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1. Introduction

All graphs and groups considered in this paper are assumed to be finite.
Let Γ = (V , E) be a simple connected graph with vertex set V and edge set E. The number of vertices |V | is called the

order ofΓ . LetAutΓ be the automorphism group ofΓ and let G be a subgroup ofAutΓ , written as G ≤ AutΓ . Then the graph
Γ is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V and E, respectively. Recall that an arc in Γ

is an ordered pair of adjacent vertices. The graph Γ is said to be G-arc-transitive if G acts transitively on the set of all arcs in
Γ . For α ∈ V , we denote by Gα and Γ (α) respectively the stabilizer of α in G and the set of neighbors of α in Γ , that is,

Gα = {g ∈ G | αg
= α} and Γ (α) = {β ∈ V | {α, β} ∈ E}.

The graph Γ is called G-locally-primitive if for every α ∈ V the stabilizer Gα acts primitively on Γ (α). It is easy to see that
Γ is G-edge-transitive if it is G-locally-primitive. Moreover, if Γ is both G-vertex-transitive and G-locally-primitive, then Γ

must be G-arc-transitive; in this case, Γ is said to be G-locally-primitive arc-transitive.
The study of graphswith square-free order has a long history, see for example [1,16,17,19] for those graphs of order being

a product of two primes. This paper is devoted to classifying arc-transitive graphs of square-free order and small valency.
In recent work [14], the authors gave a reduction for connected locally-primitive arc-transitive of square-free order.

We proved that, for a connected locally-primitive arc-transitive graph Γ of square-free order and valency d, if it is not a
complete bipartite graph then either AutΓ is soluble, or Γ is a cover of one of the ‘basic’ graphs associated with PSL(2, p),
PGL(2, p) and a finite number (depending only on the valency d) of other almost simple groups. Then for some small values
of dwemay determinemost ‘basic’ graphs, whichmakes it possible to give a classification of such graphs of small valencies.
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Thus a natural question is to find a classification of locally-primitive arc-transitive graphs of square-free order and small
valency d. This question was solved for d = 3 and 4 in [13] and [15], respectively. In this paper we deal with the case where
d ∈ {5, 6, 7}. Our main result is stated as follows.

Theorem 1.1. Let Γ be a connected G-locally-primitive arc-transitive graph of square-free order and valency d = 5, 6 or 7. Then
one of the following statements holds.

(i) G = D2n:Zd with d ∈ {5, 7}, and Γ is a graph given by Construction 4.1.
(ii) Γ is isomorphic to one of the following graphs:

K6, K7, K5,5, K7,7 and K7,7 − 7K2;
the incidence graphs of PG(3, 2), PG(2, 4), PG(2, 5) and GQ(4);
the graphs given in Examples 4.2–4.5.

(iii) G = PSL(2, p) or PGL(2, p) for odd prime p, and for an edge {α, β} of Γ the pair (Gα,Gαβ) is listed in Table 3.

For groups, we follow the notation used in the Atlas [6] while we sometimes use Zl and Zk
p to denote respectively the

cyclic group of order l and the elementary abelian group of order pk.

2. Preliminaries

Let Γ = (V , E) be a graph of valency d, let {α, β} ∈ E and G ≤ AutΓ . Set Gαβ = Gα ∩ Gβ , call the arc-stabilizer of (α, β)
(and (β, α)). Assume that Γ is G-arc-transitive. Then Gα is transitive on Γ (α), and d = |Γ (α)| = |Gα : Gαβ |. Take x ∈ G
with (α, β)x = (β, α). Then

x ∈ NG(Gαβ) \ Gαβ , x2 ∈ Gαβ .

(In particular, the index |NG(Gαβ) : Gαβ | is even.) Obviously, this xmay be chosen as a 2-element in the normalizer NG(Gαβ).
Moreover, Γ is connected if and only if ⟨x,Gα⟩ = G. Since G is transitive on V , the map αg

→ Gαg is a bijection between V
and [G : Gα], the set of right cosets of Gα in G. It is easy to show that this map is an isomorphism from the graph Γ to a coset
graph defined as follows.

Let G be a finite group and H be a core-free subgroup of G, where core-free means that ∩g∈G Hg
= 1. For x ∈ G \ H , the

coset graph Cos(G,H,H{x, x−1
}H) is defined on [G : H] such thatHg1 andHg2 are adjacent whenever g2g−1

1 ∈ HxH∪Hx−1H .
Note that Gmay be viewed as a subgroup of AutCos(G,H,H{x, x−1

}H), where G acts on [G : H] by right multiplication. The
following statements for coset graphs are well-known.

Lemma 2.1. Let G be a finite group and H a core-free subgroup of G. Set Γ = Cos(G,H,H{x, x−1
}H), where x ∈ G \H. Then Γ

is both G-vertex-transitive and G-edge-transitive, and

(i) Γ is G-arc-transitive if and only if HxH = HyH for some 2-element y ∈ NG(H ∩ Hx) \ H with y2 ∈ H ∩ Hx; in this case, Γ
has valency |H : (H ∩ Hy)|;

(ii) Γ is connected if and only if ⟨H, x⟩ = G.

Let Γ = (V , E) be a connected graph and G ≤ AutΓ . For α ∈ V , the stabilizer Gα induces a permutation group GΓ (α)
α .

Let G[1]
α be the kernel of this action. Then GΓ (α)

α
∼= Gα/G[1]

α . Consider the actions of Sylow subgroups of G[1]
α on V . It is easily

shown that the next lemma holds, see [5] for example.

Lemma 2.2. Let Γ = (V , E) be a connected regular graph, G ≤ AutΓ and α ∈ V . Assume that Gα ≠ 1. Let p be a prime divisor
of |Gα|. Then p ≤ |Γ (α)|. If further Γ is G-vertex-transitive, then p divides |GΓ (α)

α | and, for β ∈ Γ (α), each prime divisor of
|Gαβ | is less than |Γ (α)|.

Lemma 2.3. Assume that Γ = (V , E) is a connected G-vertex-transitive graph. Let N ▹ G be a normal subgroup of G such that
NΓ (α)

α is semiregular for some α ∈ V . Then N [1]
α = 1, that is, Nα is faithful on Γ (α).

Proof. Let β ∈ Γ (α). Then β = αx for some x ∈ G, and hence Nβ = N ∩ Gαx = (Nα)x. It follows that NΓ (β)

β and NΓ (α)
α are

permutation isomorphic; in particular, NΓ (β)

β is semiregular on Γ (β). Thus N [1]
α acts trivially on Γ (β), and so N [1]

α = N [1]
β .

Since Γ is connected, N [1]
α fixes each vertex of Γ , and hence N [1]

α = 1. �

Lemma 2.4. Let Γ = (V , E) be a connected graph, N ▹ G ≤ AutΓ and α ∈ V . Assume that either N is regular on V , or Γ is a
bipartite graph such that N is regular on both the bipartition subsets of Γ . Then G[1]

α = 1.

Proof. Set X = NG[1]
α . Then Xα = G[1]

α and X [1]
α = G[1]

α , and hence XΓ (α)
α = 1.

Assume first thatN is regular onV . ThenG = NGα . It follows thatX is normal inG. Thus our result follows fromLemma2.3.
Now assume that Γ is a bipartite graph with bipartition subsets U and W , and that N is regular on both U and W . For

each δ ∈ U ∪ W , we have NXα = X = NXδ , and |Xδ| = |Xα|. Since Xα = G[1]
α acts trivially on Γ (α), we have Xα ≤ Xβ for
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each β ∈ Γ (α), and so Xα = Xβ as |Xβ | = |Xα|. For α′
∈ U , there exists some x ∈ N such that α′

= αx. Then Xα′ = Xαx = X x
α

and Γ (α′) = Γ (α)x. It follows that Xβ ′ = Xα′ for every β ′
∈ Γ (α′). This implies that Xδ = Xγ for an arbitrary edge {δ, γ }

of Γ . By the connectedness of Γ , we conclude that G[1]
α fixes each vertex of Γ . Thus G[1]

α = 1. �

Let Γ = (V , E) be a connected G-locally-primitive graph, where G ≤ AutΓ . Then Γ is G-edge-transitive, and G has at
most two orbits on V . Let N be a normal subgroup of G. Note that GΓ (α)

α is a primitive permutation group for each α ∈ V . If Γ
is G-vertex-transitive then, by Lemma 2.3, either N is semiregular on V , or Nα is transitive on Γ (α); the latter case implies
that Γ is N-edge-transitive. Then we have

Lemma 2.5. Let Γ = (V , E) be a connected G-locally-primitive arc-transitive graph, where G ≤ AutΓ . Let N be a normal
subgroup of G. If N is not semiregular on V then for α ∈ V the stabilizer Nα is transitive on Γ (α); in particular, N is transitive
on E and has at most two orbits on V .

Suppose that N is intransitive on every G-orbit on V . For α ∈ V , we use ᾱ to denote the N-orbit containing α. The normal
quotient ΓN is defined as the graph with vertex set V = {ᾱ | α ∈ V } and edge set {{ᾱ, β̄} | {α, β} ∈ E}. The graph Γ is
called a (normal) cover of ΓN if, for every edge of {ᾱ, β̄} of ΓN , the subgraph of Γ induced by ᾱ ∪ β̄ is a matching. If Γ is
a cover of ΓN then, noting that Γ is connected and G-vertex-transitive, it is easily shown that N is semiregular on V and N
itself is the kernel of G acting on V . Moreover, the following lemma holds.

Lemma 2.6. Let Γ = (V , E) be a connected G-locally-primitive graph, where G ≤ AutΓ . Let N be a normal subgroup of G.
Assume that N is intransitive on every G-orbit on V . Then one of the following statements holds.

(i) Γ is a cover of ΓN , N is semiregular on V and N itself is the kernel of G acting on V , and ΓN is (G/N)-locally-primitive.
(ii) N has two orbits on V , Γ is a G-arc-transitive bipartite graph, and either Γ is N-edge-transitive or G[1]

α = 1 for every α ∈ V .

Proof. Assume that N has two orbits on V . Then, by the choice of N , we know that G is transitive on V , and so Γ is bipartite
and G-arc-transitive. Thus part (ii) of this lemma follows from Lemmas 2.4 and 2.5.

Assume that N has at least three orbits on V . If G has two orbits on V then part (i) of this lemma occurs by [9, Lemma 5.1].
Assume further that G is transitive on V . Take an arbitrary vertex α ∈ V , and set ∆ = {Γ (α) ∩ β̄ | β ∈ Γ (α)}. Then ∆ is

a Gα-invariant partition of Γ (α). Since Gα acts primitively on Γ (α), either |∆| = 1 or |Γ (α) ∩ β̄| = 1 for each β ∈ Γ (α).
On other hand, ΓN is connected and of order no less 3, we have |∆| ≥ 2. Thus |Γ (α)∩ β̄| = 1 for each β ∈ Γ (α). This yields
that, for every edge of {ᾱ, β̄} of ΓN , the subgraph of Γ induced by ᾱ ∪ β̄ is a matching. Then part (i) follows. �

3. The structure of stabilizers

Let Γ = (V , E) be a group and G ≤ AutΓ . For an edge {α, β} ∈ E, let G[1]
αβ = G[1]

α ∩ G[1]
β , the kernel of the edge stabilizer

G{α,β} acting on Γ (α) ∪ Γ (β). Then

G[1]
α /G[1]

αβ
∼= (G[1]

α G[1]
β )/G[1]

β ▹ Gαβ/G[1]
β

∼= GΓ (β)

αβ = (GΓ (β)

β )α.

Moreover, the following result is well-known, see [8].

Theorem 3.1. Let Γ = (V , E) be a connected G-locally-primitive arc-transitive graph. If {α, β} ∈ E then G[1]
αβ is a p-group for

some prime p.

Since Gα/G[1]
α

∼= GΓ (α)
α and G[1]

α /G[1]
αβ is isomorphic to a normal subgroup of (GΓ (β)

β )α , if GΓ (α)
α , (GΓ (β)

β )α and G[1]
αβ are soluble

then Gα is soluble. Note that ((Gβ)Γ (β))α ∼= ((Gα)Γ (α))β if Γ is G-arc-transitive. Then Theorem 3.1 implies the next result.

Lemma 3.2. Let Γ be a connected G-locally-primitive arc-transitive graph. Then Gα is soluble if and only if GΓ (α)
α is soluble.

For a positive integer s, an s-arc in Γ is an (s + 1)-tuple (α0, α1, . . . , αs) of vertices such that αi−1 ∈ Γ (αi) for 1 ≤ i ≤ s
and αi−1 ≠ αi+1 for 1 ≤ i ≤ s − 1. The graph Γ is said to be (G, s)-arc-transitive if it contains at least one s-arc and G acts
transitively on both V and the set of s-arcs, and said to be (G, s)-transitive if it is (G, s)-arc-transitive but not (G, s + 1)-arc-
transitive. (Note that s-arc-transitivity yields (s− 1)-arc-transitivity and locally-primitivity for all s > 1.) For the stabilizers
of s-transitive graphs, we formulate the following theorem from [20,22,23].

Theorem 3.3. Let Γ = (V , E) be a connected (G, s)-transitive graph with s ≥ 2, and let {α, β} ∈ E. Then one of the following
holds.

(1) G[1]
αβ = 1 and s ≤ 3;

(2) G[1]
αβ is a non-trivial p-group, GΓ (α)

α ◃ PSL(n, pf ), |Γ (α)| =
pfn−1
pf −1

, and either
(2.1) n ≥ 3 and s ∈ {2, 3}; or
(2.2) n = 2, s ≥ 4 and one of the following holds:
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(i) s = 4 and Gα = [p2f ]:(a.PGL(2, pf )).R, where a =
pf −1

(3,pf −1)
and |R| is a divisor of (3, pf − 1)f ;

(ii) s = 5, p = 2 and Gα = [23f
]:GL(2, 2f ).b, where b is a divisor of f ;

(iii) s = 7, p = 3 and Gα = [35f
]:GL(2, 3f ).b, where b is a divisor of f .

For the case (2.1) of Theorem3.3, the structure ofGα is determinedby Trofimov in a series of papers, see [18]. Theorems3.1
and 3.3 and Trofimov’s results are important tools in the study of locally-primitive arc-transitive graphs. For convenience,
we produce here an explicit list for the stabilizers of locally-primitive graphs of valency d ∈ {5, 6, 7}, which is of course a
reproduction of the above results.

Theorem 3.4. Let Γ = (V , E) be a connected G-locally-primitive arc-transitive graph of valency d ∈ {5, 6, 7}. Let α ∈ V . Then
one of the following holds.
(i) Γ is not (G, 2)-arc-transitive, and Gα is (isomorphic to) one of the groups:

Z5, D10, D20; Z7, D14, D28, 7:3, 3 × (7:3).

(ii) Γ is (G, s)-transitive with s ≥ 2, and Gα lies in the following list:

d = 5 :

s 2 3 4 5
Gα 5:4, 2×(5:4) 4×(5:4), A4×A5, [42

]:SL(2, 4), [43
]:GL(2, 4)

A5, S5 (A4×A5).2, S4×S5 [42
]:GL(2, 4) [43

]:Γ L(2, 4)
[42

]:Γ L(2, 4)

d = 6 :

s 2 3 4
Gα A6, S6 A5×A6, (A5×A6).2, S5×S6

A5, S5 D10×PSL(2, 5), (5×PSL(2, 5)).2 52
:GL(2, 5)

D10×PGL(2, 5), (5:4)×PGL(2, 5)

d = 7 :

s 2 2, 3 3
Gα 7:6, 2×(7:6), 3×(7:6) 6×(7:6), A6×A7, (A6×A7).2

SL(3, 2) A7 S6×S7, A4×SL(3, 2), S4×SL(3, 2)
23.SL(3, 2) S7 [26

].(SL(2, 2)×SL(3, 2))
[24

]:SL(3, 2) [220
].(SL(2, 2)×SL(3, 2))

Proof. Assume that Γ is (G, s)-transitive. Note that GΓ (α)
α is a primitive permutation group of degree d. Then either

(a) GΓ (α)
α 2-transitive and soc(GΓ (α)

α ) ∼= A5, A6, A7 or PSL(3, 2); or
(b) GΓ (α)

α
∼= Zd:Zl with d ∈ {5, 7} and l a divisor of d − 1.

If G[1]
α = 1 then Gα

∼= GΓ (α)
α is known and, by [12, Proposition 2.6], either s ≤ 2 or (d,Gα) = (7,A7) or (7, S7). Thus we

next suppose that G[1]
α ≠ 1. Let β ∈ Γ (α).

Assume first that G[1]
αβ is a non-trivial p-group. Then by Theorem 3.3 and [21], GΓ (α)

α
∼= PSL(2, 4) or PSL(3, 2). Thus, by

Theorem 3.3 and [18], the triple (d, s,Gα) lies in the following table:

d s Gα

5 4 [42
]:GL(2, 4), [42

]:Γ L(2, 4), [42
]:SL(2, 4)

5 [43
]:GL(2, 4), [43

]:Γ L(2, 4)
6 4 52

:GL(2, 5)
7 2 23.SL(3, 2), [24

]:SL(3, 2)
3 [26

].(SL(2, 2)×SL(3, 2)), [220
].(SL(2, 2)×SL(3, 2))

Now let G[1]
αβ = 1. Then G[1]

α acts faithfully on Γ (β), and G[1]
α is isomorphic to a normal subgroup of (GΓ (β)

β )α . Since
G[1]

αβ = G[1]
α ∩ G[1]

β , we have

Gαβ
∼= Gαβ/(G[1]

α ∩ G[1]
β ) . Gαβ/G[1]

α × Gαβ/G[1]
β

∼= GΓ (α)
αβ × GΓ (β)

αβ .

Note that GΓ (β)

β
∼= GΓ (α)

α is explicitly known, and so is the stabilizer (GΓ (β)

β )α . This gives us a strategy to determine the
stabilizer Gα = G[1]

α .GΓ (α)
α , a group extension of G[1]

α by GΓ (α)
α . Moreover, we have the following useful observation. Recall

that Γ is connected and G-arc-transitive. Then AutΓ ≥ G = ⟨x,Gα⟩ for some x ∈ NG(Gαβ). It follows that Gα contains no
non-trivial normal subgroups which are characteristic in Gαβ . In particular, G[1]

α is not a characteristic subgroup of Gαβ .
(1) Let d = 5. Then GΓ (α)

α is not regular on Γ (α) by Lemma 2.3, and so GΓ (α)
α

∼= D10, 5:4, A5 or S5.
Assume that GΓ (α)

α
∼= D10 or 5:4. Then (GΓ (β)

β )α ∼= Z2 or Z4, and hence G[1]
α

∼= Z2 or Z4, respectively. Thus Gα =

G[1]
α .GΓ (α)

α = (G[1]
α × 5).(GΓ (α)

α )β = 5:Gαβ . Noting that Gαβ . Z4 × Z4 and G[1]
α is faithful on Γ (α) \ {α}, it follows that either

Gα is one of D20 and 2 × (5:4), or Γ is (G, 3)-transitive and Gα = 4 × (5:4).
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Assume GΓ (α)
α

∼= A5. Then (GΓ (β)

β )α ∼= A4, and so G[1]
α

∼= Z2
2 or A4. If G[1]

α
∼= Z2

2 then Gα = Z2
2 × A5, and so both Gα

and Gαβ contain a characteristic subgroup isomorphic to Z2
2, which is a contradiction. Thus G[1]

α
∼= (GΓ (β)

β )α ∼= A4, and so
Gα = A4 × A5 and Γ is (G, 3)-transitive.

Assume GΓ (α)
α

∼= S5. Then (GΓ (β)

β )α ∼= S4, and so G[1]
α

∼= Z2
2, A4 or S4. Suppose that G[1]

α
∼= Z2

2. Then Gα = G[1]
α .S5 =

(G[1]
α × A5).2 and Gαβ = G[1]

α .S4 = (G[1]
α × A4).2. This implies that both Gα and Gαβ have the same center isomorphic to Z2

or Z2
2, a contradiction. Thus G[1]

α
∼= A4 or S4, and so Γ is (G, 3)-transitive and Gα = (A4 × A5).2, or S4 × S5.

(2) Let d = 6. Then GΓ (α)
α

∼= A6, S6, PSL(2, 5) or PGL(2, 5), and (GΓ (β)

β )α ∼= A5, S5,D10 or 5:4, respectively. If G[1]
α

∼= A5

or S5, then G[1]
α

∼= A5 or S5, and so Gα = A5 × A6, (A5 × A6).2 or S5 × S6.
Assume that (GΓ (β)

β )α ∼= D10. Then G[1]
α

∼= Z5 or D10, and Gα = PSL(2, 5) × G[1]
α . If G[1]

α
∼= Z5 then both Gα and Gαβ have

the same center G[1]
α , a contradiction. Thus G[1]

α
∼= D10 and Gα = D10 × PSL(2, 5).

Finally, if (GΓ (β)

β )α ∼= 5:4 then G[1]
α = Z5,D10 or 5:4, this yields that Gα = (5 × PSL(2, 5)).2, D10 × PGL(2, 5), or

(5:4) × PGL(2, 5).
(3) Let d = 7. Then GΓ (α)

α is not regular on Γ (α) by Lemma 2.3, and so GΓ (α)
α

∼= D14, 7:3, 7:6, SL(3, 2), A7 or S7. For
GΓ (α)

α
∼= D14, 7:3 or 7:6, we have Gα = D28, 3 × (7:3), 2 × (7:6), 3 × (7:6) or 6 × (7:6). For GΓ (α)

α
∼= A7 or S7, we have

Gα = A6×A7, (A6×A7).2 or S6×S7. Assume that GΓ (α)
α

∼= SL(3, 2). Then (GΓ (β)

β )α = S4, and so G[1]
α = Z2

2, A4 or S4. The group
Z2
2 is excluded by considering the centers of Gα and Gαβ . Thus G[1]

α
∼= A4 or S4, and so Gα = A4 ×SL(3, 2) or S4 ×SL(3, 2). �

Consider the orders of the groups Gα listed in Theorem 3.4. We have

Corollary 3.5. Let Γ = (V , E) be a connected G-locally-primitive arc-transitive graph of valency d ∈ {5, 6, 7}. For α ∈ V , the
following statements hold.

(1) None of 225, 35, 54 and 72 is a divisor of |Gα|.
(2) If |Gα| is divisible by 210 then |Gα| = 210

· 32
· 7 or 224

· 32
· 7.

(3) If |Gα| is not divisible by 3 then 25 is not a divisor of |Gα|.
(4) If d = 7 then one of 29 and 33 is not a divisor of |Gα|.

4. Examples

We describe in this section some arc-transitive graphs of square-free order. For a square-free number n, the complete
graph Kn is such a graph, and so is the complete bipartite graph Kn,n if in addition n is odd. Also for an odd square-free
number n, the standard double cover of Kn is such an example, which is isomorphic to Kn,n − nK2. Note that K6, K7, K5,5, K7,7
and K7,7 − 7K2 are involved in Theorem 1.1.

The odd graph Od is defined on the set consisting of (d − 1)-subsets of a set of size 2d − 1 such that two vertices are
adjacent whenever they disjoint. Then AutOd = S2d−1 which acts 3-arc-transitively on Od with stabilizer Sd × Sd−1. The
graph Od has valency d and order


2d−1
d−1


. The graph O6 is involved in Theorem 1.1.

Let PG(2, q) be the projective plane over the finite field of order q. Then PG(2, q) has q2 +q+1 points and q2 +q+1 lines,
and the group PGL(3, q) acts transitively on the flags of PG(2, q). The incidence graph of PG(2, q) is a (G, 4)-arc-transitive
graph of valency q + 1 and order 2(q2 + q + 1), where G = PGL(3, q).⟨τ ⟩ with τ being transpose-inverse automorphism of
PGL(3, q). For q = 4 and 5, the resulting graphs are involved in Theorem 1.1.

Let PG(3, 2) be the 3-dimensional projective geometry over the field of order 2. Then PG(3, 2) have 15 points and 15
hyperplanes. The point–hyperplane incidence graph of PG(3, 2) appears in Theorem 1.1, which is a (G, 2)-arc-transitive
graph of valency 7 and order 30, where G = S7 or PSL(4, 2).2.

Let GQ(q) be the generalized quadrangle of order q = 2f , which has (q2 +1)(q+1) points and lines. The symplectic group
PSp(4, q) acts on the geometry GQ(q) flag-transitively. For convenience, denote by GQ(q) the incidence graph of itself. Then
the graph GQ(q) is (G, 5)-arc-transitive of valency q + 1, where G = PSp(4, q).2. The graph GQ(4) appears in Theorem 1.1,
which has valency 5 and order 170.

Let R be a group, and S a inverse-closed subset of R which does not contain the identity of R. Then the Cayley graph
Γ = Cay(R, S) is the graph with vertex set R, where two vertices x, y ∈ R are adjacent if and only if yx−1

∈ S. It easily
follows that AutΓ has a subgroup R̂which is isomorphic to R and regular on the vertex set of Γ .

Construction 4.1. Let R = ⟨a⟩:⟨b⟩ = D2n, where n > 1 is odd square-free. Let d be a prime. Assume that there is some
integer r such that

d−1
i=0 r i ≡ 0 (mod n). Let s be an integer coprime to n, and let σ ∈ Aut(R) such that aσ

= ar and
bσ

= asb. Then σ has order d and R = ⟨S⟩, where S = {bσ i
| 0 ≤ i ≤ d − 1}. Hence G := R:⟨σ ⟩ ∼= D2n:Zd, and Cay(R, S) is a

connected bipartite G-arc-regular graph of valency d. For example, taking n = 155 and r = 2, we get a graph of order 310
and valency 5.

Next we give several examples by using coset graphs.
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Example 4.2. We identify H = PSL(2, 5)with a transitive subgroup of A6 containing K = ⟨σ , τ ⟩, where σ = (1 2 3 4 5) and
τ = (1 5)(2 4). ThenNA7(K) = ⟨σ , π⟩ ∼= Z5oZ4, ⟨π,H⟩ = A7 andπ2

∈ K , whereπ = (1 4 5 2)(6 7). ThusCos(A7,H,HπH)
is a connected 2-arc-transitive graph of valency 6 and order 42.

Example 4.3. Checking by GAP, we know that the first Janko group J1 has exactly two conjugation classes of subgroups
isomorphic to A5. Let H1 and H2 be two subgroups isomorphic to A5 such that they are not conjugate in J1. Then one of them
is self-normalized and the other one has normalizer isomorphic to 2×A5. Assume that NJ1(H1) = H1 and NJ1(H2) ∼= 2×A5.

(1) Take A4 ∼= K1 ≤ H1. Then NJ1(K1) = ⟨x⟩ × K1 ∼= Z2 × A4. Checking the maximal subgroups of J1, we conclude that
⟨x,H1⟩ = J1. Thus Cos(J1,H1,H1xH1) is a (J1, 2)-arc-transitive graph of valency 5 and order 2 · 7 · 11 · 19.

(2) Checking by GAP, if a subgroup K ∼= D10 is contained in H1 or H2 then NJ1(K) ∼= D20. Take D10 ∼= K2 ≤ H1. Then
NJ1(K2) = ⟨y⟩ × K2 ∼= D20. Checking the maximal subgroups of J1, we conclude that ⟨y,H1⟩ = J1. Thus Cos(J1,H1,H1yH1) is
a (J1, 2)-arc-transitive graph of valency 6 and order 2 · 7 · 11 · 19.

Example 4.4. Let H be amaximal subgroup of M22 with H ∼= 23
:SL(3, 2). By the Atlas [6], SL(3, 2) has two conjugate classes

of subgroups isomorphic to S4. Then H has two conjugate classes of subgroups isomorphic to 23
:S4. Checking by GAP, we

know that the subgroups in one of these classes are self-normalizing in M22, and the subgroups in the other class have
normalizers isomorphic to 24

:S4. Take K < H with K ∼= 23
:S4 andNM22(K) ∼= 24

:S4. Let g ∈ NM22(K)\H . Then ⟨H, g⟩ = M22,
Hg

∩ H = K , and so Γ = Cos(M22,H,HgH) is a connected (M22, 2)-arc-transitive graph of valency 7. Note that this graph
is a distance-transitive graph with automorphism group M22.2, see [3, Section 6.10].

Example 4.5. By the Atlas [6], T = PSL(2, 25) contains exactly two conjugation classes of elements of order 5, which appear
respectively in two distinct conjugation classes ofmaximal subgroups isomorphic to S5 in T . It follows that T has exactly two
conjugation classes of subgroups isomorphic to 5:4. Computation of the number of the pairs with type (S5, 5:4) of subgroups
of T , we conclude that each subgroup 5:4 is contained in exactly one subgroup S5.

Let Z5:Z4 ∼= H ≤ M ≤ T , M ∼= S5 and Z4 ∼= K ≤ H . Then NM(K) ∼= D8 and NT (K) ∼= D24. Set NM(K) = K :⟨z⟩ and
NT (K) = K :(⟨y⟩:⟨z⟩)with ⟨y⟩:⟨z⟩ ∼= D6. By the above argument, we have ⟨yiz,H⟩ = T for i = 1 and 2. Then Cos(T ,H,HyzH)
and Cos(T ,H,Hy2zH) are two (T , 2)-arc-transitive graphs of valency 5 and order 390.

5. The automorphism groups

Let Γ = (V , E) be a connected G-locally-primitive arc-transitive graph of square-free order and valency d, where
G ≤ AutΓ and d ∈ {5, 6, 7}. Let α ∈ V .

5.1. Assume that G is soluble. Then GΓ (α)
α is a soluble primitive group of degree d. This implies that d = 5 or 7. Moreover, the

next result holds.

Lemma 5.1. Assume that G is soluble. Then d ∈ {5, 7} and either Γ ∼= Kd,d and soc(G) ∼= Z2
d , or Γ is isomorphic to a graph

constructed in Construction 4.1.

Proof. Let F be the Fitting subgroup of G. Then CG(F) ≤ F ≠ 1, and every Sylow subgroup of F is normal in G. Take an
arbitrary prime divisor p of |F |, and let P be the Sylow p-subgroup of F . Then P ▹ G. If |P| > p then, by Lemma 2.5, it is easily
shown that Γ ∼= Kp,p; in this case, d = p ∈ {5, 7} and soc(G) = P ∼= Z2

d . Thus we assume next that |F | is square-free. Then
F is cyclic, and so CG(F) = F and Aut(F) is abelian. It is easily shown that F is semiregular on V .

Note that G/F = NG(F)/CG(F) . Aut(F). If F has at least three orbits on V then the quotient graph ΓF has valency d and
admits an abelian group acting transitively on its arcs, which is impossible. Thus F has at most two orbits on V . Suppose
that F is transitive on V . Then F is a normal regular subgroup of G, and so Γ ∼= Cay(F , S), where S = S−1

= {xσ
| σ ∈ A}

for some x ∈ F and A ≤ Aut(F). Since Γ has odd valency, S contains an involution, and so S consists of involutions. Since
Γ is connected and F is cyclic, F = ⟨S⟩ ∼= Z2. Then |V | = |F | = 2, which is impossible. Therefore, F has exactly two
orbits on V , and so |G : (FGα)| = 2, where α ∈ V . Since Gα

∼= GαF/F ≤ G/F . Aut(F), we know that Gα is abelian.
By Lemma 2.3, Gα

∼= Zd, and so G = F .Z2d. Thus G has a normal regular subgroup F :Z2. Then Γ ∼= Cay(F :Z2, S), where
S = {sσ

i
| 0 ≤ i ≤ d − 1} for an involution s ∈ F :Z2 and σ ∈ Aut(F :Z2) of order d such that ⟨S⟩ = F :Z2. Noting that |F :Z2|

is square-free, we conclude that F :Z2 is a dihedral group. Then the lemma follows. �

5.2. In this part we analyze the structure of G while G is insoluble.

Lemma 5.2. Assume that G is insoluble. Let M be a soluble normal subgroup of G. Then M is semiregular and has at least three
orbits on V , Γ is a cover of ΓM and G = M:X for some X ≤ G.

Proof. Suppose thatMα ≠ 1 for α ∈ V . ThenMα is transitive onΓ (α), and so GΓ (α)
α has a soluble transitive normal subgroup

isomorphic to MαG[1]
α /G[1]

α
∼= Mα/M [1]

α . Noting that GΓ (α)
α is a primitive group of degree d ∈ {5, 6, 7}, it follows that GΓ (α)

α is
soluble. Then Gα is soluble by Lemma 3.2, and so MGα is soluble. By Lemma 2.5, M has at most two orbits on V , it follows
that |G : MGα| ≤ 2. This implies that G is soluble, a contradiction. ThusM is semiregular on V .
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Suppose thatM has at most two orbits on V . Then |G : MGα| ≤ 2, and Gα
∼= GΓ (α)

α by Lemma 2.4. Since |G : MGα| ≤ 2 and
G is insoluble, Gα is insoluble, and hence GΓ (α)

α is an almost simple 2-transitive permutation group of degree d ∈ {5, 6, 7}.
Thus we have soc(Gα) ∼= soc(GΓ (α)

α ) ∼= A5, A6, PSL(3, 2) or A7. SinceM is semiregular on V , we know thatM has square-free
order, and so Aut(M) is soluble. Note that

M/CMsoc(Gα)(M) = NMsoc(Gα)(M)/CMsoc(Gα)(M) . Aut(M).

It follows that soc(Gα) ≤ CMsoc(Gα)(M), and hence Msoc(Gα) = M:soc(Gα) = M × soc(Gα). It is easily shown that soc(Gα)
is a characteristic subgroup group ofMsoc(Gα), and so soc(Gα) ▹ MGα .

Take β ∈ Γ (α). Since Γ is G-vertex-transitive, Gα and Gβ are conjugate, and hence soc(Gα) ∼= soc(Gβ) ▹ MGβ . Let U
and W be the M-orbits containing α and β , respectively. (Note that U = W = V if M is transitive on V .) Then soc(Gα)
and soc(Gβ) act trivially on U and W , respectively. Note that MGα = GU = GW = MGβ . Then both soc(Gα) and soc(Gβ)
are normal in MGα , and so soc(Gα) ∩ soc(Gβ) is normal in MGα . Since soc(Gα) and soc(Gβ) are nonabelian simple groups,
either soc(Gα) = soc(Gβ) or soc(Gα) ∩ soc(Gβ) = 1. If soc(Gα) ∩ soc(Gβ) = 1 then soc(Gβ) ∼= soc(Gα)soc(Gβ)/soc(Gα) ≤

MGα/soc(Gα); however, MGα/soc(Gα) is soluble, a contradiction. Thus soc(Gα) = soc(Gβ). This implies that soc(Gα) fixes
V = U ∪ W point-wise, which contradicts 1 ≠ soc(Gα) ≤ AutΓ . Then M has at least three orbits on V , and Γ is a cover of
ΓM by Lemma 2.6.

Nowwe show that G = M:X for some X ≤ G by induction on |M|. This is trivial forM = 1. Thus we assume that |M| > 1
in the following.

Let p be the largest prime divisor of |M|. Then, since M has square-free order, M has a unique Sylow p-subgroup, say P .
Thus P is a characteristic subgroup ofM , and so P ▹ G. Clearly P has at least three orbits on V . By Lemma 2.6, Γ is a normal
cover of ΓP and ΓP is G/P-locally-primitive arc-transitive. Note that each M-orbit on V is the union of some P-orbits. Then
M/P has at least three orbits on the vertex set of ΓP . Then, by induction, we may assume that G/P = (M/P):(Y/P) for a
subgroup Y ≤ Gwith Y ∩M = P . (Note that Y = G if P = M .) Clearly, Y acts transitively on the vertex set of ΓP , and so Y is
transitive on V . Note thatΓP has order

|V |

p . Then |V |

p = |Y : YB| for a P-orbit B on V . Since |V | is square-free, |Y : YB| is coprime
to p, and then YB contains a Sylow p-subgroup of Y . Since P ≤ YB is transitive on B, we have YB = PYα = P:Yα for α ∈ B. It
follows that YB and hence Y has a Sylow p-subgroup P:Q , where Q is a Sylow p-subgroup of Yα . Then, by Gaschtüz’ Theorem
(see [2, 10.4]), the extension Y = P.(Y/P) splits over P . Thus Y = P:X for X < Y with X ∩ P = 1. Then G = MY = MX and
X ∩ M = X ∩ (Y ∩ M) = X ∩ P = 1, and our result follows. �

Lemma 5.3. Assume that T l ∼= N ▹ G, where l ≥ 2 and T is a non-abelian simple group. Then l = 2, T ∼= A5, A7 or PSL(3, 2),
and Γ ∼= Kd,d with d ∈ {5, 7}.

Proof. Since |V | is square-free, N is not semiregular on V , and so N has at most two orbits on V by Lemma 2.5. Let α ∈ V
and U be the N-orbit containing α. Then U = V or |U| =

|V |

2 . Note that |T |
l
= |N| = |U||Nα| and |U| is square-free. Then

|Nα| is divisible by |T |
l−1, and so |Gα| is divisible by |T |

l−1. Suppose that GΓ (α)
α is soluble. By Lemma 3.2, Gα is soluble, and so

Gα is explicitly known by Theorem 3.4. This implies that |Gα| is not divisible by the order of some non-abelian simple group,
a contradiction. Thus GΓ (α)

α is insoluble, and then GΓ (α)
α is an almost 2-transitive permutation group of degree d ∈ {5, 6, 7};

in particular, soc(GΓ (α)
α ) ∼= A5, A6, PSL(3, 2) or A7. Since N is not semiregular on V , by Lemma 2.5, Nα induces a normal

transitive subgroup of GΓ (α)
α . It follows that Nα acts 2-transitively on Γ (α).

Set N = T1 × T2 × · · · × Tl, where T1 ∼= T2 ∼= · · · ∼= Tl ∼= T . Suppose that U = V , that is, N is transitive on V . Then Γ is
(N, 2)-arc-transitive and every Ti acts non-trivially on V . In particular, by Lemma 2.5, Ti has at most two orbits on V . Since
Tj has no subgroups of index 2, each Tj fixes every Ti-orbit setwise, and so does N . It follows that every Ti is transitive on V .
Then Ti is regular on V (see [7, Theorem 4.2A]), a contradiction. Thus N has two orbits on V , say U andW .

If some Ti is intransitive on both U and W then, by Lemma 2.6, Ti semiregular on U , and so |Ti| is square-free, a
contradiction. Thus every Ti is transitive on at least one of U and W . Without loss of generality, we assume that T1 acts
transitively on U . Then, by [7, Theorem 4.2A], T2 induces a semiregular permutation group on U , and hence T2 acts trivially
on U . Thus T2 is transitive onW . This implies that Γ is a complete bipartite graph. Since |V | is square-free, Γ ∼= K5,5 or K7,7,
and T1 ∼= T2 ∼= A5, A7 or PSL(3, 2). If l ≥ 3, then a similar argument as above implies that T3 is trivial on both U and W , a
contradiction. Thus the lemma follows. �

Lemma 5.4. Assume that G has no soluble minimal normal subgroups. Then soc(G) is a minimal normal subgroup of G, and
either G is almost simple, or soc(G) ∼= T 2 and Γ ∼= Kd,d with d ∈ {5, 7}, where T ∼= A5, A7 or PSL(3, 2).

Proof. Note that every minimal normal subgroup of G is a directed product of isomorphic non-abelian simple groups.
Suppose that G has two distinct minimal normal subgroups N and M . Then NM = N × M . Since |V | is square-free, N is not
semiregular on V , and so N has at most two orbits on V by Lemma 2.5. Let U be an N-orbit on V . Then U = V or |U| =

|V |

2 .
Noting that M has no subgroups of index 2, we conclude that M fixes U setwise, and then U is also an M-orbit. Then N and
M induce two regular permutation groups on U (see [7, Theorem 4.2A]), which is impossible. Thus G has a unique minimal
normal subgroup, that is, soc(G) is a minimal normal subgroup of G. Finally, the lemma follows from Lemma 5.3. �

Lemma 5.5. Assume that soc(G) = T is a non-abelian simple group. Then, up to isomorphism, T is one of the following simple
groups:
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(i) Ac for c ∈ {5, 6, 7, 8, 10, 11, 12, 13, 14};
(ii) M11, M12, M22, M23,M24, J1;
(iii) PSL(2, 2f ) for 4 ≤ f ≤ 10, PSL(3, 4), PSL(3, 8), PSL(5, 2), PSU(3, 4), PSU(5, 2), PSp(4, 4), Sz(8);
(iv) PSL(3, 3), PSL(3, 5), PSL(2, 34), PSL(2, 25), PSL(2, 54);
(v) PSL(2, p) for prime p ≥ 7.
Proof. Let α ∈ V . Since T is normal in G, every T -orbit on V has length |T : Tα|, which is a divisor of |V | = |G : Gα|. Thus
|T : Tα| is square-free, and so T has a maximal subgroup (containing Tα) of square-free index.

Assume that T is an alternating simple group. By Corollary 3.5, 35 is not a divisor of |Gα|, and hence |G| is not divisible by
36 as |G : Gα| is square-free. In particular, |T | is not divisible by 36. It follows that T ∼= Ac with 5 ≤ c ≤ 14. Checking the
subgroups of A9 in the Atlas [6], A9 has no maximal subgroup of square-free index. Thus c ≠ 9.

Assume that T is one of sporadic simple groups. Note that, by Corollary 3.5, |G| and hence |T | is not divisible by 211
·52

·7.
Checking the order of T (see [11, Table 5.1.C] for example), we know that T is isomorphic to one of M11, M12, M22, M23,
M24, J1, J2, J3 and HS. The groups J2, J3 and HS are excluded as they have no maximal subgroup of square-free index (see the
Atlas [6]).

Now let T be one of simple groups of Lie type with characteristic p. Check the order |T | of T and consider the maximal
power of p dividing |T |, see [11, pp. 170]. Then, noting the isomorphisms among simple groups (see [11, Proposition 2.9.1
and Theorem 5.1.1]), we may get a finite list of candidates for T . For odd prime p, we conclude that either T ∼= PSL(2, p)
with p > 7, or T is isomorphic to one of the following simple groups:

PSL(2, 3f ) with 2 ≤ f ≤ 5, PSL(3, 3), PSU(3, 3), PSp(4, 3)(∼= PSU(4, 2));
PSL(2, 5f ) with 1 ≤ f ≤ 4, PSL(3, 5), PSU(3, 5), PSp(4, 5);
PSL(2, 7), PSL(2, 49).

The groups PSL(2, 33), PSL(2, 35), PSL(2, 53), PSL(2, 49), PSU(3, 3), PSU(3, 5) and PSp(4, 5) are easily excluded as they have
no maximal subgroup of square-free index (see [10, II. 8.27] and the Atlas [6]).

Assume that T is one of exceptional groups of Lie type with characteristic 2. By Corollary 3.5, |Gα| is not divisible by 225,
and hence |G| is not divisible by 226. Then |T | is not divisible by 226. It follows from [11, Table 5.1.B] that T is isomorphic to
one of G2(2f ) (with 2 ≤ f ≤ 4), 2B2(22m+1) (with 1 ≤ m ≤ 5), 3D4(2) and 3D4(4). If T ∼=

2B2(22m+1) form = 2, 3, 5, then |G|

is not divisible by 3, which contradicts (3) of Corollary 3.5. If T ∼=
2B2(29) then |G| is divisible by 218 but not by 219; however,

by Corollary 3.5, we know that |G| is either not divisible by 212 or divisible by 224, a contradiction. By Corollary 3.5 (2), we
conclude that none of 52, 34 and 172 is a divisor of |G|. This observation excludes the groups G2(2f ), where 2 ≤ f ≤ 4.
Similarly, 3D4(2) and 3D4(4) are easily excluded as they have orders divisible by 212

· 34. Thus T ∼=
2B2(23) = Sz(8).

Let T be one of classical groups of Lie type with characteristic 2. If |T | is divisible by 211, then a similar argument as above
yields that T ∼= PSL(2, 2f ) with 11 ≤ f ≤ 25. If |T | is not divisible by 211 then, checking the order of T , we know that T is
isomorphic to one of the following simple groups:

PSL(2, 2f )with 2 ≤ f ≤ 10, PSL(3, 2), PSL(3, 4), PSL(3, 8), PSL(4, 2), PSL(5, 2), PSU(3, 4), PSU(3, 8), PSU(4, 2), PSU(5, 2),
PSp(4, 4) and PSp(6, 2).

Checking the Atlas [6], the groups PSL(2, 8), PSU(3, 8), PSU(4, 2) and PSp(6, 2) are excluded as they have no maximal
subgroup of square-free index. Thus the lemma follows by noting that PSL(3, 2) ∼= PSL(2, 7), PSL(2, 4) ∼= PSL(2, 5) ∼= A5,
PSL(2, 9) ∼= A6 and PSL(4, 2) ∼= A8.

6. The graphs associated with almost simple groups

Assume thatΓ = (V , E) is a connectedG-locally-primitive arc-transitive graph of square-free order and valency d, where
G ≤ AutΓ and d ∈ {5, 6, 7}. Assume further that soc(G) = T is a non-abelian simple group. Then T is not semiregular on V .
Let α ∈ V . By Lemma 2.5, Tα induces a transitive normal subgroup of GΓ (α)

α . Thus
(∗) |T : Tα| is square-free, either d = |Γ (α)| ∈ {5, 7} and |Tα| is divisible by d, or d = 6 and Tα has a composition factor

isomorphic to A5 or A6.

This simple observation is helpful to the further argument.

6.1. In this part we assume that T = soc(G) = Ac with c ≥ 5. By Lemma 5.5, c ∈ {5, 6, 7, 8, 10, 11, 12, 13, 14}. If c = 14
then 72

· 52
· 35

· 210 is a divisor |T |, so |Tα| is divisible by 7 · 5 · 34
· 29, which contradicts Corollary 3.5.

Suppose that c = 13. If G = S13 then |G| is divisible by 210
· 35

· 52 and hence |Gα| is divisible by 29
· 34

· 5; but such a
Gα does not satisfy Theorem 3.4, a contradiction. Assume that G = A13. Then |G| is divisible by 29

· 35
· 52, and hence |Gα|

is divisible by 28
· 34

· 5. By the Atlas [6], the stabilizer Gα
∼= A12 or S11. Then Γ has valency at least 11 by Lemma 2.2, a

contradiction.
Suppose that c = 12. If G = S12 then |Gα| is divisible by 29

· 34
· 5, but such a Gα does not satisfy Theorem 3.4, a

contradiction. Assume that G = A12. Then |Gα| is divisible by 28
· 34

· 5. By Theorem 3.4, we conclude that Gα
∼= S6 × S7.

However, S6 × S7 is not isomorphic to a subgroup of A12, a contradiction.
Suppose that c = 10. Then 52

· 34
· 27 divides |G|, so |Gα| is divisible by 26

· 33
· 5. By Theorem 3.4, we know that A5 × A6

or A6 × A7 is isomorphic to a subgroup of Gα . But S10 cannot contains such a subgroup, a contradiction.
Therefore, T = A5, A6, A7, A8 or A11, and the next lemma holds.
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Table 1
Graphs associated with alternating groups.

G Gα d Graph

A5, S5 D10, 5:4 5 K6
S5 5:4 5 K6
A6, S6 A5, S5 5 K6
A7, S7 A6, S6 6 K7
S7 A6 6 K7,7 − 7K2
A7, S7 A5, S5 6 Example 4.2
S7 SL(3, 2) 7 PG(3, 2)
S8 23

:SL(3, 2) 7 PG(3, 2)
A11, S11 (A5 ×A6).2, S5 × S6 6 O6

Lemma 6.1. If T is one of the alternating groups, then one line of Table 1 occurs.

Proof. (1) If T = A5 then, by the observation (∗) ahead this subsection, either G ∼= A5 and Gα
∼= D10, or G ∼= S5 and

Gα
∼= Z5:Z4, yielding Γ ∼= K6.
(2) Assume that T = A6. Then G ∼= A6, S6, PGL(2, 9), M10 or P0L(2, 9). Checking the subgroups of G satisfying (∗), either

G ∼= A6 and Gα
∼= A5, or G ∼= S6 and Gα

∼= S5. It follows that Γ ∼= K6.
(3) Assume that T = A8. Then |Tα| is divisible by 25

· 3. Recall that |Tα| is divisible by 5 or 7. By the Atlas [6], we conclude
that Tα = 23

:SL(3, 2) and Γ has valency 7. Then, noting A8 ∼= PSL(4, 2), the graph Γ is the incidence graph of the projective
geometry PG(3, 2).

(4) Assume that T = A11. Then |T | is divisible by 27
· 34

· 52, and hence |Tα| is divisible by 26
· 33

· 5. By the Atlas [6] and
Theorem 3.4, we conclude that Tα

∼= (A5 × A6).2 and Γ is of valency 6. This graph is actually the odd graph O6. Moreover,
G = AutΓ = S11, Gα = S5 × S6, and Γ is 3-arc-transitive.

(5) Assume that T = A7. Then |Tα| is divisible by 12. Checking the subgroups of T satisfying (∗), we conclude from
Theorem 3.4 that Tα

∼= S5, A6, A5 or PSL(3, 2).
Suppose that Tα

∼= S5. Then the vertices in each T -orbit on V may be viewed as the 2-subsets of {1, 2, 3, 4, 5, 6, 7}. Then
|Γ (α)| = |{β

 α ∩ β = ∅}| or |{β ≠ α
 α ∩ β ≠ ∅}|, which is 10 and not in the case.

If Tα
∼= A6, then G ∼= A7 or S7, and then Γ ∼= K7 or K7,7 − 7K2, respectively.

Assume that Tα
∼= A5. ThenΓ has valency 5 or 6. Further, |T : Tα| = 42 is even, and so T is transitive on V ; in particular,Γ

is T -arc-transitive. Consider the action of Tα corresponding to the natural action of A7 on Π := {1, 2, 3, 4, 5, 6, 7}. Suppose
that a Tα-orbit on Π has size 5. Then Tα fixes two points in Π . Let β ∈ Γ (α). It is easily shown that Tαβ has an orbit on Π of
size at least 4. Then we get NT (Tαβ) ≤ Sym(Π \ Π0) × Sym(Π0), where Π0 is the set of points fixed by Tαβ . Then there is
no 2-element x ∈ NT (Tαβ) such that ⟨Tα, x⟩ = T , a contradiction. Thus Tα fixes exactly one point, say 7, and acts transitively
on Π1 = {1, 2, 3, 4, 5, 6}. If Γ is of valency 5, then Tαβ

∼= A4 is transitive on Π1, and so NT (Tαβ) ≤ Sym(Π1), which yields a
similar contradiction as above. Thus Γ is of valency 6. Then Tαβ

∼= Z5 oZ2, and Tαβ fixes only one point inΠ1, say 6.Wemay
set Tαβ = ⟨σ , τ ⟩, where σ = (1 2 3 4 5) and τ = (1 5)(2 4). Then NT (Tαβ) = ⟨σ , π⟩ ∼= Z5 o Z4, where π = (1 4 5 2)(6 7). It
is easily shown that Γ is isomorphic to the graph given in Example 4.2.

Assume finally that Tα
∼= PSL(3, 2). If G = A7, then |V | = |T : Tα| = 15; in particular, Γ is of even valency, which

yields |Γ (α)| = 8. We do not consider this case here. Then G = S7 and Gα
∼= PSL(3, 2). Hence Γ is a bipartite graph with

two bipartition subsets, say U and W , having size 15 respectively. Further, A7 is primitive on both U and W and transitive
on E, the edge set of Γ . Suppose that the actions of A7 on U and on W are permutation equivalent. Then A7 is a primitive
permutation group with degree 15 and a suborbit of size |Γ (α)|. It is easy to see that such a primitive permutation group
is 2-transitive. Thus |Γ (α)| = 14, and Γ ∼= K15,15 − 15K2. This is not the case we considered. Therefore, we may assume
that U is the point set whileW the hyperplane set of the projective geometry PG(3, 2), respectively. (Note that A7 is viewed
as a transitive subgroup of PSL(4, 2) ∼= A8 on projective points or on hyperplanes.) Then Γ is the incidence graph of the
projective geometry PG(3, 2).

6.2. In this part we assume that T = soc(G) is a sporadic simple group. By Lemma 5.5, T = M11, M12, M22, M23, M24 or J1.
Then either G = T or G = M12.2.

Lemma 6.2. T is not one of M11, M12,M23 and M24.

Proof. We shall exclude one by one the simple groups M11, M12, M22, M23 and M24.
(1) Suppose that T = M11. Then G = T and the order |T | is divisible by 24

·32. Since |T : Tα| is square-free, |Tα| is divisible
by 23

· 3 and not divisible by 25, 33 or 52. Check the groups which appear in Theorem 3.4 and satisfy (∗). We conclude that
Tα

∼= S5, A4×A5, A6 or S6. By the Atlas [6], only one of A6 and S5 may be isomorphic to a subgroup ofM11. Thus Tα
∼= S5 or A6.

Suppose that Tα
∼= S5. Then Γ is (T , 2)-transitive and of valency 5 or 6. Thus Tαβ = 5:4 or S4, where β ∈ Γ (α). Check-

ing the subgroups of M11, we have NT (Tαβ) = Tαβ . Therefore, there exists no element x ∈ NT (Tαβ) with ⟨Tα, x⟩ = T , a
contradiction.
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Suppose that Tα = A6. ThenΓ is (T , 2)-transitive and of valency 6. Forβ ∈ Γ (α), the arc-stabilizer Tαβ
∼= A5 is contained

in a maximal subgroup of T isomorphic to M10. Note that M11 has two conjugation classes of subgroups isomorphic to A5
(confirmed by GAP). Then, checking the subgroups of M11 in the Atlas [6], we conclude that NT (Tαβ) = Tαβ , a contradiction.

(2) Suppose that T = M12. Then the order |T | is divisible by 26
·33, and hence |Tα| is divisible by 25

·32. By the Atlas [6], we
conclude that Tα

∼= M10.2; however, by Theorem 3.4, such a group cannot be the stabilizer of any graph of valency 5, 6 or 7.
(3) Suppose that T = M23. Then |T | is divisible by 27

· 32. Since |T : Tα| is square-free, |Tα| is divisible by 26
· 3. Fur-

ther |Tα| is not divisible by 28 or 33. By Theorem 3.4 and checking the subgroups of M23, we know that Tα is isomorphic to
[42

].SL(2, 4), [42
].GL(2, 4) or [42

].0L(2, 4). In particular, Γ has valency 5 and |V | is even, and so Tα � [42
].0L(2, 4). Then

Tα
∼= [42

].SL(2, 4) or [42
].GL(2, 4); in this case, both NT (Tαβ) and Tα are contained in a maximal subgroup of T isomorphic

to [42
].0L(2, 4) (confirmed by GAP), a contradiction.

(4) Suppose that T = M24. Then |T | is divisible by 210
· 33, and hence |Tα| is divisible by 29

· 32. By Theorem 3.4,
Tα = [43

].0L(2, 4) ∼= 26
:((3 × A5).2), and Γ is of valency 5. In this case, both NT (Tαβ) and Tα are contained in a maxi-

mal subgroup of T isomorphic to 26
:3·S6 (confirmed by GAP), a contradiction. �

Lemma 6.3. Assume that T = soc(G) is a sporadic simple group. Then either G = J1 and Γ is isomorphic to one of the graphs
given in Example 4.3; or T = M22 and Γ is isomorphic to the graph given in Example 4.4.

Proof. By Lemmas 5.5 and 6.2, T = J1 or M22.
Assume first that T = M22. Then G = M22 or M22.2. Note that |G| is divisible by 27

· 32
|G : T | but not by 28

|G : T | or 33.
Then |Gα| is divisible by 26

· 3|G : T | but not by 28
|G : T | or 33.

Let G = M22. Then |Gα| is divisible by 26
· 3 but not by 28 or 33. By Theorem 3.4, Gα is isomorphic to one of S4 × S5,

[42
]:SL(2, 4), [42

]:GL(2, 4), [42
]:0L(2, 4), S4 × SL(3, 2), 24

:SL(3, 2) and 23
:SL(3, 2). Checking the subgroups of M22, we have

Gα
∼= 23

:SL(3, 2). Then Γ has valency 7 and Γ is isomorphic to the graph given in Example 4.4.
Let G = M22.2. Then |Gα| is divisible by 27

·3 but not by 29 or 33. By Theorem 3.4, Gα is isomorphic to one of [42
]:GL(2, 4),

[42
]:0L(2, 4) and 24

:SL(3, 2). Checking the subgroups of M22.2, we conclude that Gα
∼= 24

:SL(3, 2), and so Γ has valency 7
and order 330. Since T = M22 is not semiregular on VΓ , by Lemma 2.5, T has at most two orbits on VΓ . If T has two orbits
on VΓ , then Tα = Gα; however, M22 has no subgroup isomorphic to 24

:SL(3, 2), a contradiction. Thus T is transitive on VΓ ,
and hence Γ is T -arc-transitive. Then Γ is isomorphic to the graph given in Example 4.4.

Assume that T = J1. Then G = T and the order of T is divisible by 23
·3 ·5. Since |T : Tα| is square-free, |T : Tα| is divisible

by 22 but not divisible by 24, 52 or 32. By Theorem 3.4 and the observation (∗), Tα
∼= D20, 5:4, 2× (5:4),A5, S5 or 2× (7:6).

However, by the Atlas [6], J1 has no subgroups isomorphic to one of S4, S5, 5:4, 2×(5:4) and 2×(7:6). ThusGα
∼= D20 or A5.

Suppose that Tα = D20. Then Tαβ = Z2
2 and Γ is of valency 5, where β ∈ Γ (α). Note that Tα is contained in the nor-

malizer N = D6 × D10 of a Sylow 5-subgroup of T , and that Tα is a Hall subgroup of N . We conclude that all subgroups
isomorphic to D20 are conjugate in T . Thus wemay assume that Tα is contained in a maximal subgroupM ∼= 2×A5 of T . Let
x be a 2-element in NT (Tαβ) with ⟨x, Tα⟩ = T . Then x ∉ M and P = ⟨x, Tαβ⟩ is a Sylow 2-subgroup of T . Let X ∼= 23

:7:3 be a
maximal subgroup of T with P ≤ X . Let Q be a Sylow 2-subgroup of M which contains Tαβ . Then 1 ≠ Tαβ ▹ ⟨P,Q ⟩. Hence
⟨P,Q ⟩ ≠ T , and it follows that ⟨P,Q ⟩ ≤ X . Thus P = Q , and so x ∈ Q ≤ M , a contradiction.

Now let Tα
∼= A5. Suppose thatNT (Tα) ∼= 2×A5 andΓ has valency 5. Then Tαβ = A4 andNG(Tαβ) = 2×A4 for β ∈ Γ (α).

However, ⟨g, Tα⟩ ≤ NT (Tα) ≠ T for any g ∈ NG(Tαβ), a contradiction. Thus either NT (Tα) = Tα or Γ has valency 6. Then Γ

is isomorphic to one of the graphs given in Example 4.3. �

6.3. In this partwe assume that T = soc(G) is one of the simple groups listed in parts (iii)–(v) of Lemma 5.5.We first exclude
most candidates for T .

Lemma 6.4. T = PSL(3, 4), PSp(4, 4), PSL(3, 5), PSL(2, 25) or PSL(2, p).

Proof. Suppose that T = PSL(2, 2f ) for 4 ≤ f ≤ 25. Note that |T : Tα| is square-free. Checking the subgroups of T (see
[10, II. 8.27]), we conclude that Zf−1

2 . Tα . Zf
2:Z2f −1. In particular, Tα is soluble and, by Lemma 2.5, Tα induces a soluble

transitive normal subgroup of GΓ (α)
α . This yields that GΓ (α)

α is soluble, and so Gα is soluble by Lemma 3.2. By Theorem 3.4,
|Gα| is not divisible by 25. This implies that f = 4 or 5. Again by Theorem 3.4, Gα

∼= 4 × (5:4); however, such a Gα has no
subgroups isomorphic to Zf−1

2 , a contradiction.
Suppose that T = PSL(2, 34). Then |Tα|, and hence |Gα|, is divisible by 33. By Theorem 3.4, Gα has a subgroup isomorphic

to A5 × A6. In particular, |G| is divisible by 52, which is impossible.
Suppose that T = PSL(2, 54). Then |Tα|, and hence |Gα|, is divisible by 53. By Theorem 3.4, Gα

∼= 52.GL(2, 5) and Γ has
valency 6. In particular, soc(GΓ (α)

α ) ∼= PSL(2, 5). By Lemma 2.5, Tα induces a transitive normal subgroup of GΓ (α)
α . It follows

that Tα has a composition factor isomorphic to PSL(2, 5). However, by [10, II.8.27], PSL(2, 54) has no such a subgroup Tα of
square-free index, a contradiction.

Note that the rest candidates for T lie in the Atlas [6]. By the information given in the Atlas, we have the following
arguments.

Suppose that T = PSU(3, 4), PSU(5, 2) or Sz(8). Check the subgroups of T of square-free index. We conclude that Tα is
soluble, and soGα is soluble. By Theorem3.4, |Gα| is not divisible by 25, and so |V | = |G : Gα| is divisible by 4, a contradiction.
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Table 2
Incidence graphs.

G Gα d Graph

PSL(3, 4).2 24
:A5 5 PG(2, 4)

PSp(4, 4).2 [43
]:GL(2, 4) 6 GQ(4)

PSL(3, 5).2 52
:GL(2, 5) 6 PG(2, 5)

Table 3
PSL(2, p)-graphs.

G Gα d Gαβ NG(Gαβ ) Remark

PSL(2, p) A5 5 A4 S4 p2 ≡ 1 (mod 5), p ≡ ±1 (mod 8)
PGL(2, p) A5 5 A4 S4 p2 ≡ 1 (mod 5), p ≡ ±3 (mod 8)
PSL(2, p) A5 6 D10 D20 p2 ≡ 1 (mod 5), p ≡ ±1 (mod 8), 4

 p + ϵ

PGL(2, p) A5 6 D10 D20 p2 ≡ 1 (mod 5), p ≡ ±3 (mod 8), 4 - p + ϵ

PSL(2, p) D2r r Z2 Dp±1 p2 ≡ 1 (mod r), p ≡ ±3 (mod 8), r ∈ {5, 7}
PGL(2, p) D4r r Z2

2 S4 p2 ≡ 1 (mod r), p ≡ ±3 (mod 8), r ∈ {5, 7}

PSL(2, p) D4r r Z2
2 S4 p2 ≡ 1 (mod r), p ≡ ±1 (mod 8), r ∈ {5, 7}

PGL(2, p) D4r r Z2
2 S4 p2 ≡ 1 (mod r), p ≡ ±3 (mod 8), r ∈ {5, 7}

Suppose that T = PSL(5, 2). Then G = PSL(5, 2) or PSL(5, 2).2. Note that |G| is divisible by 210, and so |Gα| is divisible by
29. Then Gα = [43

]:0L(2, 4) by Theorem 3.4; however, G has no such a subgroup.
Suppose that T = PSL(3, 8). Then |Tα| is divisible by 28

· 3 · 7, and hence Gα
∼= S6 × S7 or [26

]:SL(3, 2) by Theorem 3.4;
however, G has no such a subgroup.

Finally, this lemma follows from Lemma 5.5. �

Lemma 6.5. Let {α, β} be an edge of Γ . Then either Γ is isomorphic to one of the graphs given in Example 4.5, or one line
of Tables 2 and 3 occurs, where ϵ = ±1 with p + ϵ divisible by 5.

Proof. By Lemma 6.4, T = PSL(3, 4), PSp(4, 4), PSL(3, 5), PSL(2, 25) or PSL(2, p).
Let T = PSL(3, 4). Then |Tα| is divided by 25

· 3. By Theorem 3.4 and checking the subgroups of T in the Atlas [6], we
conclude that Tα

∼= 24
:A5 and Γ has valency 5. This implies that Γ is the incidence graph of the projective plane PG(2, 4).

Let T = PSp(4, 4). Then |Tα| is divided by 27
· 3 · 5. By Theorem 3.4 and checking the subgroups of T in the Atlas, we

conclude that Gα = Tα
∼= [43

]:GL(2, 4) and Γ has valency 5. Then Γ is the (T .2, 5)-arc-transitive graph GQ(4) of order 170.
Let T = PSL(3, 5). Then |Tα|, and hence |Gα|, is divisible by 24

· 52 but not by 7. By Theorem 3.4, Gα is insoluble and Γ

has valency 6. Checking the subgroups of G, we conclude that Tα = Gα
∼= 52

:GL(2, 5). This implies that Γ is the incidence
graph of the projective plane PG(2, 5), and G = Aut(PSL(3, 5)) = PSL(3, 5).2.

Let T = PSL(2, 25). Then G = T .Zl
2 for l ∈ {0, 1, 2}, and |Gα| is divisible by 22

· 5 but not by 32, 7 or 26. By Theorem 3.4
and checking the subgroups of G of square-free index, we conclude that either d = 5 and Gα

∼= 5:4, or d = 6 and Gα
∼= S5

or A5. Suppose that Gα
∼= S5. Then G = T or T .2, and Gαβ

∼= 5:4 for β ∈ Γ (α). Checking the subgroups of G in the Atlas [6],
we conclude that both NG(Gαβ) and Gα are contained in a maximal subgroup of G, a contradiction. If Gα

∼= A5 then G = T
and Gαβ

∼= Z5:Z2, which yields a similar contradiction as above. Thus Gα
∼= 5:4. Then G = T and Γ is isomorphic to a graph

given in Example 4.5.
Finally, let T = PSL(2, p) for prime p ≥ 7. Check the subgroups of T , see [10, II.8.27]. If p2 ≢ 1 (mod 5) and

p2 ≢ 1 (mod 7), then T has no subgroups satisfying (∗). Moreover, either p2 ≡ 1 (mod 5) and Tα
∼= A5, or Tα

∼= D2r or
D4r for r = d ∈ {5, 7} with p2 ≡ 1 (mod r). Let β ∈ Γ (α).

(1) Assume that Tα
∼= A5. Note that G = T or PGL(2, p). Check the subgroups of PGL(2, p), see [4, Theorem 2]. We have

Gα = Tα .
Assume that Γ has valency d = 5. Then Gαβ

∼= A4. This implies that NG(Gαβ) ∼= S4, and either G = PSL(2, p) with
p ≡ ±1 (mod 8), or G = PGL(2, p) with p ≡ ±3 (mod 8); otherwise, NG(Gαβ) = Gαβ , a contradiction.

Assume that Γ has valency d = 6. Then Gαβ
∼= D10. Let ϵ = ±1 such that p + ϵ is divisible by 5. Then NG(Gαβ) ∼= D20,

and either G = T and p + ϵ is divisible by 4, or G = PGL(2, p) with p ≡ ±3 (mod 8) and p + ϵ not divisible by 4.
(2) Assume that Tα

∼= D2r . Then p ≡ ±3 (mod 8), and either G = T , or G = PGL(2, p) and Gα
∼= D4r . For the latter case,

NG(Gαβ) ∼= S4.
(3) Assume that Tα

∼= D4r . Then Gα = Tα , Gαβ
∼= Z2

2 and NG(Gαβ) ∼= S4. Moreover, either G = T and p ≡ ±1 (mod 8), or
p ≡ ±3 (mod 8) and G = PGL(2, p). �

7. The proof of Theorem 1.1

Let Γ = (V , E) be a connected G-locally-primitive arc-transitive graph of valency d = 5, 6 or 7. If G is soluble then Γ

and G are known by Lemma 5.1. Thus we assume further that G is insoluble.
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Table 4
Candidates for (X, Xᾱ).

X Xᾱ d t |M|

A5, S5 D10, 5:4 5 1 Odd
S5 5:4 5 1 Odd
A6, S6 A5, S5 5 1 Odd
A7, S7 A6, S6 6 1
S7 A6 ≤ T 6 2 Odd
A7, S7 A5, S5 6 1 Odd
S7 SL(3, 2) ≤ T 7 2 Odd
S8 23

:SL(3, 2) ≤ T 7 2 Odd
A11, S11 (A5 ×A6).2, S5 × S6 6 1 Odd

Let M be the maximal soluble normal subgroup of G. By Lemma 5.2, G = M:X for X < G, M is semiregular on V and Γ

is a normal cover of Σ := ΓM . We identify X with a subgroup of AutΣ . Then Σ is X-locally-primitive arc-transitive. Denote
by V the vertex set of Σ , that is, the set of M-orbits on V . Then |V | = |M||V |. Thus if |V | is even then |M| is odd. If M = 1
then G and Γ are known by Lemmas 5.4, 5.5, 6.1, 6.3 and 6.5. We next assume thatM ≠ 1.

By the choice of M , we know that X has no soluble minimal normal subgroups. By Lemma 5.4, soc(X) is the unique
minimal normal subgroup of X . Set N = Msoc(X). Then N ▹ G, and so CN(M) ▹ G and MCN(M) ▹ G. Since |M| is
square-free, Aut(M) is soluble. Note that N/CN(M) = NN(M)/CN(M) . Aut(M). It follows that soc(X) ≤ CN(M), and
so MCN(M) = M × soc(X). This implies that soc(X) is a characteristic subgroup of MCN(M), yielding soc(X) ▹ G. Suppose
that X is not almost simple. By Lemma 5.4, Σ ∼= Kd,d with d ∈ {5, 7}. Since soc(X) ▹ G, by Lemma 5.3, Γ ∼= Kd,d. Then
M = 1 as 2d = |V | = |M||V | = 2d|M|, a contradiction. Thus T := soc(X) is a non-abelian simple group. ThenMT = M × T ,
T ▹ G and the pair (X, Σ) is known by Lemmas 6.1, 6.3 and 6.5. Let α ∈ V and ᾱ ∈ V with α ∈ ᾱ.

(1) Assume first (X, Σ) satisfies Lemma 6.1. Then one line of Table 4 occurs, where t is the number of T -orbits on V .
Suppose that |M| is odd. Recall that T has at most two orbits on V , see Lemma 2.5. Then M fixes each T -orbit on V . Let

U be a T -orbit on V . Choose α ∈ U . Then ᾱ ⊆ U , MTᾱ fixes ᾱ setwise, and both M and Tᾱ are transitive on ᾱ. Thus, since
MTᾱ = M × Tᾱ , bothM and Tᾱ induce two regular permutation groups on ᾱ. In particular, Tᾱ has a normal subgroup of odd
index |ᾱ| = |M| ≠ 1, which is impossible by checking one by one the possible Tᾱ in Table 4. Therefore, |M| is even, T = A7
and Σ ∼= K7. If T is transitive on V then, noting that Tᾱ

∼= A6 is simple, a similar argument implies a contradiction. Thus
Σ ∼= K7 and T = A7 has two orbits on V .

Since GΓ (α)
α is a primitive group of degree d = 6, we have soc(GΓ (α)

α ) ∼= A6. By Lemma 2.5, Tα induces a transitive
normal subgroup of GΓ (α)

α . It follows that Tα
∼= A6. Thus 7|M| = |M||V | = |V | = 2|T : Tα| = 14, and so M ∼= Z2. Then

G = M:X = M × X , and Γ is isomorphic to the standard double cover of K7, that is, Γ ∼= K7,7 − 7K2.
(2) Suppose that (X, Σ) is known by Lemmas 6.3 and 6.5. ThenΣ has even order |V |, and so |M| is odd. Thenwe conclude

thatM = 1 by a similar argument as in the case (1), a contradiction. This completes the proof of Theorem 1.1.

Acknowledgments

The first author is supported by an ARC grant DP1096525. The second author is supported by National Natural
Science Foundation of China (11271267, 11371204). The third author is supported by Anhui Provincial Natural Science
Foundation (1408085MA04).

References

[1] B. Alspach, M.Y. Xu, 1
2 -transitive graphs of order 3p, J. Algebraic Combin. 3 (1994) 347–355.

[2] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1993.
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
[4] P.J. Cameron, G.R. Omidi, B. Tayfeh-Rezaie, 3-Design from PGL(2, q), Electron. J. Combin. 13 (2006) #R50.
[5] M.D. Conder, C.H. Li, C.E. Praeger, On the Weiss conjucture for finite locally primitive graphs, Proc. Edinb. Math. Soc. 43 (2000) 129–138.
[6] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[7] J.D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996.
[8] A. Gardiner, Arc transitivity in graphs, Q. J. Math. 24 (1973) 399–407.
[9] M. Giudici, C.H. Li, C.E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 365 (2004) 291–317.

[10] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
[11] P. Kleidman, M. Liebeck, The Subgroup Structure of The Finite Classical Groups, Cambridge University Press, 1990.
[12] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective palnes, Proc. Amer. Math. Soc. 133 (2004) 31–41.
[13] C.H. Li, Z.P. Lu, G.X. Wang, Vertex-transitive cubic graphs of square-free order, J. Graph Theory 75 (2014) 1–19.
[14] C.H. Li, Z.P. Lu, G.X. Wang, On edge-transitive graphs of square-free order, Electron. J. Combin. 22 (2015) #P3.25.
[15] C.H. Li, Z.P. Lu, G.X. Wang, On vertex-transitive and edge-transitive tetravalent graphs of square-free order, J. Algebra Combin. 42 (2015) 25–50.
[16] C.E. Praeger, R.J. Wang, M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993) 299–318.
[17] C.E. Praeger, M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993) 245–266.
[18] V.I. Trofimov, Vertex stabilizers of locally projective groups of automorphisms of graphs. A summary, Groups Combin. Geom. (2001) 313–334.
[19] R.J. Wang, Half-transitive graphs of order a product of two distinct primes, Comm. Algebra 22 (1994) 915–927.
[20] R. Weiss, Groups with a (B,N)-pair and locally transitive graphs, Nagoya Math. J. 74 (1979) 1–21.
[21] R. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Cambridge Philos. Soc. 85 (1979) 43–48.
[22] R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1 (1981) 309–311.
[23] R. Weiss, s-transitive graphs, Algebraic Methods in Graph Theory 2 (1981) 827–847.

http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref1
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref2
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref3
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref4
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref5
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref6
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref7
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref8
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref9
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref10
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref11
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref12
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref13
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref14
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref15
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref16
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref17
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref18
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref19
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref20
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref21
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref22
http://refhub.elsevier.com/S0012-365X(16)30191-1/sbref23

	Arc-transitive graphs of square-free order and small valency
	Introduction
	Preliminaries
	The structure of stabilizers
	Examples
	The automorphism groups
	The graphs associated with almost simple groups
	The proof of Theorem 1.1
	Acknowledgments
	References


