s-Inversion Sequences and P-Partitions of Type B

William Y.C. Chen ${ }^{1}$, Alan J.X. Guo ${ }^{2}$, Peter L. Guo ${ }^{3}$
Harry H.Y. Huang ${ }^{4}$, Thomas Y.H. Liu ${ }^{5}$
${ }^{1}$ Center for Applied Mathematics
Tianjin University
Tianjin 300072, P.R. China
${ }^{2,3,4}$ Center for Combinatorics, LPMC
Nankai University
Tianjin 300071, P.R. China
${ }^{5}$ Department of Foundation Courses
Southwest Jiaotong University
Emeishan, Sichuan 614202, P.R. China
${ }^{1}$ chenyc@tju.edu.cn, ${ }^{2}$ aalen@mail.nankai.edu.cn, ${ }^{3}$ lguo@nankai.edu.cn
${ }^{4}$ hhuang@cfc.nankai.edu.cn, ${ }^{5}$ lyh@cfc.nankai.edu.cn

Abstract

Given a sequence $s=\left(s_{1}, s_{2}, \ldots\right)$ of positive integers, the notion of inversion sequences with respect to s, or s-inversion sequences, was introduced by Savage and Schuster in their study of lecture hall polytopes. A sequence $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of nonnegative integers is called an s-inversion sequence of length n if $0 \leq e_{i}<s_{i}$ for $1 \leq i \leq n$. Let I_{n} be the set of s-inversion sequences of length n for $s=$ $(1,4,3,8,5,12, \ldots)$, that is, $s_{2 i}=4 i$ and $s_{2 i-1}=2 i-1$ for $i \geq 1$, and let P_{n} be the set of signed permutations on the multiset $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$. Savage and Visontai conjectured that the descent number over P_{n} is equidistributed with the ascent number over $I_{2 n}$. In this paper, we give a proof of this conjecture by using P partitions of type B. We notice that an independent proof based on recurrence relations was found by Lin. Moreover, we find a set of signed permutations over which the descent number is equidistributed with the ascent number over $I_{2 n-1}$. Let I_{n}^{\prime} be the set of s-inversion sequences of length n for $s=(2,2,6,4,10,6, \ldots)$, that is, $s_{2 i}=2 i$ and $s_{2 i-1}=4 i-2$ for $i \geq 1$. We also find two sets of signed permutations over which the descent number is equidistributed with the ascent number over I_{n}^{\prime}, depending on whether n is even or odd.

Keywords: inversion sequence, ascent number, signed permutation, descent number, P-partition of type B

AMS Subject Classifications: 05A05, 05A15

1 Introduction

The notion of s-inversion sequences was introduced by Savage and Schuster [4] in their study of lecture hall polytopes. Let $s=\left(s_{1}, s_{2}, \ldots\right)$ be a sequence of positive integers. An inversion sequence of length n with respect to s, or an s-inversion sequence of length n, is a sequence $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of nonnegative integers such that $0 \leq e_{i}<s_{i}$ for $1 \leq i \leq n$. An ascent of an s-inversion sequence $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is defined to be an integer $i \in\{0,1, \ldots, n-1\}$ such that

$$
\frac{e_{i}}{s_{i}}<\frac{e_{i+1}}{s_{i+1}}
$$

where we assume that $e_{0}=0$ and $s_{0}=1$. The ascent number asc (e) of e is meant to be the number of ascents of e.

The generating function of ascent numbers of s-inversion sequences can be viewed as a generalization of the Eulerian polynomial for permutations, since the ascent number over s-inversion sequences of length n for $s=(1,2,3, \ldots)$ is equidistributed with the descent number over permutations on $\{1,2, \ldots, n\}$, see Savage and Schuster [4]. Savage and Visontai [5] showed that for any sequence s of positive integers and any positive integer n, the generating function of ascent numbers of s-inversion sequences of length n has only real roots. In particular, by establishing a relation between the generating function of ascent numbers of s-inversion sequence for $s=(2,4,6, \ldots)$ and the generating function of descent numbers of even-signed permutations, they proved the real-rootedness of the Eulerian polynomial of type D as conjectured by Brenti [1].

Savage and Visontai 5 also found that the descent number over permutations on the multiset $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$, where where i^{2} stands for two occurrences of i for $1 \leq$ $i \leq n$, is equidistributed with the ascent number over s-inversion sequences of length $2 n$ with $s=(1,1,3,2,5,3, \ldots)$. They further conjectured that the descent number over signed permutations on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$ is equidistributed with the ascent number over s-inversion sequences of length $2 n$ with $s=(1,4,3,8,5,12, \ldots)$. Let P_{n} denote the set of signed permutations on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$, and let I_{n} denote the set of s-inversion sequences of length n for $s=(1,4,3,8,5,12, \ldots)$. Savage and Visontai 5] posed the following conjecture, which implies the real-rootedness of the generating function of descent numbers of signed permutations in P_{n}.

Conjecture 1.1 (Savage and Visontai [5]) For $n \geq 1$, the descent number over P_{n} is equidistributed with the ascent number over $I_{2 n}$.

In this paper, we give a proof of Conjecture 1.1. Let $P_{n}(x)$ denote the generating function of descent numbers of signed permutations in P_{n}, and let $I_{n}(x)$ denote the generating function of ascent numbers of inversion sequences in I_{n}. Savage and Schuster [4] deduced that

$$
\begin{equation*}
\frac{I_{2 n}(x)}{(1-x)^{2 n+1}}=\sum_{t \geq 0}(t+1)^{n}(2 t+1)^{n} x^{t} \tag{1.1}
\end{equation*}
$$

Using P-partitions of type B introduced by Chow [2], we show that $P_{n}(x)$ satisfies the same relation as $I_{2 n}(x)$. Thus $P_{n}(x)=I_{2 n}(x)$, and this proves Conjecture 1.1.

It should be noted that Lin [3] found another proof of Conjecture 1.1 by proving that the coefficients of $P_{n}(x)$ and $I_{2 n}(x)$ satisfy the same recurrence relation.

Besides the equidistribution conjectured by Savage and Visontai, we also find a set of signed permutations over which the descent number is equidistributed with the ascent number over $I_{2 n-1}$. Let $U_{n}(x)$ be the generating function of descent numbers of signed permutations on $\left\{1^{2}, 2^{2}, \ldots,(n-1)^{2}, n\right\}$, and let $V_{n}(x)$ be the generating function of descent numbers of signed permutations on $\left\{1^{2}, 2^{2}, \ldots,(n-1)^{2}, n\right\}$ in which n has a minus sign. Similar to relation (1.1) for $I_{2 n}(x)$, Savage and Schuster [4] deduced a relation for $I_{2 n-1}(x)$. We show that $V_{n}(x)$ satisfies the same relation as $I_{2 n-1}(x)$, and thus we obtain that $I_{2 n-1}(x)=V_{n}(x)$.

Moreover, let I_{n}^{\prime} be the set of s-inversion sequences of length n for $s=(2,2,6,4,10,6, \ldots)$. We use $I_{n}^{\prime}(x)$ to denote the generating function of ascent numbers of inversion sequences in I_{n}^{\prime}. Using similar arguments to $I_{n}(x)$, we obtain that $I_{2 n}^{\prime}(x)=P_{n}(x)$ and $I_{2 n-1}^{\prime}(x)=U_{n}(x)$.

2 Proof of Conjecture 1.1

In this section, we present a proof of Conjecture 1.1. For $n \geq 1$, we use F_{n} to denote the forest consisting of n rooted trees each of which has exactly two vertices. We show that the generating function $P_{n}(x)$ of descent numbers of signed permutations on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$ equals the generating function $G_{n}(x)$ of descent numbers of linear extensions of F_{n} with signed labelings under certain conditions. Using the technique of P-partitions of type B, we deduce that $G_{n}(x)$ satisfies the same relation (1.1) as $I_{2 n}(x)$, which implies that $G_{n}(x)=I_{2 n}(x)$. Thus we reach the conclusion that $P_{n}(x)=I_{2 n}(x)$, and this proves Conjecture 1.1.

Let us begin with an overview of linear extensions of a poset. Let P be a poset on the set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with order relation \leq. As usual, we use the notation $v_{i}<v_{j}$ to denote that $v_{i} \leq v_{j}$ but $v_{i} \neq v_{j}$. A labeling of P is an assignment of positive integers to the elements $v_{1}, v_{2}, \ldots, v_{n}$ such that each positive integer cannot be used more than once. A signed labeling of P is a labeling of P with each label possibly associated with a minus sign. We adopt the notation (P, w) for a signed labeled poset, where w is a signed labeling of P. For a signed labeled poset (P, w) and an element v of P, we use $w(v)$ to denote the label associated with v.

In this paper, we will be concerned only with a special type of posets, namely, labeled forests with each tree consisting of at most two vertices. Such a forest will be called a simple forest. When viewed as a poset, a simple forest is endowed with the following order relation. We say that $u<v$ if u is a child of v. For example, Figure 2.1 illustrates
a simple forest P along with a signed labeling of P.

Figure 2.1: A simple forest along with a signed labeling.

Recall that a linear extension of a poset P is a permutation $v_{i_{1}} v_{i_{2}} \cdots v_{i_{n}}$ of the elements of P such that $v_{i_{j}}<v_{i_{k}}$ only if $j<k$, see Stanley [6]. However, by a linear extension of a signed labeled poset (P, w) we mean a permutation $w\left(v_{i_{1}}\right) w\left(v_{i_{2}}\right) \cdots w\left(v_{i_{n}}\right)$ of the labels associated with the elements of P, where $v_{i_{1}} v_{i_{2}} \cdots v_{i_{n}}$ is a linear extension of P. Let $\mathcal{L}(P, w)$ denote the set of linear extensions of (P, w). For example, for the signed labeled forest in Figure 2.1, we have

$$
\mathcal{L}(P, w)=\{3 \overline{1} \overline{5} 6,3 \overline{5} \overline{1} 6,3 \overline{5} 6 \overline{1}, \overline{5} 3 \overline{1} 6, \overline{5} 36 \overline{1}, \overline{5} 63 \overline{1}\}
$$

where \bar{i} is identified with $-i$.
In this section, we shall further restrict our attention to simple forests for which each component is a rooted tree with two vertices. More precisely, let F_{n} denote such a simple forest with n trees $T_{1}, T_{2}, \ldots, T_{n}$, where T_{i} is rooted at v_{i} with u_{i} being the only child. A signed labeling w of F_{n} is said to be local if it satisfies one of the following conditions:
(1) $w\left(u_{i}\right)=2 i-1$ and $w\left(v_{i}\right)=2 i$;
(2) $w\left(u_{i}\right)=\overline{2 i-1}$ and $w\left(v_{i}\right)=2 i$;
(3) $w\left(u_{i}\right)=2 i-1$ and $w\left(v_{i}\right)=\overline{2 i}$;
(4) $w\left(u_{i}\right)=\overline{2 i}$ and $w\left(v_{i}\right)=\overline{2 i-1}$.

We use $L\left(F_{n}\right)$ to denote the set of local signed labelings of F_{n}. A linear extension of F_{n} with a local signed labeling becomes a signed permutation on $\{1,2, \ldots, 2 n\}$. A signed permutation on $\{1,2, \ldots, 2 n\}$ is a permutation on $\{1,2, \ldots, 2 n\}$ for which each element is possibly associated with a minus sign. A signed permutation on a multiset $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$ can be defined in the same manner. As will be shown in Theorem 2.1, the generating function $P_{n}(x)$ of descent numbers of signed permutations on the multiset $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$ equals the generating function $G_{n}(x)$ of descent numbers of linear extensions of F_{n} with local signed labelings.

Recall that the descent set of a signed permutation $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ is defined as

$$
\begin{equation*}
\left\{i \mid \sigma_{i}>\sigma_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{0 \mid \text { if } \sigma_{1}<0\right\} \tag{2.1}
\end{equation*}
$$

see Savage and Visontai [5]. However, for the purpose of this paper, we choose the following alternative definition of the descent set of σ :

$$
\begin{equation*}
\left\{i \mid \sigma_{i}>\sigma_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{n \mid \text { if } \sigma_{n}>0\right\} . \tag{2.2}
\end{equation*}
$$

The descent number $\operatorname{des}_{B}(\sigma)$ of σ is referred to as the number of elements in the descent set defined by (2.2). In fact, via the bijection

$$
\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \quad \longmapsto \quad \sigma^{\prime}=\left(-\sigma_{n}\right)\left(-\sigma_{n-1}\right) \cdots\left(-\sigma_{1}\right),
$$

we see that the descent numbers defined by (2.1) and (2.2) are equidistributed over the set of signed permutations on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$.

With the above notation, the generating function $G_{n}(x)$ can be written as

$$
G_{n}(x)=\sum_{w \in L\left(F_{n}\right)} \sum_{\sigma \in \mathcal{L}\left(F_{n}, w\right)} x^{\operatorname{des}_{B}(\sigma)} .
$$

We have the following equidistribution property.

Theorem 2.1 For $n \geq 1$, we have

$$
G_{n}(x)=P_{n}(x)
$$

Proof. Define a map ϕ from the set

$$
\begin{equation*}
\bigcup_{w \in L\left(F_{n}\right)} \mathcal{L}\left(F_{n}, w\right) \tag{2.3}
\end{equation*}
$$

of linear extensions of F_{n} with local signed labelings to the set of signed permutations on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{2 n}$ be a linear extension in $\mathcal{L}\left(F_{n}, w\right)$, where $w \in L\left(F_{n}\right)$. The construction of $\phi(\sigma)=\tau=\tau_{1} \tau_{2} \cdots \tau_{2 n}$ can be described as follows. For $1 \leq i \leq 2 n$, assume that τ_{i} has the same sign as σ_{i}. Moreover, set $\left|\tau_{i}\right|=\frac{\left|\sigma_{i}\right|}{2}$ if $\left|\sigma_{i}\right|$ is even and set $\left|\tau_{i}\right|=\frac{\left|\sigma_{i}\right|+1}{2}$ if $\left|\sigma_{i}\right|$ is odd. Since σ is a signed permutation on $\{1,2, \ldots, 2 n\}$, it can be easily checked that τ is a signed permutation on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$.

To show that ϕ is a bijection, we construct a map ψ from the set of signed permutations on $\{1,2, \ldots, 2 n\}$ to the set in (2.3) and we shall prove that ψ is the inverse of ϕ. Let $\tau=\tau_{1} \tau_{2} \cdots \tau_{2 n}$ be a signed permutation on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$. Define $\psi(\tau)=\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{2 n}$ by the following procedure. For each $1 \leq i \leq n$, assume that a_{i} and $b_{i}\left(a_{i}<b_{i}\right)$ are the two positions of τ occupied by i or \bar{i}. Moreover, $\sigma_{a_{i}}$ and $\sigma_{b_{i}}$ are determined according to the following cases:
(1) $\sigma_{a_{i}}=2 i-1$ and $\sigma_{b_{i}}=2 i$ if $\tau_{a_{i}}=\tau_{b_{i}}=i$;
(2) $\sigma_{a_{i}}=\overline{2 i-1}$ and $\sigma_{b_{i}}=2 i$ if $\tau_{a_{i}}=\bar{i}$ and $\tau_{b_{i}}=i$;

$$
\begin{align*}
& \text { (3) } \sigma_{a_{i}}=2 i-1 \text { and } \sigma_{b_{i}}=\overline{2 i} \text { if } \tau_{a_{i}}=i \text { and } \tau_{b_{i}}=\bar{i} ; \tag{3}\\
& \text { (4) } \sigma_{a_{i}}=\overline{2 i} \text { and } \sigma_{b_{i}}=\overline{2 i-1} \text { if } \tau_{a_{i}}=\tau_{b_{i}}=\bar{i} .
\end{align*}
$$

So σ is a signed permutation on $\{1,2, \ldots, 2 n\}$. Let w be a signed labeling of F_{n} defined by $w\left(u_{i}\right)=\sigma_{a_{i}}$ and $w\left(v_{i}\right)=\sigma_{b_{i}}$. It is routine to check that w is a local signed labeling of F_{n}. It is also straightforward to verify that σ is a linear extension of $\left(F_{n}, w\right)$.

For any linear extension σ of F_{n} with a local signed labeling, by direct verification we see that $\psi(\phi(\sigma))=\sigma$. This implies that ψ is the inverse of ϕ, and hence ϕ is a bijection. Finally, by the construction of ϕ, it can be seen that $j \in\{1,2, \ldots, 2 n\}$ is a descent of σ if and only if it is a descent of $\phi(\sigma)$. This completes the proof.

As the simplest example of the bijection ϕ, consider the case $n=1$. For F_{1}, there are four local signed labelings and the set of linear extensions of F_{1} with local signed labelings is $\{12, \overline{1} 2,1 \overline{1}, \overline{2} \overline{1}\}$. In this case, we have

$$
\phi(12)=11, \quad \phi(\overline{1} 2)=\overline{1} 1, \quad \phi(1 \overline{2})=1 \overline{1}, \quad \phi(\overline{2} \overline{1})=\overline{1} \overline{1}
$$

The next theorem shows that $G_{n}(x)$ satisfies the same relation as $I_{2 n}(x)$.

Theorem 2.2 For $n \geq 1$, we have

$$
\begin{equation*}
\frac{G_{n}(x)}{(1-x)^{2 n+1}}=\sum_{t \geq 0}(t+1)^{n}(2 t+1)^{n} x^{t} \tag{2.4}
\end{equation*}
$$

To prove the above theorem, recall the notion of a (P, w)-partition of type B introduced by Chow [2]. Let P be a poset and w be a signed labeling of P. A (P, w)-partition of type B is a map f from P to the set of nonnegative integers that satisfies the following conditions:
(1) $f(u) \geq f(v)$ if $u \leq v$;
(2) $f(u)>f(v)$ if $u<v$ and $w(u)>w(v)$;
(3) $f(v) \geq 1$ if $w(v)>0$.

When w is a labeling with positive integers, a (P, w)-partition of type B reduces to an ordinary (P, w)-partition defined by Stanley [6]. Substituting each element $v \in P$ with its label $w(v)$, a (P, w)-partition of type B can be viewed as a map from the set of labels of P to the set nonnegative integers. Chow [2] showed that (P, w)-partitions of type B can be generated by linear extensions of (P, w). For a linear extension $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ of (P, w), a map g from $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ to the set of nonnegative integers is called σ-compatible if the following conditions are satisfied:
(1) $g\left(\sigma_{1}\right) \geq g\left(\sigma_{2}\right) \geq \cdots \geq g\left(\sigma_{n}\right)$;
(2) $g\left(\sigma_{i}\right)>g\left(\sigma_{i+1}\right)$ if $1 \leq i \leq n-1$ and $\sigma_{i}>\sigma_{i+1}$;
(3) $g\left(\sigma_{n}\right) \geq 1$ if $\sigma_{n}>0$.

Notice that for two distinct linear extensions σ and σ^{\prime} of (P, w), any σ-compatible map is not σ^{\prime}-compatible.

The following theorem is due to Chow [2], which will be used to establish a relation between the generating function for the number of (P, w)-partitions of type B and the generating function for the descent number of linear extensions of (P, w).

Theorem 2.3 (Chow [2]) Let P be a poset with a signed labeling w. A map from P to the set of nonnegative integers is a (P, w)-partition of type B if and only if there exists a linear extension σ of (P, w) such that f is σ-compatible.

For a nonnegative integer t, let $\Omega_{P}(w, t)$ denote the number of (P, w)-partitions f of type B such that $f(v) \leq t$ for any $v \in P$. We have the following relation.

Theorem 2.4 Let P be a poset with n elements, and let w be a signed labeling of P. Then

$$
\begin{equation*}
\frac{1}{(1-x)^{n+1}} \sum_{\sigma \in \mathcal{L}(P, w)} x^{\operatorname{des}_{B}(\sigma)}=\sum_{t \geq 0} \Omega_{P}(w, t) x^{t} \tag{2.5}
\end{equation*}
$$

Proof. The proof is analogous to that of Stanley [6] for the case of an ordinary labeling. For a linear extension $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ of (P, w), let $\Omega_{\sigma}(t)$ denote the number of σ compatible maps g such that $g\left(\sigma_{i}\right) \leq t$ for $1 \leq i \leq n$. In view of Theorem 2.3, we see that

$$
\Omega_{P}(w, t)=\sum_{\sigma \in \mathcal{L}(P, w)} \Omega_{\sigma}(t) .
$$

Thus, to prove (2.5) it suffices to show that

$$
\begin{equation*}
\sum_{t \geq 0} \Omega_{\sigma}(t) x^{t}=\frac{x^{\operatorname{des}_{B}(\sigma)}}{(1-x)^{n+1}} \tag{2.6}
\end{equation*}
$$

To count $\Omega_{\sigma}(t)$, we establish a bijection between the set of σ-compatible maps g with $g\left(\sigma_{i}\right) \leq t$ for $1 \leq i \leq n$ and the set of partitions $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \leq t-\operatorname{des}_{B}(\sigma)$. Recall that a partition is a sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of nonnegative integers such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. For $1 \leq i \leq n$, let d_{i} denote the number of descents of σ that are greater than or equal to i, that is,

$$
d_{i}=\mid\left\{j \mid i \leq j \leq n-1, \sigma_{j}>\sigma_{j+1}\right\} \cup\left\{n \mid \text { if } \sigma_{n}>0\right\} \mid
$$

Let g be a σ-compatible map with $g\left(\sigma_{i}\right) \leq t$ for $1 \leq i \leq n$. It is easily checked that by setting $\lambda_{i}=g\left(\sigma_{i}\right)-d_{i}$ for $1 \leq i \leq n$, we are given a partition $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \leq t-\operatorname{des}_{B}(\sigma)$. It can be seen that this procedure is reversible. So we arrive at a bijection. Notice that the number of partitions $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \leq t-\operatorname{des}_{B}(\sigma)$ is equal to

$$
\binom{n+t-\operatorname{des}_{B}(\sigma)}{n}
$$

see Stanley [6]. It follows that

$$
\Omega_{\sigma}(t)=\binom{n+t-\operatorname{des}_{B}(\sigma)}{n},
$$

which implies (2.6). This completes the proof.
We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2. By Theorem 2.4, we aim to prove the following equivalent form of (2.4):

$$
\begin{equation*}
\sum_{w \in L\left(F_{n}\right)} \Omega_{F_{n}}(w, t)=((t+1)(2 t+1))^{n} \tag{2.7}
\end{equation*}
$$

Recall that F_{n} consists of n components $T_{1}, T_{2}, \ldots, T_{n}$, where T_{i} is a tree rooted at v_{i} with u_{i} being the only child. Keep in mind that the left-hand side of (2.7) equals the number of $\left(F_{n}, w\right)$-partitions f of type B such that $f\left(u_{i}\right) \leq t$ and $f\left(v_{i}\right) \leq t$, where w is a local signed labeling of F_{n}. Restricting f to the tree T_{i}, we obtain a map f_{i} from T_{i} to the set nonnegative integers. Similarly, restricting w to T_{i} gives a signed labeling w_{i} of T_{i}. Recall that w_{i} is given by one of the following assignments:
(1) $w_{i}\left(u_{i}\right)=2 i-1$ and $w_{i}\left(v_{i}\right)=2 i$,
(2) $w_{i}\left(u_{i}\right)=\overline{2 i-1}$ and $w_{i}\left(v_{i}\right)=2 i$,
(3) $w_{i}\left(u_{i}\right)=2 i-1$ and $w_{i}\left(v_{i}\right)=\overline{2 i}$,
(4) $w_{i}\left(u_{i}\right)=\overline{2 i}$ and $w_{i}\left(v_{i}\right)=\overline{2 i-1}$.

Clearly, f_{i} is a $\left(T_{i}, w_{i}\right)$-partition of type B satisfying the conditions $f_{i}\left(u_{i}\right) \leq t$ and $f_{i}\left(v_{i}\right) \leq t$. Conversely, f can be recovered from $f_{1}, f_{2}, \ldots, f_{n}$.

For a signed labeling w_{i} of T_{i} induced by a local signed labeling of F_{n}, we now compute the number $\Omega_{T_{i}}\left(w_{i}, t\right)$ of $\left(T_{i}, w_{i}\right)$-partitions f_{i} of type B such that $f_{i}\left(u_{i}\right) \leq t$ and $f_{i}\left(v_{i}\right) \leq t$. We consider the above four cases.

Case 1: $w_{i}\left(u_{i}\right)=2 i-1$ and $w_{i}\left(v_{i}\right)=2 i$. It is easily seen that in this case f_{i} is a (T_{i}, w_{i})-partition of type B if and only if

$$
0<f_{i}\left(v_{i}\right) \leq f_{i}\left(u_{i}\right) \leq t
$$

So we have

$$
\Omega_{T_{i}}\left(w_{i}, t\right)=\binom{t+1}{2}
$$

Case 2: $w_{i}\left(u_{i}\right)=\overline{2 i-1}$ and $w_{i}\left(v_{i}\right)=2 i$. Similarly, in this case, f_{i} is a $\left(T_{i}, w_{i}\right)$-partition of type B if and only if

$$
0<f_{i}\left(v_{i}\right) \leq f_{i}\left(u_{i}\right) \leq t
$$

Thus,

$$
\Omega_{T_{i}}\left(w_{i}, t\right)=\binom{t+1}{2} .
$$

Case 3: $w_{i}\left(u_{i}\right)=2 i-1$ and $w_{i}\left(v_{i}\right)=\overline{2 i}$. We see that f_{i} is a $\left(T_{i}, w_{i}\right)$-partition of type B if and only if

$$
0 \leq f_{i}\left(v_{i}\right)<f_{i}\left(u_{i}\right) \leq t
$$

This implies that

$$
\Omega_{T_{i}}\left(w_{i}, t\right)=\binom{t+1}{2}
$$

Case 4: $w_{i}\left(u_{i}\right)=\overline{2 i}$ and $w_{i}\left(v_{i}\right)=\overline{2 i-1}$. In this case, f_{i} is a $\left(T_{i}, w_{i}\right)$-partition of type B if and only if

$$
0 \leq f_{i}\left(v_{i}\right) \leq f_{i}\left(u_{i}\right) \leq t
$$

Hence,

$$
\Omega_{T_{i}}\left(w_{i}, t\right)=\binom{t+2}{2} .
$$

Combining the above four cases, we see that for any $1 \leq i \leq n$, the number of possible configurations of (T_{i}, w_{i})-partitions of type B equals

$$
3\binom{t+1}{2}+\binom{t+2}{2}=(t+1)(2 t+1)
$$

It follows that

$$
\sum_{w \in L\left(F_{n}\right)} \Omega_{F_{n}}(w, t)=((t+1)(2 t+1))^{n}
$$

as required.

3 Signed permutations and $I_{2 n-1}$

In the previous section, we proved the conjecture of Savage and Visontai on the equidistribution of the descent number over signed permutations and the ascent number over s-inversion sequences in the set $I_{2 n}$. In this section, we find a set V_{n} of signed permutations over which the descent number is equidistributed with the ascent number over
the set $I_{2 n-1}$. Recall that $I_{2 n-1}$ is the set of s-inversion sequences of length $2 n-1$ for $s=(1,4,3,8,5,12, \ldots)$. For an s-inversion sequence $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, an ascent of e is defined as an integer $i \in\{0,1, \ldots, n-1\}$ such that

$$
\frac{e_{i}}{s_{i}}<\frac{e_{i+1}}{s_{i+1}},
$$

where we assume that $e_{0}=0$ and $s_{0}=1$. The ascent number of e is meant to be the number of ascents of e. Define $V_{n}(x)$ as the generating function of descent numbers of signed permutations in V_{n}. Recall that $I_{2 n-1}(x)$ denotes the generating function of ascent numbers of inversion sequences in $I_{2 n-1}$. Savage and Schuster [4] showed that

$$
\begin{equation*}
\frac{I_{2 n-1}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0}(t+1)^{n}(2 t+1)^{n-1} x^{t} \tag{3.1}
\end{equation*}
$$

We show that $V_{n}(x)$ satisfies the same relation (3.1) as $I_{2 n-1}(x)$. The proof is similar to that of Conjecture 1.1. So we reach the conclusion that $V_{n}(x)=I_{2 n-1}(x)$.

Let U_{n} be the set of signed permutations on the multiset $\left\{1^{2}, 2^{2}, \ldots,(n-1)^{2}, n\right\}$. Define V_{n} to be the subset of U_{n} consisting of signed permutations such that the element n carries a minus sign. Set

$$
V_{n}(x)=\sum_{\sigma \in V_{n}} x^{\operatorname{des}_{B}(\sigma)}
$$

We have the following equidistribution property.

Theorem 3.1 For $n \geq 1$, we have $V_{n}(x)=I_{2 n-1}(x)$.

Proof. In view of (3.1), we aim to show that

$$
\begin{equation*}
\frac{V_{n}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0}(t+1)^{n}(2 t+1)^{n-1} x^{t} \tag{3.2}
\end{equation*}
$$

Let F_{n}^{*} be the forest obtained from F_{n-1} by adding a single vertex v_{n} as a component. For example, Figure 3.2 illustrates the forest F_{n}^{*} for $n=3$. Write $L\left(F_{n}^{*}\right)$ for the set

Figure 3.2: The forest F_{n}^{*} for $n=3$.
of signed labelings w of F_{n}^{*} such that $w\left(v_{n}\right)=-(2 n-1)$ and the labels on F_{n-1} form
a local signed labeling of F_{n-1}. Let $Q_{n}(x)$ denote the generating function of descent numbers of linear extensions of F_{n}^{*} with signed labelings $w \in L\left(F_{n}^{*}\right)$, namely,

$$
Q_{n}(x)=\sum_{w \in L\left(F_{n}^{*}\right)} \sum_{\sigma \in \mathcal{L}\left(F_{n}^{*}, w\right)} x^{\operatorname{des}_{B}(\sigma)}
$$

Analogous to the bijection ϕ in the proof of Theorem 2.1, we can construct a descent preserving map ϕ^{*} from the set

$$
\bigcup_{w \in L\left(F_{n}^{*}\right)} \mathcal{L}\left(F_{n}^{*}, w\right)
$$

to the set V_{n}. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{2 n-1}$ be a linear extension in $\mathcal{L}\left(F_{n}^{*}\right.$, w), where $w \in L\left(F_{n}^{*}\right)$. Define $\phi^{*}(\sigma)=\tau=\tau_{1} \tau_{2} \cdots \tau_{2 n-1}$ as follows. For $1 \leq i \leq 2 n-1$, assume that τ_{i} has the same sign as σ_{i}. Then we set $\left|\tau_{i}\right|=\frac{\left|\sigma_{i}\right|}{2}$ if $\left|\sigma_{i}\right|$ is even and set $\left|\tau_{i}\right|=\frac{\left|\sigma_{i}\right|+1}{2}$ if $\left|\sigma_{i}\right|$ is odd. Clearly, τ is a signed permutation in V_{n}. Moreover, one can construct the inverse of ϕ^{*}, which is analogous to the inverse of ϕ. This proves that ϕ^{*} is a bijection. So we obtain that

$$
\begin{equation*}
V_{n}(x)=Q_{n}(x) \tag{3.3}
\end{equation*}
$$

Thus (3.2) is equivalent to

$$
\begin{equation*}
\frac{Q_{n}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0}(t+1)^{n}(2 t+1)^{n-1} x^{t} \tag{3.4}
\end{equation*}
$$

By Theorem 2.4, the left-hand side of (3.4) can be written as

$$
\frac{Q_{n}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0} \sum_{w \in L\left(F_{n}^{*}\right)} \Omega_{F_{n}^{*}}(w, t) x^{t}
$$

Hence (3.4) is equivalent to

$$
\begin{equation*}
\sum_{w \in L\left(F_{n}^{*}\right)} \Omega_{F_{n}^{*}}(w, t)=(t+1)^{n}(2 t+1)^{n-1} \tag{3.5}
\end{equation*}
$$

The proof of (3.5) is similar to that for (2.7). For completeness, a detailed proof is presented. Recall that F_{n-1} contains $n-1$ components $T_{1}, T_{2}, \ldots, T_{n-1}$, where T_{i} is a tree rooted at v_{i} with u_{i} being the only child. Let T_{n}^{*} denote the component consisting of the single vertex v_{n}. By definition, the left-hand side of (3.5) equals the total number of $\left(F_{n}^{*}, w\right)$-partitions f of type B such that $f(v) \leq t$ for any vertex v of F_{n}^{*}, where w is a signed labeling belonging to $L\left(F_{n}^{*}\right)$. Restricting f to F_{n-1}, we obtain a map f^{\prime} from F_{n-1} to the set nonnegative integers. While, restricting f to T_{n}^{*}, we are led to a map $f^{\prime \prime}$ from T_{n}^{*} to the set nonnegative integers. On the other hand, restricting w to F_{n-1} gives a local signed labeling w^{\prime} of F_{n-1}, whereas restricting w to T_{n}^{*} gives a signed labeling $w^{\prime \prime}$ of T_{n}^{*} such that $w^{\prime \prime}\left(v_{n}\right)=-(2 n-1)$. Obviously, f^{\prime} is a $\left(F_{n-1}, w^{\prime}\right)$-partition of type
B satisfying the condition that $f^{\prime}(v) \leq t$ for any vertex v of F_{n-1}, and $f^{\prime \prime}$ is a $\left(T_{n}^{*}, w^{\prime \prime}\right)$ partition of type B such that $f^{\prime \prime}\left(v_{n}\right) \leq t$. It can be seen that the above procedure is reversible. Hence we get

$$
\begin{equation*}
\sum_{w \in L\left(F_{n}^{*}\right)} \Omega_{F_{n}^{*}}(w, t)=\Omega_{T_{n}^{*}}\left(w^{\prime \prime}, t\right) \sum_{w^{\prime} \in L\left(F_{n-1}\right)} \Omega_{F_{n-1}}\left(w^{\prime}, t\right) . \tag{3.6}
\end{equation*}
$$

In the proof of Theorem 2.2 , it has been shown that

$$
\begin{equation*}
\sum_{w^{\prime} \in L\left(F_{n-1}\right)} \Omega_{F_{n-1}}\left(w^{\prime}, t\right)=((t+1)(2 t+1))^{n-1} \tag{3.7}
\end{equation*}
$$

To compute $\Omega_{T_{n}^{*}}\left(w^{\prime \prime}, t\right)$, we see that $f^{\prime \prime}$ is a $\left(T_{n}^{*}, w^{\prime \prime}\right)$-partition of type B if and only if

$$
0 \leq f^{\prime \prime}\left(v_{n}\right) \leq t
$$

Thus

$$
\begin{equation*}
\Omega_{T_{n}^{*}}\left(w^{\prime \prime}, t\right)=t+1 \tag{3.8}
\end{equation*}
$$

Combining (3.6), (3.7) and (3.8), we are led to (3.5). This completes the proof.

4 Signed permutations and I_{n}^{\prime}

In this section, we consider equidistributions of the descent number over signed permutations and the ascent number over s-inversions sequences for $s=(2,2,6,4,10,6, \ldots)$. Recall that the set of such s-inversion sequences of length n is denoted by I_{n}^{\prime}. It turns out that we need to distinguish the parity of n.

First, we consider the case for $I_{2 n}^{\prime}$. Let $I_{2 n}^{\prime}(x)$ be the generating function of ascent numbers of inversion sequences in $I_{2 n}^{\prime}$. Savage and Schuster [4] obtained a relation for the generating function of ascent numbers of s-inversion sequences for $s=(1,1,3,2,5,3, \ldots)$, that is, $s_{2 i}=i$ and $s_{2 i-1}=2 i-1$ for $i \geq 1$. This leads to a relation satisfied by $I_{2 n}^{\prime}(x)$. As will be seen, this relation coincides with the relation (1.1) for $I_{2 n}(x)$, and so we get $I_{2 n}^{\prime}(x)=I_{2 n}(x)$. Since $I_{2 n}(x)$ equals the generating function $P_{n}(x)$ of descent numbers of signed permutations on $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$, we are led to the equidistribution as stated below.

Theorem 4.1 For $n \geq 1$, we have $P_{n}(x)=I_{2 n}^{\prime}(x)$.

To prove the above theorem, we recall two formulas of Savage and Schuster [4] on the generating function of ascent numbers of s-inversion sequences of length n. For any sequence $s=\left(s_{1}, s_{2}, \ldots\right)$ of positive integers, let $f_{n}^{(s)}(t)$ denote the number of sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of nonnegative integers such that

$$
\begin{equation*}
0 \leq \frac{a_{1}}{s_{1}} \leq \frac{a_{2}}{s_{2}} \leq \cdots \leq \frac{a_{n}}{s_{n}} \leq t \tag{4.1}
\end{equation*}
$$

Savage and Schuster (4] deduced that

$$
\begin{equation*}
\frac{1}{(1-x)^{n+1}} \sum_{e} x^{\operatorname{asc}(e)}=\sum_{t \geq 0} f_{n}^{(s)}(t) x^{t}, \tag{4.2}
\end{equation*}
$$

where e ranges over s-inversion sequences of length n. For the sequence

$$
s=(1,1,3,2,5,3, \ldots)
$$

Savage and Schuster [4] showed that

$$
\begin{equation*}
f_{n}^{(s)}(t)=(t+1)^{\left\lceil\frac{n}{2}\right\rceil}\left(\frac{t+2}{2}\right)^{\left\lfloor\frac{n}{2}\right\rfloor} \tag{4.3}
\end{equation*}
$$

Proof of Theorem 4.1. Let

$$
s=(2,2,6,4,10,6, \ldots)
$$

and

$$
s^{\prime}=s / 2=(1,1,3,2,5,3, \ldots)
$$

By (4.1), we see that

$$
f_{n}^{(s)}(t)=f_{n}^{\left(s^{\prime}\right)}(2 t)
$$

Applying (4.3) to s^{\prime}, we get

$$
\begin{equation*}
f_{n}^{(s)}(t)=(t+1)^{\left\lfloor\frac{n}{2}\right\rfloor}(2 t+1)^{\left\lceil\frac{n}{2}\right\rceil} \tag{4.4}
\end{equation*}
$$

Let $I_{n}^{\prime}(x)$ be the generating function of ascent numbers of inversion sequences in I_{n}^{\prime}. By (4.2) and (4.4), we obtain that

$$
\begin{equation*}
\frac{I_{n}^{\prime}(x)}{(1-x)^{n+1}}=\sum_{t \geq 0}(t+1)^{\left\lfloor\frac{n}{2}\right\rfloor}(2 t+1)^{\left\lceil\frac{n}{2}\right\rceil} x^{t} \tag{4.5}
\end{equation*}
$$

Replacing n with $2 n$ in (4.5), we arrive at

$$
\begin{equation*}
\frac{I_{2 n}^{\prime}(x)}{(1-x)^{2 n+1}}=\sum_{t \geq 0}(t+1)^{n}(2 t+1)^{n} x^{t} \tag{4.6}
\end{equation*}
$$

Comparing (4.6) with (1.1), we see that $I_{2 n}^{\prime}(x)$ satisfies the same relation as $I_{2 n}(x)$. This implies that $\overline{I_{2 n}^{\prime}}(x)=\overline{I_{2 n}}(x)$. Since $P_{n}(x)=I_{2 n}(x)$, we conclude that $P_{n}(x)=I_{2 n}^{\prime}(x)$. This completes the proof.

We now consider the case for $I_{2 n-1}^{\prime}$. Recall that U_{n} is the set of signed permutations on $\left\{1^{2}, 2^{2}, \ldots,(n-1)^{2}, n\right\}$. Let $U_{n}(x)$ be the generating function of descent numbers of signed permutations in U_{n}. Replacing n with $2 n-1$ in (4.5), we find that

$$
\begin{equation*}
\frac{I_{2 n-1}^{\prime}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0}(t+1)^{n-1}(2 t+1)^{n} x^{t} \tag{4.7}
\end{equation*}
$$

It will be shown that $U_{n}(x)$ also satisfies relation (4.7). So we have the following equidistribuion property for $I_{2 n-1}^{\prime}$.

Theorem 4.2 For $n \geq 1$, we have $U_{n}(x)=I_{2 n-1}^{\prime}(x)$.

Proof. We proceed to show that

$$
\begin{equation*}
\frac{U_{n}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0}(t+1)^{n-1}(2 t+1)^{n} x^{t} \tag{4.8}
\end{equation*}
$$

As defined in the proof of Theorem [3.1, F_{n}^{*} denotes the forest obtained from F_{n-1} by adding a single vertex v_{n} as a component T_{n}^{*}. We use $L^{\prime}\left(F_{n}^{*}\right)$ to stand for the set of signed labelings w of F_{n}^{*} such that $w\left(v_{n}\right)=2 n-1$ or $w\left(v_{n}\right)=-(2 n-1)$, and the restriction of w to F_{n-1} forms a local signed labeling of F_{n-1}. Let

$$
\begin{equation*}
H_{n}(x)=\sum_{w \in L^{\prime}\left(F_{n}^{*}\right)} \sum_{\sigma \in \mathcal{L}\left(F_{n}^{*}, w\right)} x^{\operatorname{des}_{B}(\sigma)} \tag{4.9}
\end{equation*}
$$

Analogous to the construction of ϕ^{*} in the proof of Theorem 3.1, we can establish a descent preserving bijection from the set

$$
\bigcup_{w \in L^{\prime}\left(F_{n}^{*}\right)} \mathcal{L}\left(F_{n}^{*}, w\right)
$$

to the set U_{n}. This yields that

$$
H_{n}(x)=U_{n}(x) .
$$

Therefore, (4.8) is equivalent to

$$
\begin{equation*}
\frac{H_{n}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0}(t+1)^{n-1}(2 t+1)^{n} x^{t} \tag{4.10}
\end{equation*}
$$

By Theorem 2.4, for each signed laleling $w \in L^{\prime}\left(F_{n}^{*}\right)$,

$$
\frac{1}{(1-x)^{2 n}} \sum_{\sigma \in \mathcal{L}\left(F_{n}^{*}, w\right)} x^{\operatorname{des}_{B}(\sigma)}=\sum_{t \geq 0} \Omega_{F_{n}^{*}}(w, t) x^{t} .
$$

It follows that

$$
\frac{1}{(1-x)^{2 n}} \sum_{w \in L^{\prime}\left(F_{n}^{*}\right)} \sum_{\sigma \in \mathcal{L}\left(F_{n}^{*}, w\right)} x^{\operatorname{des}_{B}(\sigma)}=\sum_{t \geq 0} \sum_{w \in L^{\prime}\left(F_{n}^{*}\right)} \Omega_{F_{n}^{*}}(w, t) x^{t}
$$

In view of the definition of $G_{n}(x)$ as given in 4.9), we obtain that

$$
\frac{H_{n}(x)}{(1-x)^{2 n}}=\sum_{t \geq 0} \sum_{w \in L^{\prime}\left(F_{n}^{*}\right)} \Omega_{F_{n}^{*}}(w, t) x^{t}
$$

Hence (4.10) is equivalent to the following relation

$$
\begin{equation*}
\sum_{w \in L^{\prime}\left(F_{n}^{*}\right)} \Omega_{F_{n}^{*}}(w, t)=(t+1)^{n-1}(2 t+1)^{n} \tag{4.11}
\end{equation*}
$$

The proof of (4.11) is similar to that of (3.5). Let w_{1} be the signed labeling of T_{n}^{*} such that $w_{1}\left(v_{n}\right)=-(2 n-1)$, and let w_{2} be the signed labeling of T_{n}^{*} such that $w_{2}\left(v_{n}\right)=2 n-1$. Then

$$
\begin{equation*}
\sum_{w \in L^{\prime}\left(F_{n}^{*}\right)} \Omega_{F_{n}^{*}}(w, t)=\left(\Omega_{T_{n}^{*}}\left(w_{1}, t\right)+\Omega_{T_{n}^{*}}\left(w_{2}, t\right)\right) \sum_{w \in L\left(F_{n-1}\right)} \Omega_{F_{n-1}}(w, t) . \tag{4.12}
\end{equation*}
$$

In the proof of Theorem 2.2, we have shown that

$$
\begin{equation*}
\sum_{w \in L\left(F_{n-1}\right)} \Omega_{F_{n-1}}(w, t)=((t+1)(2 t+1))^{n-1} \tag{4.13}
\end{equation*}
$$

whereas in the proof of Theorem 3.1, we deduced that

$$
\begin{equation*}
\Omega_{T_{n}^{*}}\left(w_{1}, t\right)=t+1 . \tag{4.14}
\end{equation*}
$$

Clearly, a map f from T_{n}^{*} to the set of nonnegative integers is a $\left(T_{n}^{*}, w_{2}\right)$-partition of type B if and only if $0<f\left(v_{n}\right) \leq t$. Thus

$$
\begin{equation*}
\Omega_{T_{n}^{*}}\left(w_{2}, t\right)=t \tag{4.15}
\end{equation*}
$$

Substituting (4.13), 4.14) and (4.15) into (4.12), we arrive at 4.11). This completes the proof.

Acknowledgments. We wish to thank the referees for valuable suggestions. This work was supported by the 973 Project and the National Science Foundation of China.

References

[1] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), 417-441.
[2] C.-O. Chow, Noncommutative symmetric functions of type B, Ph.D. Thesis, MIT, 2001.
[3] Z. Lin, On the descent polynomial of signed multipermutations, Proc. Amer. Math. Soc. 143 (2015), 3671-3685.
[4] C.D. Savage and M.J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences, J. Combin. Theory Ser. A 119 (2012), 850-870.
[5] C.D. Savage and M. Visontai, The s-Eulerian polynomials have only real roots, Trans. Amer. Math. Soc. 367 (2015), 1441-1466.
[6] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, 2011.

