semiregular on V, or N_{α} is transitive on $\Gamma(\alpha)$; the latter case implies that Γ is N-edge-transitive. Then we have

Lemma 2.5. Let $\Gamma=(V, E)$ be a connected G-locally-primitive arc-transitive graph, where $G \leq A u t \Gamma$. Let N be a normal subgroup of G. If N is not semiregular on V then for $\alpha \in V$ the stabilizer N_{α} is transitive on $\Gamma(\alpha)$; in particular, N is transitive on E and has at most two orbits on V.

Suppose that N is intransitive on every G-orbit on V. For $\alpha \in V$, we use $\bar{\alpha}$ to denote the N-orbit containing α. The normal quotient Γ_{N} is defined as the graph with vertex set $\bar{V}=\{\bar{\alpha} \mid \alpha \in V\}$ and edge set $\{\{\bar{\alpha}, \bar{\beta}\} \mid\{\alpha, \beta\} \in E\}$. The graph Γ is called a (normal) cover of Γ_{N} if, for every edge of $\{\bar{\alpha}, \bar{\beta}\}$ of Γ_{N}, the subgraph of Γ induced by $\bar{\alpha} \cup \bar{\beta}$ is a matching. If Γ is a cover of Γ_{N} then, noting that Γ is connected and G-vertex-transitive, it is easily shown that N is semiregular on V and N itself is the kernel of G acting on \bar{V}. Moreover, the following lemma holds.

Lemma 2.6. Let $\Gamma=(V, E)$ be a connected G-locally-primitive graph, where $G \leq$ Aut Γ. Let N be a normal subgroup of G. Assume that N is intransitive on every G-orbit on V. Then one of the following statements holds.
(i) Γ is a cover of Γ_{N}, N is semiregular on V and N itself is the kernel of G acting on \bar{V}, and Γ_{N} is (G / N)-locally-primitive.
(ii) N has two orbits on V, Γ is a G-arc-transitive bipartite graph, and either Γ is N-edge-transitive or $G_{\alpha}^{[1]}=1$ for every $\alpha \in V$.

Proof. Assume that N has two orbits on V. Then, by the choice of N, we know that G is transitive on V, and so Γ is bipartite and G-arc-transitive. Thus part (ii) of this lemma follows from Lemmas 2.4 and 2.5.

Assume that N has at least three orbits on V. If G has two orbits on V then part (i) of this lemma occurs by [9, Lemma 5.1].
Assume further that G is transitive on V. Take an arbitrary vertex $\alpha \in V$, and set $\Delta=\{\Gamma(\alpha) \cap \bar{\beta} \mid \beta \in \Gamma(\alpha)\}$. Then Δ is a G_{α}-invariant partition of $\Gamma(\alpha)$. Since G_{α} acts primitively on $\Gamma(\alpha)$, either $|\Delta|=1$ or $|\Gamma(\alpha) \cap \bar{\beta}|=1$ for each $\beta \in \Gamma(\alpha)$. On other hand, Γ_{N} is connected and of order no less 3, we have $|\Delta| \geq 2$. Thus $|\Gamma(\alpha) \cap \bar{\beta}|=1$ for each $\beta \in \Gamma(\alpha)$. This yields that, for every edge of $\{\bar{\alpha}, \bar{\beta}\}$ of Γ_{N}, the subgraph of Γ induced by $\bar{\alpha} \cup \bar{\beta}$ is a matching. Then part (i) follows.

3. The structure of stabilizers

Let $\Gamma=(V, E)$ be a group and $G \leq$ Aut Γ. For an edge $\{\alpha, \beta\} \in E$, let $G_{\alpha \beta}^{[1]}=G_{\alpha}^{[1]} \cap G_{\beta}^{[1]}$, the kernel of the edge stabilizer $G_{\{\alpha, \beta\}}$ acting on $\Gamma(\alpha) \cup \Gamma(\beta)$. Then

$$
G_{\alpha}^{[1]} / G_{\alpha \beta}^{[1]} \cong\left(G_{\alpha}^{[1]} G_{\beta}^{[1]}\right) / G_{\beta}^{[1]} \triangleleft G_{\alpha \beta} / G_{\beta}^{[1]} \cong G_{\alpha \beta}^{\Gamma(\beta)}=\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha}
$$

Moreover, the following result is well-known, see [8].
Theorem 3.1. Let $\Gamma=(V, E)$ be a connected G-locally-primitive arc-transitive graph. If $\{\alpha, \beta\} \in E$ then $G_{\alpha \beta}^{[1]}$ is a p-group for some prime p.

Since $G_{\alpha} / G_{\alpha}^{[1]} \cong G_{\alpha}^{\Gamma(\alpha)}$ and $G_{\alpha}^{[1]} / G_{\alpha \beta}^{[1]}$ is isomorphic to a normal subgroup of $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha}$, if $G_{\alpha}^{\Gamma(\alpha)},\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha}$ and $G_{\alpha \beta}^{[1]}$ are soluble then G_{α} is soluble. Note that $\left(\left(G_{\beta}\right)^{\Gamma(\beta)}\right)_{\alpha} \cong\left(\left(G_{\alpha}\right)^{\Gamma(\alpha)}\right)_{\beta}$ if Γ is G-arc-transitive. Then Theorem 3.1 implies the next result.

Lemma 3.2. Let Γ be a connected G-locally-primitive arc-transitive graph. Then G_{α} is soluble if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is soluble.
For a positive integer s, an s-arc in Γ is an $(s+1)$-tuple $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s}\right)$ of vertices such that $\alpha_{i-1} \in \Gamma\left(\alpha_{i}\right)$ for $1 \leq i \leq s$ and $\alpha_{i-1} \neq \alpha_{i+1}$ for $1 \leq i \leq s-1$. The graph Γ is said to be (G, s)-arc-transitive if it contains at least one s-arc and G acts transitively on both V and the set of s-arcs, and said to be (G, s)-transitive if it is (G, s)-arc-transitive but not $(G, s+1)$-arctransitive. (Note that s-arc-transitivity yields $(s-1$)-arc-transitivity and locally-primitivity for all $s>1$.) For the stabilizers of s-transitive graphs, we formulate the following theorem from [20,22,23].

Theorem 3.3. Let $\Gamma=(V, E)$ be a connected ($G, s)$-transitive graph with $s \geq 2$, and let $\{\alpha, \beta\} \in E$. Then one of the following holds.
(1) $G_{\alpha \beta}^{[1]}=1$ and $s \leq 3$;
(2) $G_{\alpha \beta}^{[1]}$ is a non-trivial p-group, $G_{\alpha}^{\Gamma(\alpha)} \triangleright \operatorname{PSL}\left(n, p^{f}\right),|\Gamma(\alpha)|=\frac{p^{f n}-1}{p^{f}-1}$, and either
(2.1) $n \geq 3$ and $s \in\{2,3\}$; or
(2.2) $n=2, s \geq 4$ and one of the following holds:
(i) $s=4$ and $G_{\alpha}=\left[p^{2 f}\right]:\left(a \cdot \operatorname{PGL}\left(2, p^{f}\right)\right) \cdot R$, where $a=\frac{p^{f}-1}{\left(3, p^{f}-1\right)}$ and $|R|$ is a divisor of $\left(3, p^{f}-1\right) f$;
(ii) $s=5, p=2$ and $G_{\alpha}=\left[2^{3 f}\right]$:GL(2, $\left.2^{f}\right)$. b, where b is a divisor of f;
(iii) $s=7, p=3$ and $G_{\alpha}=\left[3^{5 f}\right]: \mathrm{GL}\left(2,3^{f}\right) . b$, where b is a divisor of f.

For the case (2.1) of Theorem 3.3, the structure of G_{α} is determined by Trofimov in a series of papers, see [18]. Theorems 3.1 and 3.3 and Trofimov's results are important tools in the study of locally-primitive arc-transitive graphs. For convenience, we produce here an explicit list for the stabilizers of locally-primitive graphs of valency $d \in\{5,6,7\}$, which is of course a reproduction of the above results.

Theorem 3.4. Let $\Gamma=(V, E)$ be a connected G-locally-primitive arc-transitive graph of valency $d \in\{5,6,7\}$. Let $\alpha \in V$. Then one of the following holds.
(i) Γ is not ($G, 2$)-arc-transitive, and G_{α} is (isomorphic to) one of the groups:

$$
\mathbb{Z}_{5}, \mathrm{D}_{10}, \mathrm{D}_{20} ; \mathbb{Z}_{7}, \mathrm{D}_{14}, \mathrm{D}_{28}, 7: 3,3 \times(7: 3)
$$

(ii) Γ is (G, s)-transitive with $s \geq 2$, and G_{α} lies in the following list:

$d=5$:	$\frac{s}{G_{\alpha}}$	2		3					5
		$\begin{gathered} 5: 4,2 \times(5: 4) \\ A_{5}, S_{5} \end{gathered}$		$\begin{aligned} & 4 \times(5: 4), A_{4} \times A_{5}, \\ & \left(A_{4} \times A_{5}\right) \cdot 2, S_{4} \times S_{5} \end{aligned}$			$\begin{aligned} & {\left[4^{2}\right]: \mathrm{SL}(2,4),} \\ & {\left[4^{2}\right]: \mathrm{GL}(2,4)} \\ & {\left[4^{2}\right]: \Gamma \mathrm{L}(2,4)} \end{aligned}$		$\begin{aligned} & {\left[4^{3}\right]: \mathrm{GL}(2,4)} \\ & {\left[4^{3}\right]: \Gamma \mathrm{L}(2,4)} \end{aligned}$
$d=6$:	s	2	3				4		
	G_{α}	$\begin{array}{ll} A_{6}, & S_{6} \\ A_{5}, & S_{5} \end{array}$	$\begin{gathered} \mathrm{A}_{5} \times \mathrm{A}_{6},\left(\mathrm{~A}_{5} \times \mathrm{A}_{6}\right) .2, \mathrm{~S}_{5} \times \mathrm{S}_{6} \\ \mathrm{D}_{10} \times \operatorname{PSL}(2,5), \quad(5 \times \operatorname{PSL}(2,5)) .2 \\ \mathrm{D}_{10} \times \operatorname{PGL}(2,5), \quad(5: 4) \times \operatorname{PGL}(2,5) \end{gathered}$					$5^{2}: G L(2,5)$	
	s	2			2, 3	3			
$d=7$:	G_{α}	$\begin{gathered} 7: 6,2 \times(7: 6), 3 \times(7: 6) \\ \operatorname{SL}(3,2) \\ 2^{3} \cdot \operatorname{SL}(3,2) \\ {\left[2^{4}\right]: \operatorname{SL}(3,2)} \end{gathered}$			$\begin{aligned} & \mathrm{A}_{7} \\ & \mathrm{~S}_{7} \end{aligned}$	$\begin{gathered} 6 \times(7: 6), A_{6} \times A_{7},\left(A_{6} \times A_{7}\right) .2 \\ S_{6} \times S_{7}, A_{4} \times \operatorname{SL}(3,2), S_{4} \times \operatorname{SL}(3,2) \\ {\left[2^{6}\right] .(\operatorname{SL}(2,2) \times \operatorname{SL}(3,2))} \\ {\left[2^{20}\right] .(\operatorname{SL}(2,2) \times \operatorname{SL}(3,2))} \\ \hline \end{gathered}$			

Proof. Assume that Γ is (G, s)-transitive. Note that $G_{\alpha}^{\Gamma(\alpha)}$ is a primitive permutation group of degree d. Then either
(a) $G_{\alpha}^{\Gamma(\alpha)} 2$-transitive and $\operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right) \cong \mathrm{A}_{5}, \mathrm{~A}_{6}, \mathrm{~A}_{7}$ or $\operatorname{PSL}(3,2)$; or
(b) $G_{\alpha}^{\Gamma(\alpha)} \cong \mathbb{Z}_{d}: \mathbb{Z}_{l}$ with $d \in\{5,7\}$ and l divisor of $d-1$.

If $G_{\alpha}^{[1]}=1$ then $G_{\alpha} \cong G_{\alpha}^{\Gamma(\alpha)}$ is known and, by [12, Proposition 2.6], either $s \leq 2$ or $\left(d, G_{\alpha}\right)=\left(7, A_{7}\right)$ or $\left(7, S_{7}\right)$. Thus we next suppose that $G_{\alpha}^{[1]} \neq 1$. Let $\beta \in \Gamma(\alpha)$.

Assume first that $G_{\alpha \beta}^{[1]}$ is a non-trivial p-group. Then by Theorem 3.3 and $[21], G_{\alpha}^{\Gamma(\alpha)} \cong \operatorname{PSL}(2,4)$ or $\operatorname{PSL}(3,2)$. Thus, by Theorem 3.3 and [18], the triple $\left(d, s, G_{\alpha}\right)$ lies in the following table:

d	s	G_{α}
5	4	$\left[4^{2}\right]: \mathrm{GL}(2,4),\left[4^{2}\right]: \Gamma \mathrm{L}(2,4),\left[4^{2}\right]: \mathrm{SL}(2,4)$
	5	$\left[4^{3}\right]: \mathrm{GL}(2,4),\left[4^{3}\right]: \Gamma \mathrm{L}(2,4)$
6	4	$5^{2}: \mathrm{GL}(2,5)$
7	2	$2^{3} \cdot \mathrm{SL}(3,2),\left[2^{4}\right]: \mathrm{SL}(3,2)$
	3	$\left[2^{6}\right] \cdot(\mathrm{SL}(2,2) \times \operatorname{SL}(3,2)),\left[2^{20}\right] \cdot(\mathrm{SL}(2,2) \times \operatorname{SL}(3,2))$

Now let $G_{\alpha \beta}^{[1]}=1$. Then $G_{\alpha}^{[1]}$ acts faithfully on $\Gamma(\beta)$, and $G_{\alpha}^{[1]}$ is isomorphic to a normal subgroup of $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha}$. Since $G_{\alpha \beta}^{[1]}=G_{\alpha}^{[1]} \cap G_{\beta}^{[1]}$, we have

$$
G_{\alpha \beta} \cong G_{\alpha \beta} /\left(G_{\alpha}^{[1]} \cap G_{\beta}^{[1]}\right) \lesssim G_{\alpha \beta} / G_{\alpha}^{[1]} \times G_{\alpha \beta} / G_{\beta}^{[1]} \cong G_{\alpha \beta}^{\Gamma(\alpha)} \times G_{\alpha \beta}^{\Gamma(\beta)}
$$

Note that $G_{\beta}^{\Gamma(\beta)} \cong G_{\alpha}^{\Gamma(\alpha)}$ is explicitly known, and so is the stabilizer $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha}$. This gives us a strategy to determine the stabilizer $G_{\alpha}=G_{\alpha}^{[1]} \cdot G_{\alpha}^{\Gamma(\alpha)}$, a group extension of $G_{\alpha}^{[1]}$ by $G_{\alpha}^{\Gamma(\alpha)}$. Moreover, we have the following useful observation. Recall that Γ is connected and G-arc-transitive. Then Aut $\Gamma \geq G=\left\langle x, G_{\alpha}\right\rangle$ for some $x \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$. It follows that G_{α} contains no non-trivial normal subgroups which are characteristic in $G_{\alpha \beta}$. In particular, $G_{\alpha}^{[1]}$ is not a characteristic subgroup of $G_{\alpha \beta}$.
(1) Let $d=5$. Then $G_{\alpha}^{\Gamma(\alpha)}$ is not regular on $\Gamma(\alpha)$ by Lemma 2.3 , and so $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{D}_{10}, 5: 4, A_{5}$ or S_{5}.

Assume that $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{D}_{10}$ or 5:4. Then $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha} \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{4}, and hence $G_{\alpha}^{[1]} \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{4}, respectively. Thus $G_{\alpha}=$ $G_{\alpha}^{[1]} \cdot G_{\alpha}^{\Gamma(\alpha)}=\left(G_{\alpha}^{[1]} \times 5\right) .\left(G_{\alpha}^{\Gamma(\alpha)}\right)_{\beta}=5: G_{\alpha \beta}$. Noting that $G_{\alpha \beta} \lesssim \mathbb{Z}_{4} \times \mathbb{Z}_{4}$ and $G_{\alpha}^{[1]}$ is faithful on $\Gamma(\alpha) \backslash\{\alpha\}$, it follows that either G_{α} is one of D_{20} and $2 \times(5: 4)$, or Γ is $(G, 3)$-transitive and $G_{\alpha}=4 \times(5: 4)$.

Assume $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{A}_{5}$. Then $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha} \cong \mathrm{A}_{4}$, and so $G_{\alpha}^{[1]} \cong \mathbb{Z}_{2}^{2}$ or A_{4}. If $G_{\alpha}^{[1]} \cong \mathbb{Z}_{2}^{2}$ then $G_{\alpha}=\mathbb{Z}_{2}^{2} \times \mathrm{A}_{5}$, and so both G_{α} and $G_{\alpha \beta}$ contain a characteristic subgroup isomorphic to \mathbb{Z}_{2}^{2}, which is a contradiction. Thus $G_{\alpha}^{[1]} \cong\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha} \cong A_{4}$, and so $G_{\alpha}=A_{4} \times A_{5}$ and Γ is ($G, 3$)-transitive.

Assume $G_{\alpha}^{\Gamma(\alpha)} \cong S_{5}$. Then $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha} \cong S_{4}$, and so $G_{\alpha}^{[1]} \cong \mathbb{Z}_{2}^{2}, \mathrm{~A}_{4}$ or S_{4}. Suppose that $G_{\alpha}^{[1]} \cong \mathbb{Z}_{2}^{2}$. Then $G_{\alpha}=G_{\alpha}^{[1]}$. $S_{5}=$ $\left(G_{\alpha}^{[1]} \times A_{5}\right) .2$ and $G_{\alpha \beta}=G_{\alpha}^{[1]} . S_{4}=\left(G_{\alpha}^{[1]} \times A_{4}\right) .2$. This implies that both G_{α} and $G_{\alpha \beta}$ have the same center isomorphic to \mathbb{Z}_{2} or \mathbb{Z}_{2}^{2}, a contradiction. Thus $G_{\alpha}^{[1]} \cong A_{4}$ or S_{4}, and so Γ is $(G, 3)$-transitive and $G_{\alpha}=\left(A_{4} \times A_{5}\right) .2$, or $S_{4} \times S_{5}$.
(2) Let $d=6$. Then $G_{\alpha}^{\Gamma(\alpha)} \cong A_{6}, S_{6}, \operatorname{PSL}(2,5)$ or $\operatorname{PGL}(2,5)$, and $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha} \cong A_{5}, S_{5}, D_{10}$ or 5:4, respectively. If $G_{\alpha}^{[1]} \cong A_{5}$ or S_{5}, then $G_{\alpha}^{[1]} \cong A_{5}$ or S_{5}, and so $G_{\alpha}=A_{5} \times A_{6},\left(A_{5} \times A_{6}\right) .2$ or $S_{5} \times S_{6}$.

Assume that $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha} \cong \mathrm{D}_{10}$. Then $G_{\alpha}^{[1]} \cong \mathbb{Z}_{5}$ or D_{10}, and $G_{\alpha}=\operatorname{PSL}(2,5) \times G_{\alpha}^{[1]}$. If $G_{\alpha}^{[1]} \cong \mathbb{Z}_{5}$ then both G_{α} and $G_{\alpha \beta}$ have the same center $G_{\alpha}^{[1]}$, a contradiction. Thus $G_{\alpha}^{[1]} \cong \mathrm{D}_{10}$ and $G_{\alpha}=\mathrm{D}_{10} \times \operatorname{PSL}(2,5)$.

Finally, if $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha} \cong 5: 4$ then $G_{\alpha}^{[1]}=\mathbb{Z}_{5}, \mathrm{D}_{10}$ or $5: 4$, this yields that $G_{\alpha}=(5 \times \operatorname{PSL}(2,5)) .2, \mathrm{D}_{10} \times \operatorname{PGL}(2,5)$, or $(5: 4) \times \operatorname{PGL}(2,5)$.
(3) Let $d=7$. Then $G_{\alpha}^{\Gamma(\alpha)}$ is not regular on $\Gamma(\alpha)$ by Lemma 2.3 , and so $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{D}_{14}, 7: 3,7: 6, \mathrm{SL}(3,2), \mathrm{A}_{7}$ or S_{7}. For $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{D}_{14}, 7: 3$ or $7: 6$, we have $G_{\alpha}=\mathrm{D}_{28}, 3 \times(7: 3), 2 \times(7: 6), 3 \times(7: 6)$ or $6 \times(7: 6)$. For $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{A}_{7}$ or S_{7}, we have $G_{\alpha}=\mathrm{A}_{6} \times \mathrm{A}_{7},\left(\mathrm{~A}_{6} \times \mathrm{A}_{7}\right) .2$ or $\mathrm{S}_{6} \times \mathrm{S}_{7}$. Assume that $G_{\alpha}^{\Gamma(\alpha)} \cong \operatorname{SL}(3,2)$. Then $\left(G_{\beta}^{\Gamma(\beta)}\right)_{\alpha}=\mathrm{S}_{4}$, and so $G_{\alpha}^{[1]}=\mathbb{Z}_{2}^{2}, \mathrm{~A}_{4}$ or S_{4}. The group \mathbb{Z}_{2}^{2} is excluded by considering the centers of G_{α} and $G_{\alpha \beta}$. Thus $G_{\alpha}^{[1]} \cong A_{4}$ or S_{4}, and so $G_{\alpha}=A_{4} \times \operatorname{SL}(3,2)$ or $S_{4} \times \operatorname{SL}(3,2)$.

Consider the orders of the groups G_{α} listed in Theorem 3.4. We have
Corollary 3.5. Let $\Gamma=(V, E)$ be a connected G-locally-primitive arc-transitive graph of valency $d \in\{5,6,7\}$. For $\alpha \in V$, the following statements hold.
(1) None of $2^{25}, 3^{5}, 5^{4}$ and 7^{2} is a divisor of $\left|G_{\alpha}\right|$.
(2) If $\left|G_{\alpha}\right|$ is divisible by 2^{10} then $\left|G_{\alpha}\right|=2^{10} \cdot 3^{2} \cdot 7$ or $2^{24} \cdot 3^{2} \cdot 7$.
(3) If $\left|G_{\alpha}\right|$ is not divisible by 3 then 2^{5} is not a divisor of $\left|G_{\alpha}\right|$.
(4) If $d=7$ then one of 2^{9} and 3^{3} is not a divisor of $\left|G_{\alpha}\right|$.

4. Examples

We describe in this section some arc-transitive graphs of square-free order. For a square-free number n, the complete graph K_{n} is such a graph, and so is the complete bipartite graph $K_{n, n}$ if in addition n is odd. Also for an odd square-free number n, the standard double cover of K_{n} is such an example, which is isomorphic to $K_{n, n}-n K_{2}$. Note that $K_{6}, K_{7}, K_{5,5}, K_{7,7}$ and $\mathrm{K}_{7,7}-7 \mathrm{~K}_{2}$ are involved in Theorem 1.1.

The odd graph \mathbf{O}_{d} is defined on the set consisting of $(d-1)$-subsets of a set of size $2 d-1$ such that two vertices are adjacent whenever they disjoint. Then Aut $\mathbf{O}_{d}=S_{2 d-1}$ which acts 3-arc-transitively on \mathbf{O}_{d} with stabilizer $S_{d} \times S_{d-1}$. The graph \mathbf{O}_{d} has valency d and order $\binom{2 d-1}{d-1}$. The graph \mathbf{O}_{6} is involved in Theorem 1.1.

Let $\operatorname{PG}(2, q)$ be the projective plane over the finite field of order q. Then $\operatorname{PG}(2, q)$ has $q^{2}+q+1$ points and $q^{2}+q+1$ lines, and the group $\operatorname{PGL}(3, q)$ acts transitively on the flags of $\operatorname{PG}(2, q)$. The incidence graph of $\operatorname{PG}(2, q)$ is a $(G, 4)$-arc-transitive graph of valency $q+1$ and order $2\left(q^{2}+q+1\right)$, where $G=\operatorname{PGL}(3, q) .\langle\tau\rangle$ with τ being transpose-inverse automorphism of $\operatorname{PGL}(3, q)$. For $q=4$ and 5, the resulting graphs are involved in Theorem 1.1.

Let $\operatorname{PG}(3,2)$ be the 3 -dimensional projective geometry over the field of order 2 . Then $\operatorname{PG}(3,2)$ have 15 points and 15 hyperplanes. The point-hyperplane incidence graph of $\operatorname{PG}(3,2)$ appears in Theorem 1.1, which is a $(G, 2)$-arc-transitive graph of valency 7 and order 30 , where $G=S_{7}$ or $\operatorname{PSL}(4,2) .2$.

Let $\mathrm{GQ}(q)$ be the generalized quadrangle of order $q=2^{f}$, which has $\left(q^{2}+1\right)(q+1)$ points and lines. The symplectic group $\operatorname{PSp}(4, q)$ acts on the geometry $\mathrm{GQ}(q)$ flag-transitively. For convenience, denote by $\mathrm{GQ}(q)$ the incidence graph of itself. Then the graph $G Q(q)$ is $(G, 5)$-arc-transitive of valency $q+1$, where $G=\operatorname{PSp}(4, q) .2$. The graph $G Q(4)$ appears in Theorem 1.1, which has valency 5 and order 170.

Let R be a group, and S a inverse-closed subset of R which does not contain the identity of R. Then the Cayley graph $\Gamma=\operatorname{Cay}(R, S)$ is the graph with vertex set R, where two vertices $x, y \in R$ are adjacent if and only if $y x^{-1} \in S$. It easily follows that Aut Γ has a subgroup \hat{R} which is isomorphic to R and regular on the vertex set of Γ.

Construction 4.1. Let $R=\langle a\rangle:\langle b\rangle=D_{2 n}$, where $n>1$ is odd square-free. Let d be a prime. Assume that there is some integer r such that $\sum_{i=0}^{d-1} r^{i} \equiv 0(\bmod n)$. Let s be an integer coprime to n, and let $\sigma \in \operatorname{Aut}(R)$ such that $a^{\sigma}=a^{r}$ and $b^{\sigma}=a^{s} b$. Then σ has order d and $R=\langle S\rangle$, where $S=\left\{b^{\sigma^{i}} \mid 0 \leq i \leq d-1\right\}$. Hence $G:=R:\langle\sigma\rangle \cong \mathrm{D}_{2 n}: \mathbb{Z}_{d}$, and Cay (R, S) is a connected bipartite G-arc-regular graph of valency d. For example, taking $n=155$ and $r=2$, we get a graph of order 310 and valency 5.

Next we give several examples by using coset graphs.

Example 4.2. We identify $H=\operatorname{PSL}(2,5)$ with a transitive subgroup of A_{6} containing $K=\langle\sigma, \tau\rangle$, where $\sigma=(12345)$ and $\tau=(15)(24)$. Then $\mathbf{N}_{\mathrm{A}_{7}}(K)=\langle\sigma, \pi\rangle \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4},\langle\pi, H\rangle=\mathrm{A}_{7}$ and $\pi^{2} \in K$, where $\pi=(1452)(67)$. Thus $\operatorname{Cos}\left(\mathrm{A}_{7}, H, H \pi H\right)$ is a connected 2 -arc-transitive graph of valency 6 and order 42.

Example 4.3. Checking by GAP, we know that the first Janko group J_{1} has exactly two conjugation classes of subgroups isomorphic to A_{5}. Let H_{1} and H_{2} be two subgroups isomorphic to A_{5} such that they are not conjugate in J_{1}. Then one of them is self-normalized and the other one has normalizer isomorphic to $2 \times \mathrm{A}_{5}$. Assume that $\mathbf{N}_{\mathrm{J}_{1}}\left(H_{1}\right)=H_{1}$ and $\mathbf{N}_{\mathrm{J}_{1}}\left(H_{2}\right) \cong 2 \times \mathrm{A}_{5}$.
(1) Take $\mathrm{A}_{4} \cong K_{1} \leq H_{1}$. Then $\mathbf{N}_{\mathrm{J}_{1}}\left(K_{1}\right)=\langle x\rangle \times K_{1} \cong \mathbb{Z}_{2} \times \mathrm{A}_{4}$. Checking the maximal subgroups of J_{1}, we conclude that $\left\langle x, H_{1}\right\rangle=\mathrm{J}_{1}$. Thus $\operatorname{Cos}\left(\mathrm{J}_{1}, H_{1}, H_{1} x H_{1}\right)$ is a $\left(\mathrm{J}_{1}, 2\right)$-arc-transitive graph of valency 5 and order $2 \cdot 7 \cdot 11 \cdot 19$.
(2) Checking by GAP, if a subgroup $K \cong D_{10}$ is contained in H_{1} or H_{2} then $N_{J_{1}}(K) \cong D_{20}$. Take $D_{10} \cong K_{2} \leq H_{1}$. Then $\mathbf{N}_{\mathrm{J}_{1}}\left(K_{2}\right)=\langle y\rangle \times K_{2} \cong \mathrm{D}_{20}$. Checking the maximal subgroups of J_{1}, we conclude that $\left\langle y, H_{1}\right\rangle=\mathrm{J}_{1}$. Thus $\operatorname{Cos}\left(\mathrm{J}_{1}, H_{1}, H_{1} y H_{1}\right)$ is a $\left(\mathrm{J}_{1}, 2\right)$-arc-transitive graph of valency 6 and order $2 \cdot 7 \cdot 11 \cdot 19$.

Example 4.4. Let H be a maximal subgroup of M_{22} with $H \cong 2^{3}: \operatorname{SL}(3,2)$. By the Atlas [6], SL(3, 2) has two conjugate classes of subgroups isomorphic to S_{4}. Then H has two conjugate classes of subgroups isomorphic to $2^{3}: S_{4}$. Checking by GAP, we know that the subgroups in one of these classes are self-normalizing in M_{22}, and the subgroups in the other class have normalizers isomorphic to $2^{4}: S_{4}$. Take $K<H$ with $K \cong 2^{3}: S_{4}$ and $\mathbf{N}_{\mathrm{M}_{22}}(K) \cong 2^{4}$: S_{4}. Let $g \in \mathbf{N}_{\mathrm{M}_{22}}(K) \backslash H$. Then $\langle H, g\rangle=\mathrm{M}_{22}$, $H^{g} \cap H=K$, and so $\Gamma=\operatorname{Cos}\left(\mathrm{M}_{22}, H, H g H\right)$ is a connected $\left(\mathrm{M}_{22}, 2\right)$-arc-transitive graph of valency 7 . Note that this graph is a distance-transitive graph with automorphism group $\mathrm{M}_{22} .2$, see [3, Section 6.10].

Example 4.5. By the Atlas $[6], T=\operatorname{PSL}(2,25)$ contains exactly two conjugation classes of elements of order 5, which appear respectively in two distinct conjugation classes of maximal subgroups isomorphic to S_{5} in T. It follows that T has exactly two conjugation classes of subgroups isomorphic to $5: 4$. Computation of the number of the pairs with type $\left(S_{5}, 5: 4\right)$ of subgroups of T, we conclude that each subgroup 5:4 is contained in exactly one subgroup S_{5}.

Let $\mathbb{Z}_{5}: \mathbb{Z}_{4} \cong H \leq M \leq T, M \cong S_{5}$ and $\mathbb{Z}_{4} \cong K \leq H$. Then $\mathbf{N}_{M}(K) \cong \mathrm{D}_{8}$ and $\mathbf{N}_{T}(K) \cong \mathrm{D}_{24}$. Set $\mathbf{N}_{M}(K)=K:\langle z\rangle$ and $\mathbf{N}_{T}(K)=K:(\langle y\rangle:\langle z\rangle)$ with $\langle y\rangle:\langle z\rangle \cong \mathrm{D}_{6}$. By the above argument, we have $\left\langle y^{i} z, H\right\rangle=T$ for $i=1$ and 2 . Then $\operatorname{Cos}(T, H, H y z H)$ and $\operatorname{Cos}\left(T, H, H y^{2} z H\right)$ are two ($T, 2$)-arc-transitive graphs of valency 5 and order 390 .

5. The automorphism groups

Let $\Gamma=(V, E)$ be a connected G-locally-primitive arc-transitive graph of square-free order and valency d, where $G \leq$ Aut Γ and $d \in\{5,6,7\}$. Let $\alpha \in V$.
5.1. Assume that G is soluble. Then $G_{\alpha}^{\Gamma(\alpha)}$ is a soluble primitive group of degree d. This implies that $d=5$ or 7 . Moreover, the next result holds.

Lemma 5.1. Assume that G is soluble. Then $d \in\{5,7\}$ and either $\Gamma \cong K_{d, d}$ and $\operatorname{soc}(G) \cong \mathbb{Z}_{d}^{2}$, or Γ is isomorphic to a graph constructed in Construction 4.1.

Proof. Let F be the Fitting subgroup of G. Then $\mathbf{C}_{G}(F) \leq F \neq 1$, and every Sylow subgroup of F is normal in G. Take an arbitrary prime divisor p of $|F|$, and let P be the Sylow p-subgroup of F. Then $P \triangleleft G$. If $|P|>p$ then, by Lemma 2.5 , it is easily shown that $\Gamma \cong \mathrm{K}_{p, p}$; in this case, $d=p \in\{5,7\}$ and $\operatorname{soc}(G)=P \cong \mathbb{Z}_{d}^{2}$. Thus we assume next that $|F|$ is square-free. Then F is cyclic, and so $\mathbf{C}_{G}(F)=F$ and $\operatorname{Aut}(F)$ is abelian. It is easily shown that F is semiregular on V.

Note that $G / F=\mathbf{N}_{G}(F) / \mathbf{C}_{G}(F) \lesssim \operatorname{Aut}(F)$. If F has at least three orbits on V then the quotient graph Γ_{F} has valency d and admits an abelian group acting transitively on its arcs, which is impossible. Thus F has at most two orbits on V. Suppose that F is transitive on V. Then F is a normal regular subgroup of G, and so $\Gamma \cong \operatorname{Cay}(F, S)$, where $S=S^{-1}=\left\{x^{\sigma} \mid \sigma \in A\right\}$ for some $x \in F$ and $A \leq \operatorname{Aut}(F)$. Since Γ has odd valency, S contains an involution, and so S consists of involutions. Since Γ is connected and F is cyclic, $F=\langle S\rangle \cong \mathbb{Z}_{2}$. Then $|V|=|F|=2$, which is impossible. Therefore, F has exactly two orbits on V, and so $\left|G:\left(F G_{\alpha}\right)\right|=2$, where $\alpha \in V$. Since $G_{\alpha} \cong G_{\alpha} F / F \leq G / F \lesssim \operatorname{Aut}(F)$, we know that G_{α} is abelian. By Lemma 2.3, $G_{\alpha} \cong \mathbb{Z}_{d}$, and so $G=F \cdot \mathbb{Z}_{2 d}$. Thus G has a normal regular subgroup $F: \mathbb{Z}_{2}$. Then $\Gamma \cong \operatorname{Cay}\left(F: \mathbb{Z}_{2}, S\right)$, where $S=\left\{s^{\sigma^{i}} \mid 0 \leq i \leq d-1\right\}$ for an involution $s \in F: \mathbb{Z}_{2}$ and $\sigma \in \operatorname{Aut}\left(F: \mathbb{Z}_{2}\right)$ of order d such that $\langle S\rangle=F: \mathbb{Z}_{2}$. Noting that $\left|F: \mathbb{Z}_{2}\right|$ is square-free, we conclude that $F: \mathbb{Z}_{2}$ is a dihedral group. Then the lemma follows.
5.2. In this part we analyze the structure of G while G is insoluble.

Lemma 5.2. Assume that G is insoluble. Let M be a soluble normal subgroup of G. Then M is semiregular and has at least three orbits on V, Γ is a cover of Γ_{M} and $G=M: X$ for some $X \leq G$.

Proof. Suppose that $M_{\alpha} \neq 1$ for $\alpha \in V$. Then M_{α} is transitive on $\Gamma(\alpha)$, and so $G_{\alpha}^{\Gamma(\alpha)}$ has a soluble transitive normal subgroup isomorphic to $M_{\alpha} G_{\alpha}^{[1]} / G_{\alpha}^{[1]} \cong M_{\alpha} / M_{\alpha}^{[1]}$. Noting that $G_{\alpha}^{\Gamma(\alpha)}$ is a primitive group of degree $d \in\{5,6,7\}$, it follows that $G_{\alpha}^{\Gamma(\alpha)}$ is soluble. Then G_{α} is soluble by Lemma 3.2, and so $M G_{\alpha}$ is soluble. By Lemma 2.5, M has at most two orbits on V, it follows that $\left|G: M G_{\alpha}\right| \leq 2$. This implies that G is soluble, a contradiction. Thus M is semiregular on V.

Suppose that M has at most two orbits on V. Then $\left|G: M G_{\alpha}\right| \leq 2$, and $G_{\alpha} \cong G_{\alpha}^{\Gamma(\alpha)}$ by Lemma 2.4. Since $\left|G: M G_{\alpha}\right| \leq 2$ and G is insoluble, G_{α} is insoluble, and hence $G_{\alpha}^{\Gamma(\alpha)}$ is an almost simple 2-transitive permutation group of degree $d \in\{5,6,7\}$. Thus we have $\operatorname{soc}\left(G_{\alpha}\right) \cong \operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right) \cong \mathrm{A}_{5}, \mathrm{~A}_{6}, \operatorname{PSL}(3,2)$ or A_{7}. Since M is semiregular on V, we know that M has square-free order, and so $\operatorname{Aut}(M)$ is soluble. Note that

$$
M / \mathbf{C}_{M \operatorname{soc}\left(G_{\alpha}\right)}(M)=\mathbf{N}_{M \operatorname{soc}\left(G_{\alpha}\right)}(M) / \mathbf{C}_{M \operatorname{soc}\left(G_{\alpha}\right)}(M) \lesssim \operatorname{Aut}(M) .
$$

It follows that $\operatorname{soc}\left(G_{\alpha}\right) \leq \mathbf{C}_{M \operatorname{soc}\left(G_{\alpha}\right)}(M)$, and hence $M \operatorname{soc}\left(G_{\alpha}\right)=M: \operatorname{soc}\left(G_{\alpha}\right)=M \times \operatorname{soc}\left(G_{\alpha}\right)$. It is easily shown that $\operatorname{soc}\left(G_{\alpha}\right)$ is a characteristic subgroup group of $M \operatorname{soc}\left(G_{\alpha}\right)$, and $\operatorname{so} \operatorname{soc}\left(G_{\alpha}\right) \triangleleft M G_{\alpha}$.

Take $\beta \in \Gamma(\alpha)$. Since Γ is G-vertex-transitive, G_{α} and G_{β} are conjugate, and hence $\operatorname{soc}\left(G_{\alpha}\right) \cong \operatorname{soc}\left(G_{\beta}\right) \triangleleft M G_{\beta}$. Let U and W be the M-orbits containing α and β, respectively. (Note that $U=W=V$ if M is transitive on V.) Then $\operatorname{soc}\left(G_{\alpha}\right)$ and $\operatorname{soc}\left(G_{\beta}\right)$ act trivially on U and W, respectively. Note that $M G_{\alpha}=G_{U}=G_{W}=M G_{\beta}$. Then both $\operatorname{soc}\left(G_{\alpha}\right)$ and $\operatorname{soc}\left(G_{\beta}\right)$ are normal in $M G_{\alpha}$, and $\operatorname{sos} \operatorname{soc}\left(G_{\alpha}\right) \cap \operatorname{soc}\left(G_{\beta}\right)$ is normal in $M G_{\alpha}$. Since $\operatorname{soc}\left(G_{\alpha}\right)$ and $\operatorname{soc}\left(G_{\beta}\right)$ are nonabelian simple groups, either $\operatorname{soc}\left(G_{\alpha}\right)=\operatorname{soc}\left(G_{\beta}\right)$ or $\operatorname{soc}\left(G_{\alpha}\right) \cap \operatorname{soc}\left(G_{\beta}\right)=1$. If $\operatorname{soc}\left(G_{\alpha}\right) \cap \operatorname{soc}\left(G_{\beta}\right)=1$ then $\operatorname{soc}\left(G_{\beta}\right) \cong \operatorname{soc}\left(G_{\alpha}\right) \operatorname{soc}\left(G_{\beta}\right) / \operatorname{soc}\left(G_{\alpha}\right) \leq$ $M G_{\alpha} / \operatorname{soc}\left(G_{\alpha}\right)$; however, $M G_{\alpha} / \operatorname{soc}\left(G_{\alpha}\right)$ is soluble, a contradiction. Thus $\operatorname{soc}\left(G_{\alpha}\right)=\operatorname{soc}\left(G_{\beta}\right)$. This implies that $\operatorname{soc}\left(G_{\alpha}\right)$ fixes $V=U \cup W$ point-wise, which contradicts $1 \neq \operatorname{soc}\left(G_{\alpha}\right) \leq$ Aut Γ. Then M has at least three orbits on V, and Γ is a cover of Γ_{M} by Lemma 2.6.

Now we show that $G=M: X$ for some $X \leq G$ by induction on $|M|$. This is trivial for $M=1$. Thus we assume that $|M|>1$ in the following.

Let p be the largest prime divisor of $|M|$. Then, since M has square-free order, M has a unique Sylow p-subgroup, say P. Thus P is a characteristic subgroup of M, and so $P \triangleleft G$. Clearly P has at least three orbits on V. By Lemma 2.6, Γ is a normal cover of Γ_{P} and Γ_{P} is G / P-locally-primitive arc-transitive. Note that each M-orbit on V is the union of some P-orbits. Then M / P has at least three orbits on the vertex set of Γ_{P}. Then, by induction, we may assume that $G / P=(M / P):(Y / P)$ for a subgroup $Y \leq G$ with $Y \cap M=P$. (Note that $Y=G$ if $P=M$.) Clearly, Y acts transitively on the vertex set of Γ_{P}, and so Y is transitive on V. Note that Γ_{P} has order $\frac{|V|}{p}$. Then $\frac{|V|}{p}=\left|Y: Y_{B}\right|$ for a P-orbit B on V. Since $|V|$ is square-free, $\left|Y: Y_{B}\right|$ is coprime to p, and then Y_{B} contains a Sylow p-subgroup of Y. Since $P \leq Y_{B}$ is transitive on B, we have $Y_{B}=P Y_{\alpha}=P: Y_{\alpha}$ for $\alpha \in B$. It follows that Y_{B} and hence Y has a Sylow p-subgroup $P: Q$, where Q is a Sylow p-subgroup of Y_{α}. Then, by Gaschtüz' Theorem (see $[2,10.4]$), the extension $Y=P .(Y / P)$ splits over P. Thus $Y=P: X$ for $X<Y$ with $X \cap P=1$. Then $G=M Y=M X$ and $X \cap M=X \cap(Y \cap M)=X \cap P=1$, and our result follows.

Lemma 5.3. Assume that $T^{l} \cong N \triangleleft G$, where $l \geq 2$ and T is a non-abelian simple group. Then $l=2, T \cong A_{5}, \mathrm{~A}_{7}$ or $\operatorname{PSL}(3,2)$, and $\Gamma \cong \mathrm{K}_{d, d}$ with $d \in\{5,7\}$.
Proof. Since $|V|$ is square-free, N is not semiregular on V, and so N has at most two orbits on V by Lemma 2.5. Let $\alpha \in V$ and U be the N-orbit containing α. Then $U=V$ or $|U|=\frac{|V|}{2}$. Note that $|T|^{l}=|N|=|U|\left|N_{\alpha}\right|$ and $|U|$ is square-free. Then $\left|N_{\alpha}\right|$ is divisible by $|T|^{l-1}$, and so $\left|G_{\alpha}\right|$ is divisible by $|T|^{l-1}$. Suppose that $G_{\alpha}^{\Gamma(\alpha)}$ is soluble. By Lemma 3.2, G_{α} is soluble, and so G_{α} is explicitly known by Theorem 3.4. This implies that $\left|G_{\alpha}\right|$ is not divisible by the order of some non-abelian simple group, a contradiction. Thus $G_{\alpha}^{\Gamma(\alpha)}$ is insoluble, and then $G_{\alpha}^{\Gamma(\alpha)}$ is an almost 2-transitive permutation group of degree $d \in\{5,6,7\}$; in particular, $\operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right) \cong \mathrm{A}_{5}, \mathrm{~A}_{6}, \operatorname{PSL}(3,2)$ or A_{7}. Since N is not semiregular on V, by Lemma $2.5, N_{\alpha}$ induces a normal transitive subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. It follows that N_{α} acts 2-transitively on $\Gamma(\alpha)$.

Set $N=T_{1} \times T_{2} \times \cdots \times T_{l}$, where $T_{1} \cong T_{2} \cong \cdots \cong T_{l} \cong T$. Suppose that $U=V$, that is, N is transitive on V. Then Γ is ($N, 2$)-arc-transitive and every T_{i} acts non-trivially on V. In particular, by Lemma $2.5, T_{i}$ has at most two orbits on V. Since T_{j} has no subgroups of index 2 , each T_{j} fixes every T_{i}-orbit setwise, and so does N. It follows that every T_{i} is transitive on V. Then T_{i} is regular on V (see [7, Theorem 4.2A]), a contradiction. Thus N has two orbits on V, say U and W.

If some T_{i} is intransitive on both U and W then, by Lemma 2.6, T_{i} semiregular on U, and so $\left|T_{i}\right|$ is square-free, a contradiction. Thus every T_{i} is transitive on at least one of U and W. Without loss of generality, we assume that T_{1} acts transitively on U. Then, by [7, Theorem 4.2A], T_{2} induces a semiregular permutation group on U, and hence T_{2} acts trivially on U. Thus T_{2} is transitive on W. This implies that Γ is a complete bipartite graph. Since $|V|$ is square-free, $\Gamma \cong \mathrm{K}_{5,5}$ or $\mathrm{K}_{7,7}$, and $T_{1} \cong T_{2} \cong \mathrm{~A}_{5}, \mathrm{~A}_{7}$ or $\operatorname{PSL}(3,2)$. If $l \geq 3$, then a similar argument as above implies that T_{3} is trivial on both U and W, a contradiction. Thus the lemma follows.

Lemma 5.4. Assume that G has no soluble minimal normal subgroups. Then $\operatorname{soc}(G)$ is a minimal normal subgroup of G, and either G is almost simple, or $\operatorname{soc}(G) \cong T^{2}$ and $\Gamma \cong \mathrm{K}_{d, d}$ with $d \in\{5,7\}$, where $T \cong \mathrm{~A}_{5}, \mathrm{~A}_{7}$ or $\operatorname{PSL}(3,2)$.
Proof. Note that every minimal normal subgroup of G is a directed product of isomorphic non-abelian simple groups. Suppose that G has two distinct minimal normal subgroups N and M. Then $N M=N \times M$. Since $|V|$ is square-free, N is not semiregular on V, and so N has at most two orbits on V by Lemma 2.5. Let U be an N-orbit on V. Then $U=V$ or $|U|=\frac{|V|}{2}$. Noting that M has no subgroups of index 2, we conclude that M fixes U setwise, and then U is also an M-orbit. Then N and M induce two regular permutation groups on U (see [7, Theorem 4.2A]), which is impossible. Thus G has a unique minimal normal subgroup, that is, $\operatorname{soc}(G)$ is a minimal normal subgroup of G. Finally, the lemma follows from Lemma 5.3.

Lemma 5.5. Assume that $\operatorname{soc}(G)=T$ is a non-abelian simple group. Then, up to isomorphism, T is one of the following simple groups:
(i) A_{c} for $c \in\{5,6,7,8,10,11,12,13,14\}$;
(ii) $\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{~J}_{1}$;
(iii) $\operatorname{PSL}\left(2,2^{f}\right)$ for $4 \leq f \leq 10, \operatorname{PSL}(3,4), \operatorname{PSL}(3,8), \operatorname{PSL}(5,2), \operatorname{PSU}(3,4), \operatorname{PSU}(5,2), \operatorname{PSp}(4,4), \operatorname{Sz}(8)$;
(iv) $\operatorname{PSL}(3,3), \operatorname{PSL}(3,5), \operatorname{PSL}\left(2,3^{4}\right), \operatorname{PSL}(2,25), \operatorname{PSL}\left(2,5^{4}\right)$;
(v) $\operatorname{PSL}(2, p)$ for prime $p \geq 7$.

Proof. Let $\alpha \in V$. Since T is normal in G, every T-orbit on V has length $\left|T: T_{\alpha}\right|$, which is a divisor of $|V|=\left|G: G_{\alpha}\right|$. Thus $\left|T: T_{\alpha}\right|$ is square-free, and so T has a maximal subgroup (containing T_{α}) of square-free index.

Assume that T is an alternating simple group. By Corollary $3.5,3^{5}$ is not a divisor of $\left|G_{\alpha}\right|$, and hence $|G|$ is not divisible by 3^{6} as $\left|G: G_{\alpha}\right|$ is square-free. In particular, $|T|$ is not divisible by 3^{6}. It follows that $T \cong \mathrm{~A}_{c}$ with $5 \leq c \leq 14$. Checking the subgroups of A_{9} in the Atlas [6], A_{9} has no maximal subgroup of square-free index. Thus $c \neq 9$.

Assume that T is one of sporadic simple groups. Note that, by Corollary $3.5,|G|$ and hence $|T|$ is not divisible by $2^{11} \cdot 5^{2} \cdot 7$. Checking the order of T (see [11, Table 5.1.C] for example), we know that T is isomorphic to one of $\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}$, $\mathrm{M}_{24}, \mathrm{~J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ and HS. The groups $\mathrm{J}_{2}, \mathrm{~J}_{3}$ and HS are excluded as they have no maximal subgroup of square-free index (see the Atlas [6]).

Now let T be one of simple groups of Lie type with characteristic p. Check the order $|T|$ of T and consider the maximal power of p dividing $|T|$, see [11, pp. 170]. Then, noting the isomorphisms among simple groups (see [11, Proposition 2.9.1 and Theorem 5.1.1]), we may get a finite list of candidates for T. For odd prime p, we conclude that either $T \cong \operatorname{PSL}(2, p)$ with $p>7$, or T is isomorphic to one of the following simple groups:

```
PSL(2, 3f) with 2\leqf\leq5, PSL(3, 3), PSU(3, 3), PSp(4, 3)(\cong PSU(4, 2));
PSL(2,5f) with 1\leqf\leq4, PSL(3,5), PSU(3,5), PSp(4,5);
PSL(2, 7), PSL(2, 49).
```

The groups $\operatorname{PSL}\left(2,3^{3}\right), \operatorname{PSL}\left(2,3^{5}\right), \operatorname{PSL}\left(2,5^{3}\right), \operatorname{PSL}(2,49), \operatorname{PSU}(3,3), \operatorname{PSU}(3,5)$ and $\operatorname{PSp}(4,5)$ are easily excluded as they have no maximal subgroup of square-free index (see [10, II. 8.27] and the Atlas [6]).

Assume that T is one of exceptional groups of Lie type with characteristic 2 . By Corollary $3.5,\left|G_{\alpha}\right|$ is not divisible by 2^{25}, and hence $|G|$ is not divisible by 2^{26}. Then $|T|$ is not divisible by 2^{26}. It follows from [11, Table 5.1.B] that T is isomorphic to one of $\mathrm{G}_{2}\left(2^{f}\right)$ (with $\left.2 \leq f \leq 4\right),{ }^{2} \mathrm{~B}_{2}\left(2^{2 m+1}\right)$ (with $\left.1 \leq m \leq 5\right),{ }^{3} \mathrm{D}_{4}(2)$ and ${ }^{3} \mathrm{D}_{4}(4)$. If $T \cong{ }^{2} \mathrm{~B}_{2}\left(2^{2 m+1}\right)$ for $m=2,3,5$, then $|G|$ is not divisible by 3 , which contradicts (3) of Corollary 3.5 . If $T \cong{ }^{2} \mathrm{~B}_{2}\left(2^{9}\right)$ then $|G|$ is divisible by 2^{18} but not by 2^{19}; however, by Corollary 3.5, we know that $|G|$ is either not divisible by 2^{12} or divisible by 2^{24}, a contradiction. By Corollary 3.5 (2), we conclude that none of $5^{2}, 3^{4}$ and 17^{2} is a divisor of $|G|$. This observation excludes the groups $G_{2}\left(2^{f}\right)$, where $2 \leq f \leq 4$. Similarly, ${ }^{3} \mathrm{D}_{4}(2)$ and ${ }^{3} \mathrm{D}_{4}(4)$ are easily excluded as they have orders divisible by $2^{12} \cdot 3^{4}$. Thus $T \cong{ }^{2} \mathrm{~B}_{2}\left(2^{3}\right)=\mathrm{Sz}(8)$.

Let T be one of classical groups of Lie type with characteristic 2 . If $|T|$ is divisible by 2^{11}, then a similar argument as above yields that $T \cong \operatorname{PSL}\left(2,2^{f}\right)$ with $11 \leq f \leq 25$. If $|T|$ is not divisible by 2^{11} then, checking the order of T, we know that T is isomorphic to one of the following simple groups:
$\operatorname{PSL}\left(2,2^{f}\right)$ with $2 \leq f \leq 10, \operatorname{PSL}(3,2), \operatorname{PSL}(3,4), \operatorname{PSL}(3,8), \operatorname{PSL}(4,2), \operatorname{PSL}(5,2), \operatorname{PSU}(3,4), \operatorname{PSU}(3,8), \operatorname{PSU}(4,2), \operatorname{PSU}(5,2)$, $\operatorname{PSp}(4,4)$ and $\operatorname{PSp}(6,2)$.
Checking the Atlas [6], the groups $\operatorname{PSL}(2,8), \operatorname{PSU}(3,8), \operatorname{PSU}(4,2)$ and $\operatorname{PSp}(6,2)$ are excluded as they have no maximal subgroup of square-free index. Thus the lemma follows by noting that $\operatorname{PSL}(3,2) \cong \operatorname{PSL}(2,7), \operatorname{PSL}(2,4) \cong \operatorname{PSL}(2,5) \cong A_{5}$, $\operatorname{PSL}(2,9) \cong A_{6}$ and $\operatorname{PSL}(4,2) \cong A_{8}$.

6. The graphs associated with almost simple groups

Assume that $\Gamma=(V, E)$ is a connected G-locally-primitive arc-transitive graph of square-free order and valency d, where $G \leq$ Aut Γ and $d \in\{5,6,7\}$. Assume further that $\operatorname{soc}(G)=T$ is a non-abelian simple group. Then T is not semiregular on V. Let $\alpha \in V$. By Lemma 2.5, T_{α} induces a transitive normal subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. Thus
$(*)\left|T: T_{\alpha}\right|$ is square-free, either $d=|\Gamma(\alpha)| \in\{5,7\}$ and $\left|T_{\alpha}\right|$ is divisible by d, or $d=6$ and T_{α} has a composition factor isomorphic to A_{5} or A_{6}.
This simple observation is helpful to the further argument.
6.1. In this part we assume that $T=\operatorname{soc}(G)=A_{c}$ with $c \geq 5$. By Lemma $5.5, c \in\{5,6,7,8,10,11,12,13,14\}$. If $c=14$ then $7^{2} \cdot 5^{2} \cdot 3^{5} \cdot 2^{10}$ is a divisor $|T|$, so $\left|T_{\alpha}\right|$ is divisible by $7 \cdot 5 \cdot 3^{4} \cdot 2^{9}$, which contradicts Corollary 3.5.

Suppose that $c=13$. If $G=\mathrm{S}_{13}$ then $|G|$ is divisible by $2^{10} \cdot 3^{5} \cdot 5^{2}$ and hence $\left|G_{\alpha}\right|$ is divisible by $2^{9} \cdot 3^{4} \cdot 5$; but such a G_{α} does not satisfy Theorem 3.4, a contradiction. Assume that $G=A_{13}$. Then $|G|$ is divisible by $2^{9} \cdot 3^{5} \cdot 5^{2}$, and hence $\left|G_{\alpha}\right|$ is divisible by $2^{8} \cdot 3^{4} \cdot 5$. By the Atlas [6], the stabilizer $G_{\alpha} \cong A_{12}$ or S_{11}. Then Γ has valency at least 11 by Lemma 2.2 , a contradiction.

Suppose that $c=12$. If $G=S_{12}$ then $\left|G_{\alpha}\right|$ is divisible by $2^{9} \cdot 3^{4} \cdot 5$, but such a G_{α} does not satisfy Theorem 3.4, a contradiction. Assume that $G=A_{12}$. Then $\left|G_{\alpha}\right|$ is divisible by $2^{8} \cdot 3^{4} \cdot 5$. By Theorem 3.4, we conclude that $G_{\alpha} \cong S_{6} \times S_{7}$. However, $S_{6} \times S_{7}$ is not isomorphic to a subgroup of A_{12}, a contradiction.

Suppose that $c=10$. Then $5^{2} \cdot 3^{4} \cdot 2^{7}$ divides $|G|$, so $\left|G_{\alpha}\right|$ is divisible by $2^{6} \cdot 3^{3} \cdot 5$. By Theorem 3.4, we know that $\mathrm{A}_{5} \times \mathrm{A}_{6}$ or $A_{6} \times A_{7}$ is isomorphic to a subgroup of G_{α}. But S_{10} cannot contains such a subgroup, a contradiction.

Therefore, $T=\mathrm{A}_{5}, \mathrm{~A}_{6}, \mathrm{~A}_{7}, \mathrm{~A}_{8}$ or A_{11}, and the next lemma holds.

Table 1
Graphs associated with alternating groups.

G	G_{α}	d	Graph
$\mathrm{A}_{5}, \mathrm{~S}_{5}$	$\mathrm{D}_{10}, 5: 4$	5	$\mathrm{~K}_{6}$
$\mathrm{~S}_{5}$	$5: 4$	5	$\mathrm{~K}_{6}$
$\mathrm{~A}_{6}, \mathrm{~S}_{6}$	$\mathrm{~A}_{5}, \mathrm{~S}_{5}$	5	$\mathrm{~K}_{6}$
$\mathrm{~A}_{7}, \mathrm{~S}_{7}$	$\mathrm{~A}_{6}, \mathrm{~S}_{6}$	6	$\mathrm{~K}_{7}$
$\mathrm{~S}_{7}$	$\mathrm{~A}_{6}$	6	$\mathrm{~K}_{7,7}-7 \mathrm{~K}_{2}$
$\mathrm{~A}_{7}, \mathrm{~S}_{7}$	$\mathrm{~A}_{5}, \mathrm{~S}_{5}$	6	Example 4.2
$\mathrm{~S}_{7}$	$\mathrm{SL}(3,2)$	7	$\mathrm{PG}(3,2)$
S_{8}	$2^{3}: \mathrm{SL}(3,2)$	7	$\mathrm{PG}(3,2)$
$\mathrm{A}_{11}, \mathrm{~S}_{11}$	$\left(\mathrm{~A}_{5} \times \mathrm{A}_{6}\right) .2, \mathrm{~S}_{5} \times \mathrm{S}_{6}$	6	\mathbf{O}_{6}

Lemma 6.1. If T is one of the alternating groups, then one line of Table 1 occurs.

Proof. (1) If $T=\mathrm{A}_{5}$ then, by the observation (*) ahead this subsection, either $G \cong \mathrm{~A}_{5}$ and $G_{\alpha} \cong \mathrm{D}_{10}$, or $G \cong \mathrm{~S}_{5}$ and $G_{\alpha} \cong \mathbb{Z}_{5}: \mathbb{Z}_{4}$, yielding $\Gamma \cong \mathrm{K}_{6}$.
(2) Assume that $T=\mathrm{A}_{6}$. Then $G \cong \mathrm{~A}_{6}, \mathrm{~S}_{6}, \operatorname{PGL}(2,9), \mathrm{M}_{10}$ or $P \Gamma L(2,9)$. Checking the subgroups of G satisfying (*), either $G \cong \mathrm{~A}_{6}$ and $G_{\alpha} \cong \mathrm{A}_{5}$, or $G \cong \mathrm{~S}_{6}$ and $G_{\alpha} \cong \mathrm{S}_{5}$. It follows that $\Gamma \cong \mathrm{K}_{6}$.
(3) Assume that $T=\mathrm{A}_{8}$. Then $\left|T_{\alpha}\right|$ is divisible by $2^{5} \cdot 3$. Recall that $\left|T_{\alpha}\right|$ is divisible by 5 or 7 . By the Atlas [6], we conclude that $T_{\alpha}=2^{3}: \operatorname{SL}(3,2)$ and Γ has valency 7 . Then, noting $\mathrm{A}_{8} \cong \operatorname{PSL}(4,2)$, the graph Γ is the incidence graph of the projective geometry $\operatorname{PG}(3,2)$.
(4) Assume that $T=\mathrm{A}_{11}$. Then $|T|$ is divisible by $2^{7} \cdot 3^{4} \cdot 5^{2}$, and hence $\left|T_{\alpha}\right|$ is divisible by $2^{6} \cdot 3^{3} \cdot 5$. By the Atlas [6] and Theorem 3.4, we conclude that $T_{\alpha} \cong\left(\mathrm{A}_{5} \times \mathrm{A}_{6}\right) .2$ and Γ is of valency 6 . This graph is actually the odd graph $\mathbf{0}_{6}$. Moreover, $G=$ Aut $\Gamma=\mathrm{S}_{11}, G_{\alpha}=\mathrm{S}_{5} \times \mathrm{S}_{6}$, and Γ is 3-arc-transitive.
(5) Assume that $T=\mathrm{A}_{7}$. Then $\left|T_{\alpha}\right|$ is divisible by 12 . Checking the subgroups of T satisfying ($*$), we conclude from Theorem 3.4 that $T_{\alpha} \cong \mathrm{S}_{5}, \mathrm{~A}_{6}, \mathrm{~A}_{5}$ or $\operatorname{PSL}(3,2)$.

Suppose that $T_{\alpha} \cong \mathrm{S}_{5}$. Then the vertices in each T-orbit on V may be viewed as the 2 -subsets of $\{1,2,3,4,5,6,7\}$. Then $|\Gamma(\alpha)|=|\{\beta \mid \alpha \cap \beta=\emptyset\}|$ or $|\{\beta \neq \alpha \mid \alpha \cap \beta \neq \emptyset\}|$, which is 10 and not in the case.

If $T_{\alpha} \cong \mathrm{A}_{6}$, then $G \cong \mathrm{~A}_{7}$ or S_{7}, and then $\Gamma \cong \mathrm{K}_{7}$ or $\mathrm{K}_{7,7}-7 \mathrm{~K}_{2}$, respectively.
Assume that $T_{\alpha} \cong \mathrm{A}_{5}$. Then Γ has valency 5 or 6 . Further, $\left|T: T_{\alpha}\right|=42$ is even, and so T is transitive on V; in particular, Γ is T-arc-transitive. Consider the action of T_{α} corresponding to the natural action of A_{7} on $\Pi:=\{1,2,3,4,5,6,7\}$. Suppose that a T_{α}-orbit on Π has size 5 . Then T_{α} fixes two points in Π. Let $\beta \in \Gamma(\alpha)$. It is easily shown that $T_{\alpha \beta}$ has an orbit on Π of size at least 4 . Then we get $\mathbf{N}_{T}\left(T_{\alpha \beta}\right) \leq \operatorname{Sym}\left(\Pi \backslash \Pi_{0}\right) \times \operatorname{Sym}\left(\Pi_{0}\right)$, where Π_{0} is the set of points fixed by $T_{\alpha \beta}$. Then there is no 2-element $x \in \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ such that $\left\langle T_{\alpha}, x\right\rangle=T$, a contradiction. Thus T_{α} fixes exactly one point, say 7 , and acts transitively on $\Pi_{1}=\{1,2,3,4,5,6\}$. If Γ is of valency 5 , then $T_{\alpha \beta} \cong A_{4}$ is transitive on Π_{1}, and so $\mathbf{N}_{T}\left(T_{\alpha \beta}\right) \leq \operatorname{Sym}\left(\Pi_{1}\right)$, which yields a similar contradiction as above. Thus Γ is of valency 6 . Then $T_{\alpha \beta} \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{2}$, and $T_{\alpha \beta}$ fixes only one point in Π_{1}, say 6 . We may set $T_{\alpha \beta}=\langle\sigma, \tau\rangle$, where $\sigma=(12345)$ and $\tau=(15)(24)$. Then $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=\langle\sigma, \pi\rangle \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$, where $\pi=(1452)(67)$. It is easily shown that Γ is isomorphic to the graph given in Example 4.2.

Assume finally that $T_{\alpha} \cong \operatorname{PSL}(3,2)$. If $G=\mathrm{A}_{7}$, then $|V|=\left|T: T_{\alpha}\right|=15$; in particular, Γ is of even valency, which yields $|\Gamma(\alpha)|=8$. We do not consider this case here. Then $G=S_{7}$ and $G_{\alpha} \cong \operatorname{PSL}(3,2)$. Hence Γ is a bipartite graph with two bipartition subsets, say U and W, having size 15 respectively. Further, A_{7} is primitive on both U and W and transitive on E, the edge set of Γ. Suppose that the actions of A_{7} on U and on W are permutation equivalent. Then A_{7} is a primitive permutation group with degree 15 and a suborbit of size $|\Gamma(\alpha)|$. It is easy to see that such a primitive permutation group is 2-transitive. Thus $|\Gamma(\alpha)|=14$, and $\Gamma \cong \mathrm{K}_{15,15}-15 \mathrm{~K}_{2}$. This is not the case we considered. Therefore, we may assume that U is the point set while W the hyperplane set of the projective geometry PG(3,2), respectively. (Note that A_{7} is viewed as a transitive subgroup of $\operatorname{PSL}(4,2) \cong \mathrm{A}_{8}$ on projective points or on hyperplanes.) Then Γ is the incidence graph of the projective geometry $\operatorname{PG}(3,2)$.
6.2. In this part we assume that $T=\operatorname{soc}(G)$ is a sporadic simple group. By Lemma $5.5, T=\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}$ or J_{1}. Then either $G=T$ or $G=\mathrm{M}_{12} .2$.

Lemma 6.2. T is not one of $\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{23}$ and M_{24}.
Proof. We shall exclude one by one the simple groups $\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}$ and M_{24}.
(1) Suppose that $T=\mathrm{M}_{11}$. Then $G=T$ and the order $|T|$ is divisible by $2^{4} \cdot 3^{2}$. Since $\left|T: T_{\alpha}\right|$ is square-free, $\left|T_{\alpha}\right|$ is divisible by 2^{3}. 3 and not divisible by $2^{5}, 3^{3}$ or 5^{2}. Check the groups which appear in Theorem 3.4 and satisfy $(*)$. We conclude that $T_{\alpha} \cong \mathrm{S}_{5}, \mathrm{~A}_{4} \times \mathrm{A}_{5}, \mathrm{~A}_{6}$ or S_{6}. By the Atlas [6], only one of A_{6} and S_{5} may be isomorphic to a subgroup of M_{11}. Thus $T_{\alpha} \cong \mathrm{S}_{5}$ or A_{6}.

Suppose that $T_{\alpha} \cong \mathrm{S}_{5}$. Then Γ is ($T, 2$)-transitive and of valency 5 or 6 . Thus $T_{\alpha \beta}=5: 4$ or S_{4}, where $\beta \in \Gamma(\alpha)$. Checking the subgroups of M_{11}, we have $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=T_{\alpha \beta}$. Therefore, there exists no element $x \in N_{T}\left(T_{\alpha \beta}\right)$ with $\left\langle T_{\alpha}, x\right\rangle=T$, a contradiction.

Suppose that $T_{\alpha}=\mathrm{A}_{6}$. Then Γ is ($T, 2$)-transitive and of valency 6. For $\beta \in \Gamma(\alpha)$, the arc-stabilizer $T_{\alpha \beta} \cong \mathrm{A}_{5}$ is contained in a maximal subgroup of T isomorphic to M_{10}. Note that M_{11} has two conjugation classes of subgroups isomorphic to A_{5} (confirmed by GAP). Then, checking the subgroups of M_{11} in the Atlas [6], we conclude that $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=T_{\alpha \beta}$, a contradiction.
(2) Suppose that $T=\mathrm{M}_{12}$. Then the order $|T|$ is divisible by $2^{6} \cdot 3^{3}$, and hence $\left|T_{\alpha}\right|$ is divisible by $2^{5} \cdot 3^{2}$. By the Atlas [6], we conclude that $T_{\alpha} \cong \mathrm{M}_{10} .2$; however, by Theorem 3.4, such a group cannot be the stabilizer of any graph of valency 5,6 or 7 .
(3) Suppose that $T=\mathrm{M}_{23}$. Then $|T|$ is divisible by $2^{7} \cdot 3^{2}$. Since $\left|T: T_{\alpha}\right|$ is square-free, $\left|T_{\alpha}\right|$ is divisible by $2^{6} \cdot 3$. Further $\left|T_{\alpha}\right|$ is not divisible by 2^{8} or 3^{3}. By Theorem 3.4 and checking the subgroups of M_{23}, we know that T_{α} is isomorphic to $\left[4^{2}\right] . \operatorname{SL}(2,4),\left[4^{2}\right] . G L(2,4)$ or $\left[4^{2}\right] . \Gamma L(2,4)$. In particular, Γ has valency 5 and $|V|$ is even, and so $T_{\alpha} \not \equiv\left[4^{2}\right] . \Gamma L(2,4)$. Then $T_{\alpha} \cong\left[4^{2}\right] . S L(2,4)$ or $\left[4^{2}\right] \cdot G L(2,4)$; in this case, both $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ and T_{α} are contained in a maximal subgroup of T isomorphic to $\left[4^{2}\right] . \Gamma L(2,4)$ (confirmed by GAP), a contradiction.
(4) Suppose that $T=\mathrm{M}_{24}$. Then $|T|$ is divisible by $2^{10} \cdot 3^{3}$, and hence $\left|T_{\alpha}\right|$ is divisible by $2^{9} \cdot 3^{2}$. By Theorem 3.4, $T_{\alpha}=\left[4^{3}\right] . \Gamma L(2,4) \cong 2^{6}:\left(\left(3 \times A_{5}\right) .2\right)$, and Γ is of valency 5 . In this case, both $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ and T_{α} are contained in a maximal subgroup of T isomorphic to $2^{6}: 3 \cdot \mathrm{~S}_{6}$ (confirmed by GAP), a contradiction.

Lemma 6.3. Assume that $T=\operatorname{soc}(G)$ is a sporadic simple group. Then either $G=\mathrm{J}_{1}$ and Γ is isomorphic to one of the graphs given in Example 4.3; or $T=\mathrm{M}_{22}$ and Γ is isomorphic to the graph given in Example 4.4.

Proof. By Lemmas 5.5 and $6.2, T=\mathrm{J}_{1}$ or M_{22}.
Assume first that $T=\mathrm{M}_{22}$. Then $G=\mathrm{M}_{22}$ or M_{22}. . Note that $|G|$ is divisible by $2^{7} \cdot 3^{2}|G: T|$ but not by $2^{8}|G: T|$ or 3^{3}. Then $\left|G_{\alpha}\right|$ is divisible by $2^{6} \cdot 3|G: T|$ but not by $2^{8}|G: T|$ or 3^{3}.

Let $G=\mathrm{M}_{22}$. Then $\left|G_{\alpha}\right|$ is divisible by $2^{6} \cdot 3$ but not by 2^{8} or 3^{3}. By Theorem 3.4, G_{α} is isomorphic to one of $S_{4} \times S_{5}$, $\left[4^{2}\right]: \operatorname{SL}(2,4),\left[4^{2}\right]: G L(2,4),\left[4^{2}\right]: \Gamma L(2,4), S_{4} \times \operatorname{SL}(3,2), 2^{4}: \operatorname{SL}(3,2)$ and $2^{3}: \operatorname{SL}(3,2)$. Checking the subgroups of M_{22}, we have $G_{\alpha} \cong 2^{3}: \operatorname{SL}(3,2)$. Then Γ has valency 7 and Γ is isomorphic to the graph given in Example 4.4.

Let $G=\mathrm{M}_{22} .2$. Then $\left|G_{\alpha}\right|$ is divisible by $2^{7} .3$ but not by 2^{9} or 3^{3}. By Theorem $3.4, G_{\alpha}$ is isomorphic to one of [$\left.4^{2}\right]: G L(2,4)$, $\left[4^{2}\right]: \Gamma L(2,4)$ and $2^{4}: \operatorname{SL}(3,2)$. Checking the subgroups of $\mathrm{M}_{22} .2$, we conclude that $G_{\alpha} \cong 2^{4}: \operatorname{SL}(3,2)$, and so Γ has valency 7 and order 330 . Since $T=\mathrm{M}_{22}$ is not semiregular on $V \Gamma$, by Lemma $2.5, T$ has at most two orbits on $V \Gamma$. If T has two orbits on $V \Gamma$, then $T_{\alpha}=G_{\alpha}$; however, M_{22} has no subgroup isomorphic to $2^{4}: \operatorname{SL}(3,2)$, a contradiction. Thus T is transitive on $V \Gamma$, and hence Γ is T-arc-transitive. Then Γ is isomorphic to the graph given in Example 4.4.

Assume that $T=\mathrm{J}_{1}$. Then $G=T$ and the order of T is divisible by $2^{3} \cdot 3 \cdot 5$. Since $\left|T: T_{\alpha}\right|$ is square-free, $\left|T: T_{\alpha}\right|$ is divisible by 2^{2} but not divisible by $2^{4}, 5^{2}$ or 3^{2}. By Theorem 3.4 and the observation $(*), T_{\alpha} \cong \mathrm{D}_{20}, 5: 4,2 \times(5: 4), \mathrm{A}_{5}, \mathrm{~S}_{5}$ or $2 \times(7: 6)$. However, by the Atlas [6], J_{1} has no subgroups isomorphic to one of $\mathrm{S}_{4}, \mathrm{~S}_{5}, 5: 4,2 \times(5: 4)$ and $2 \times(7: 6)$. Thus $G_{\alpha} \cong \mathrm{D}_{20}$ or A_{5}.

Suppose that $T_{\alpha}=\mathrm{D}_{20}$. Then $T_{\alpha \beta}=\mathbb{Z}_{2}^{2}$ and Γ is of valency 5 , where $\beta \in \Gamma(\alpha)$. Note that T_{α} is contained in the normalizer $N=\mathrm{D}_{6} \times \mathrm{D}_{10}$ of a Sylow 5-subgroup of T, and that T_{α} is a Hall subgroup of N. We conclude that all subgroups isomorphic to D_{20} are conjugate in T. Thus we may assume that T_{α} is contained in a maximal subgroup $M \cong 2 \times \mathrm{A}_{5}$ of T. Let x be a 2-element in $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ with $\left\langle x, T_{\alpha}\right\rangle=T$. Then $x \notin M$ and $P=\left\langle x, T_{\alpha \beta}\right\rangle$ is a Sylow 2-subgroup of T. Let $X \cong 2^{3}: 7: 3$ be a maximal subgroup of T with $P \leq X$. Let Q be a Sylow 2-subgroup of M which contains $T_{\alpha \beta}$. Then $1 \neq T_{\alpha \beta} \triangleleft\langle P, Q\rangle$. Hence $\langle P, Q\rangle \neq T$, and it follows that $\langle P, Q\rangle \leq X$. Thus $P=Q$, and so $x \in Q \leq M$, a contradiction.

Now let $T_{\alpha} \cong \mathrm{A}_{5}$. Suppose that $\mathbf{N}_{T}\left(T_{\alpha}\right) \cong 2 \times \mathrm{A}_{5}$ and Γ has valency 5 . Then $T_{\alpha \beta}=\mathrm{A}_{4}$ and $N_{G}\left(T_{\alpha \beta}\right)=2 \times \mathrm{A}_{4}$ for $\beta \in \Gamma(\alpha)$. However, $\left\langle g, T_{\alpha}\right\rangle \leq \mathbf{N}_{T}\left(T_{\alpha}\right) \neq T$ for any $g \in N_{G}\left(T_{\alpha \beta}\right)$, a contradiction. Thus either $\mathbf{N}_{T}\left(T_{\alpha}\right)=T_{\alpha}$ or Γ has valency 6 . Then Γ is isomorphic to one of the graphs given in Example 4.3.
6.3. In this part we assume that $T=\operatorname{soc}(G)$ is one of the simple groups listed in parts (iii)-(v) of Lemma 5.5 . We first exclude most candidates for T.

Lemma 6.4. $T=\operatorname{PSL}(3,4), \operatorname{PSp}(4,4), \operatorname{PSL}(3,5), \operatorname{PSL}(2,25)$ or $\operatorname{PSL}(2, p)$.
Proof. Suppose that $T=\operatorname{PSL}\left(2,2^{f}\right)$ for $4 \leq f \leq 25$. Note that $\left|T: T_{\alpha}\right|$ is square-free. Checking the subgroups of T (see [10, II. 8.27]), we conclude that $\mathbb{Z}_{2}^{f-1} \lesssim T_{\alpha} \lesssim \mathbb{Z}_{2}^{f}: \mathbb{Z}_{2 f-1}$. In particular, T_{α} is soluble and, by Lemma $2.5, T_{\alpha}$ induces a soluble transitive normal subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. This yields that $G_{\alpha}^{\Gamma(\alpha)}$ is soluble, and so G_{α} is soluble by Lemma 3.2. By Theorem 3.4, $\left|G_{\alpha}\right|$ is not divisible by 2^{5}. This implies that $f=4$ or 5 . Again by Theorem $3.4, G_{\alpha} \cong 4 \times(5: 4)$; however, such a G_{α} has no subgroups isomorphic to \mathbb{Z}_{2}^{f-1}, a contradiction.

Suppose that $T=\operatorname{PSL}\left(2,3^{4}\right)$. Then $\left|T_{\alpha}\right|$, and hence $\left|G_{\alpha}\right|$, is divisible by 3^{3}. By Theorem 3.4, G_{α} has a subgroup isomorphic to $\mathrm{A}_{5} \times \mathrm{A}_{6}$. In particular, $|G|$ is divisible by 5^{2}, which is impossible.

Suppose that $T=\operatorname{PSL}\left(2,5^{4}\right)$. Then $\left|T_{\alpha}\right|$, and hence $\left|G_{\alpha}\right|$, is divisible by 5^{3}. By Theorem 3.4, $G_{\alpha} \cong 5^{2} . \mathrm{GL}(2,5)$ and Γ has valency 6. In particular, $\operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right) \cong \operatorname{PSL}(2,5)$. By Lemma $2.5, T_{\alpha}$ induces a transitive normal subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. It follows that T_{α} has a composition factor isomorphic to $\operatorname{PSL}(2,5)$. However, by [10, II.8.27], $\operatorname{PSL}\left(2,5^{4}\right)$ has no such a subgroup T_{α} of square-free index, a contradiction.

Note that the rest candidates for T lie in the Atlas [6]. By the information given in the Atlas, we have the following arguments.

Suppose that $T=\operatorname{PSU}(3,4), \operatorname{PSU}(5,2)$ or $\operatorname{Sz}(8)$. Check the subgroups of T of square-free index. We conclude that T_{α} is soluble, and so G_{α} is soluble. By Theorem 3.4, $\left|G_{\alpha}\right|$ is not divisible by 2^{5}, and so $|V|=\left|G: G_{\alpha}\right|$ is divisible by 4 , a contradiction.

Table 2
Incidence graphs.

G	G_{α}	d	Graph
$\operatorname{PSL}(3,4) .2$	$2^{4}: \mathrm{A}_{5}$	5	$\operatorname{PG}(2,4)$
$\operatorname{PSp}(4,4) .2$	$\left[4^{3}\right]: \mathrm{GL}(2,4)$	6	$\mathrm{GQ}(4)$
$\operatorname{PSL}(3,5) .2$	$5^{2}: \mathrm{GL}(2,5)$	6	$\operatorname{PG}(2,5)$

Table 3
PSL(2,p)-graphs.

G	G_{α}	d	$G_{\alpha \beta}$	$\mathbf{N}_{G}\left(G_{\alpha \beta}\right)$	Remark
$\operatorname{PSL}(2, p)$	A_{5}	5	$\mathrm{~A}_{4}$	$\mathrm{~S}_{4}$	$p^{2} \equiv 1(\bmod 5), p \equiv \pm 1(\bmod 8)$
$\operatorname{PGL}(2, p)$	A_{5}	5	$\mathrm{~S}_{4}$	D_{20}	$p^{2} \equiv 1(\bmod 5), p \equiv \pm 3(\bmod 8)$
$\operatorname{PSL}(2, p)$	A_{5}	6	D_{10}	$p^{2} \equiv 1(\bmod 5), p \equiv \pm 1(\bmod 8), 4 \mid p+\epsilon$	
$\operatorname{PGL}(2, p)$	A_{5}	6	D_{10}	$p^{2} \equiv 1(\bmod 5), p \equiv \pm 3(\bmod 8), 4 \nmid p+\epsilon$	
$\operatorname{PSL}(2, p)$	$\mathrm{D}_{2 r}$	r	\mathbb{Z}_{4}	$p^{2} \equiv 1(\bmod r), p \equiv \pm 3(\bmod 8), r \in\{5,7\}$	
$\operatorname{PGL}(2, p)$	$\mathrm{D}_{4 r}$	Z_{2}	$p^{2} \equiv 1(\bmod r), p \equiv \pm 3(\bmod 8), r \in\{5,7\}$		
$\operatorname{PSL}(2, p)$	$\mathrm{D}_{4 r}$	\mathbb{Z}_{2}	$\mathrm{~S}_{2}$	$p^{2} \equiv 1(\bmod r), p \equiv \pm 1(\bmod 8), r \in\{5,7\}$	
$\operatorname{PGL}(2, p)$	$\mathrm{D}_{4 r}$		$\mathrm{~S}_{4}$	$p^{2} \equiv 1(\bmod r), p \equiv \pm 3(\bmod 8), r \in\{5,7\}$	

Suppose that $T=\operatorname{PSL}(5,2)$. Then $G=\operatorname{PSL}(5,2)$ or $\operatorname{PSL}(5,2) .2$. Note that $|G|$ is divisible by 2^{10}, and so $\left|G_{\alpha}\right|$ is divisible by 2^{9}. Then $G_{\alpha}=\left[4^{3}\right]: \Gamma L(2,4)$ by Theorem 3.4; however, G has no such a subgroup.

Suppose that $T=\operatorname{PSL}(3,8)$. Then $\left|T_{\alpha}\right|$ is divisible by $2^{8} \cdot 3 \cdot 7$, and hence $G_{\alpha} \cong \mathrm{S}_{6} \times \mathrm{S}_{7}$ or $\left[2^{6}\right]: \operatorname{SL}(3,2)$ by Theorem 3.4; however, G has no such a subgroup.

Finally, this lemma follows from Lemma 5.5.
Lemma 6.5. Let $\{\alpha, \beta\}$ be an edge of Γ. Then either Γ is isomorphic to one of the graphs given in Example 4.5, or one line of Tables 2 and 3 occurs, where $\epsilon= \pm 1$ with $p+\epsilon$ divisible by 5 .

Proof. By Lemma $6.4, T=\operatorname{PSL}(3,4), \operatorname{PSp}(4,4), \operatorname{PSL}(3,5), \operatorname{PSL}(2,25)$ or $\operatorname{PSL}(2, p)$.
Let $T=\operatorname{PSL}(3,4)$. Then $\left|T_{\alpha}\right|$ is divided by $2^{5} \cdot 3$. By Theorem 3.4 and checking the subgroups of T in the Atlas [6], we conclude that $T_{\alpha} \cong 2^{4}: \mathrm{A}_{5}$ and Γ has valency 5 . This implies that Γ is the incidence graph of the projective plane PG $(2,4)$.

Let $T=\operatorname{PSp}(4,4)$. Then $\left|T_{\alpha}\right|$ is divided by $2^{7} \cdot 3 \cdot 5$. By Theorem 3.4 and checking the subgroups of T in the Atlas, we conclude that $G_{\alpha}=T_{\alpha} \cong\left[4^{3}\right]: G L(2,4)$ and Γ has valency 5 . Then Γ is the $(T .2,5)$-arc-transitive graph GQ(4) of order 170.

Let $T=\operatorname{PSL}(3,5)$. Then $\left|T_{\alpha}\right|$, and hence $\left|G_{\alpha}\right|$, is divisible by $2^{4} \cdot 5^{2}$ but not by 7. By Theorem 3.4, G_{α} is insoluble and Γ has valency 6 . Checking the subgroups of G, we conclude that $T_{\alpha}=G_{\alpha} \cong 5^{2}: G L(2,5)$. This implies that Γ is the incidence graph of the projective plane $\operatorname{PG}(2,5)$, and $G=\operatorname{Aut}(\operatorname{PSL}(3,5))=\operatorname{PSL}(3,5) .2$.

Let $T=\operatorname{PSL}(2,25)$. Then $G=T . \mathbb{Z}_{2}^{l}$ for $l \in\{0,1,2\}$, and $\left|G_{\alpha}\right|$ is divisible by $2^{2} \cdot 5$ but not by $3^{2}, 7$ or 2^{6}. By Theorem 3.4 and checking the subgroups of G of square-free index, we conclude that either $d=5$ and $G_{\alpha} \cong 5: 4$, or $d=6$ and $G_{\alpha} \cong S_{5}$ or A_{5}. Suppose that $G_{\alpha} \cong S_{5}$. Then $G=T$ or $T .2$, and $G_{\alpha \beta} \cong 5: 4$ for $\beta \in \Gamma(\alpha)$. Checking the subgroups of G in the Atlas [6], we conclude that both $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ and G_{α} are contained in a maximal subgroup of G, a contradiction. If $G_{\alpha} \cong A_{5}$ then $G=T$ and $G_{\alpha \beta} \cong \mathbb{Z}_{5}: \mathbb{Z}_{2}$, which yields a similar contradiction as above. Thus $G_{\alpha} \cong 5: 4$. Then $G=T$ and Γ is isomorphic to a graph given in Example 4.5.

Finally, let $T=\operatorname{PSL}(2, p)$ for prime $p \geq 7$. Check the subgroups of T, see [10, II.8.27]. If $p^{2} \not \equiv 1(\bmod 5)$ and $p^{2} \not \equiv 1(\bmod 7)$, then T has no subgroups satisfying $(*)$. Moreover, either $p^{2} \equiv 1(\bmod 5)$ and $T_{\alpha} \cong \mathrm{A}_{5}$, or $T_{\alpha} \cong \mathrm{D}_{2 r}$ or $\mathrm{D}_{4 r}$ for $r=d \in\{5,7\}$ with $p^{2} \equiv 1(\bmod r)$. Let $\beta \in \Gamma(\alpha)$.
(1) Assume that $T_{\alpha} \cong A_{5}$. Note that $G=T$ or $\operatorname{PGL}(2, p)$. Check the subgroups of $\operatorname{PGL}(2, p)$, see [4, Theorem 2]. We have $G_{\alpha}=T_{\alpha}$.

Assume that Γ has valency $d=5$. Then $G_{\alpha \beta} \cong A_{4}$. This implies that $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong S_{4}$, and either $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 1(\bmod 8)$, or $G=\operatorname{PGL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$; otherwise, $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=G_{\alpha \beta}$, a contradiction.

Assume that Γ has valency $d=6$. Then $G_{\alpha \beta} \cong \mathrm{D}_{10}$. Let $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 5 . Then $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong \mathrm{D}_{20}$, and either $G=T$ and $p+\epsilon$ is divisible by 4 , or $G=\operatorname{PGL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$ and $p+\epsilon$ not divisible by 4 .
(2) Assume that $T_{\alpha} \cong \mathrm{D}_{2 r}$. Then $p \equiv \pm 3(\bmod 8)$, and either $G=T$, or $G=\operatorname{PGL}(2, p)$ and $G_{\alpha} \cong \mathrm{D}_{4 r}$. For the latter case, $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong \mathrm{S}_{4}$.
(3) Assume that $T_{\alpha} \cong \mathrm{D}_{4 r}$. Then $G_{\alpha}=T_{\alpha}, G_{\alpha \beta} \cong \mathbb{Z}_{2}^{2}$ and $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong S_{4}$. Moreover, either $G=T$ and $p \equiv \pm 1(\bmod 8)$, or $p \equiv \pm 3(\bmod 8)$ and $G=\operatorname{PGL}(2, p)$.

7. The proof of Theorem 1.1

Let $\Gamma=(V, E)$ be a connected G-locally-primitive arc-transitive graph of valency $d=5,6$ or 7 . If G is soluble then Γ and G are known by Lemma 5.1. Thus we assume further that G is insoluble.

Table 4
Candidates for $\left(X, X_{\bar{\alpha}}\right)$.

X	$X_{\bar{\alpha}}$	d	t	$\|M\|$
$\mathrm{A}_{5}, \mathrm{~S}_{5}$	$\mathrm{D}_{10}, 5: 4$	5	1	Odd
S_{5}	$5: 4$	5	1	Odd
$\mathrm{A}_{6}, \mathrm{~S}_{6}$	$\mathrm{~A}_{5}, \mathrm{~S}_{5}$	5	1	Odd
$\mathrm{A}_{7}, \mathrm{~S}_{7}$	$\mathrm{~A}_{6}, \mathrm{~S}_{6}$	6	1	
$\mathrm{~S}_{7}$	$\mathrm{~A}_{6} \leq T$	6	2	Odd
$\mathrm{A}_{7}, \mathrm{~S}_{7}$	$\mathrm{~A}_{5}, \mathrm{~S}_{5}$	6	1	Odd
S_{7}	$\mathrm{SL}(3,2) \leq T$	7	2	Odd
S_{8}	$2^{3}: \mathrm{SL}(3,2) \leq T$	7	2	Odd
$\mathrm{A}_{11}, \mathrm{~S}_{11}$	$\left(\mathrm{~A}_{5} \times \mathrm{A}_{6}\right) .2, \mathrm{~S}_{5} \times \mathrm{S}_{6}$	6	1	Odd

Let M be the maximal soluble normal subgroup of G. By Lemma $5.2, G=M: X$ for $X<G, M$ is semiregular on V and Γ is a normal cover of $\Sigma:=\Gamma_{M}$. We identify X with a subgroup of Aut Σ. Then Σ is X-locally-primitive arc-transitive. Denote by \bar{V} the vertex set of Σ, that is, the set of M-orbits on V. Then $|V|=|M||\bar{V}|$. Thus if $|\bar{V}|$ is even then $|M|$ is odd. If $M=1$ then G and Γ are known by Lemmas $5.4,5.5,6.1,6.3$ and 6.5 . We next assume that $M \neq 1$.

By the choice of M, we know that X has no soluble minimal normal subgroups. By Lemma $5.4, \operatorname{soc}(X)$ is the unique minimal normal subgroup of X. Set $N=M \operatorname{soc}(X)$. Then $N \triangleleft G$, and so $\mathbf{C}_{N}(M) \triangleleft G$ and $M \mathbf{C}_{N}(M) \triangleleft G$. Since $|M|$ is square-free, Aut (M) is soluble. Note that $N / \mathbf{C}_{N}(M)=\mathbf{N}_{N}(M) / \mathbf{C}_{N}(M) \lesssim \operatorname{Aut}(M)$. It follows that $\operatorname{soc}(X) \leq \mathbf{C}_{N}(M)$, and so $M \mathbf{C}_{N}(M)=M \times \operatorname{soc}(X)$. This implies that $\operatorname{soc}(X)$ is a characteristic subgroup of $M \mathbf{C}_{N}(M)$, yielding $\operatorname{soc}(X) \triangleleft G$. Suppose that X is not almost simple. By Lemma $5.4, \Sigma \cong K_{d, d}$ with $d \in\{5,7\}$. Since $\operatorname{soc}(X) \triangleleft G$, by Lemma $5.3, \Gamma \cong K_{d, d}$. Then $M=1$ as $2 d=|V|=|M||\bar{V}|=2 d|M|$, a contradiction. Thus $T:=\operatorname{soc}(X)$ is a non-abelian simple group. Then $M T=M \times T$, $T \triangleleft G$ and the pair (X, Σ) is known by Lemmas $6.1,6.3$ and 6.5 . Let $\alpha \in V$ and $\bar{\alpha} \in \bar{V}$ with $\alpha \in \bar{\alpha}$.
(1) Assume first (X, Σ) satisfies Lemma 6.1. Then one line of Table 4 occurs, where t is the number of T-orbits on \bar{V}.

Suppose that $|M|$ is odd. Recall that T has at most two orbits on V, see Lemma 2.5. Then M fixes each T-orbit on V. Let U be a T-orbit on V. Choose $\alpha \in U$. Then $\bar{\alpha} \subseteq U, M T_{\bar{\alpha}}$ fixes $\bar{\alpha}$ setwise, and both M and $T_{\bar{\alpha}}$ are transitive on $\bar{\alpha}$. Thus, since $M T_{\bar{\alpha}}=M \times T_{\bar{\alpha}}$, both M and $T_{\bar{\alpha}}$ induce two regular permutation groups on $\bar{\alpha}$. In particular, $T_{\bar{\alpha}}$ has a normal subgroup of odd index $|\bar{\alpha}|=|M| \neq 1$, which is impossible by checking one by one the possible $T_{\bar{\alpha}}$ in Table 4. Therefore, $|M|$ is even, $T=\mathrm{A}_{7}$ and $\Sigma \cong \mathrm{K}_{7}$. If T is transitive on V then, noting that $T_{\bar{\alpha}} \cong \mathrm{A}_{6}$ is simple, a similar argument implies a contradiction. Thus $\Sigma \cong \mathrm{K}_{7}$ and $T=\mathrm{A}_{7}$ has two orbits on V.

Since $G_{\alpha}^{\Gamma(\alpha)}$ is a primitive group of degree $d=6$, we have $\operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right) \cong \mathrm{A}_{6}$. By Lemma $2.5, T_{\alpha}$ induces a transitive normal subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. It follows that $T_{\alpha} \cong A_{6}$. Thus $7|M|=|M||\bar{V}|=|V|=2\left|T: T_{\alpha}\right|=14$, and so $M \cong \mathbb{Z}_{2}$. Then $G=M: X=M \times X$, and Γ is isomorphic to the standard double cover of K_{7}, that is, $\Gamma \cong \mathrm{K}_{7,7}-7 \mathrm{~K}_{2}$.
(2) Suppose that (X, Σ) is known by Lemmas 6.3 and 6.5. Then Σ has even order $|\bar{V}|$, and so $|M|$ is odd. Then we conclude that $M=1$ by a similar argument as in the case (1), a contradiction. This completes the proof of Theorem 1.1.

Acknowledgments

The first author is supported by an ARC grant DP1096525. The second author is supported by National Natural Science Foundation of China (11271267, 11371204). The third author is supported by Anhui Provincial Natural Science Foundation (1408085MA04).

References

[1] B. Alspach, M.Y. Xu, $\frac{1}{2}$-transitive graphs of order 3p, J. Algebraic Combin. 3 (1994) 347-355.
[2] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1993.
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
[4] P.J. Cameron, G.R. Omidi, B. Tayfeh-Rezaie, 3-Design from PGL(2, q), Electron. J. Combin. 13 (2006) \#R50.
5] M.D. Conder, C.H. Li, C.E. Praeger, On the Weiss conjucture for finite locally primitive graphs, Proc. Edinb. Math. Soc. 43 (2000) 129-138.
[6] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[7] J.D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996.
[8] A. Gardiner, Arc transitivity in graphs, Q. J. Math. 24 (1973) 399-407.
[9] M. Giudici, C.H. Li, C.E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 365 (2004) 291-317.
[10] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
[11] P. Kleidman, M. Liebeck, The Subgroup Structure of The Finite Classical Groups, Cambridge University Press, 1990.
$12]$ C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective palnes, Proc. Amer. Math. Soc. 133 (2004) 31-41.
13] C.H. Li, Z.P. Lu, G.X. Wang, Vertex-transitive cubic graphs of square-free order, J. Graph Theory 75 (2014) 1-19.
14] C.H. Li, Z.P. Lu, G.X. Wang, On edge-transitive graphs of square-free order, Electron. J. Combin. 22 (2015) \#P3.25.
[15] C.H. Li, Z.P. Lu, G.X. Wang, On vertex-transitive and edge-transitive tetravalent graphs of square-free order, J. Algebra Combin. 42 (2015) 25-50.
[16] C.E. Praeger, R.J. Wang, M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993) $299-318$.
17] C.E. Praeger, M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993) $245-266$.
18] V.I. Trofimov, Vertex stabilizers of locally projective groups of automorphisms of graphs. A summary, Groups Combin. Geom. (2001) 313-334.
[19] R.J. Wang, Half-transitive graphs of order a product of two distinct primes, Comm. Algebra 22 (1994) 915-927.
[20] R. Weiss, Groups with a (B,N)-pair and locally transitive graphs, Nagoya Math. J. 74 (1979) 1-21.
[21] R. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Cambridge Philos. Soc. 85 (1979) 43-48.
[22] R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1 (1981) 309-311.
[23] R. Weiss, s-transitive graphs, Algebraic Methods in Graph Theory 2 (1981) 827-847.

[^0]: * Corresponding author.

 E-mail addresses: cai.heng.li@uwa.edu.au (C.H. Li), lu@nankai.edu.cn (Z.P. Lu), wgx075@163.com (G.X. Wang).

