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ON THE MINIMUM WEIGHT OF A 3-CONNECTED
1-PLANAR GRAPH

ZAI PING LU AND NING SONG

ABSTRACT. A graph is called 1-planar if it can be drawn in the Euclidean
plane R? such that each edge is crossed by at most one other edge. The
weight of an edge is the sum of degrees of two ends. It is known that
every planar graph of minimum degree § > 3 has an edge with weight
at most 13. In the present paper, we show the existence of edges with
weight at most 25 in 3-connected 1-planar graphs.

1. Introduction

All graphs considered in this paper are finite, simple, undirected and con-
nected. The notations and terminology used but undefined here can be found
in the book of Bondy and Murty [1].

Let G be a graph, and denote the vertex set and edge set of G by V(G) and
E(G), respectively. We denote the degree of a vertex v € V(G) by deg(v). For
a positive integer k, we say that a vertex v € V(G) is a k-vertex, k' -vertez and
k~-vertex if deg(v) = k, deg(v) > k and deg(v) < k, respectively. For positive
integers a and b, if xy € F(G) with deg(x) = a and deg(y) = b, then we say
that xzy is of type (a,b) or zy is an (a,b)-edge, and say x is an a-neighbour
of y. For a tuple denoted type of an edge, we sometimes use a™ and a~ for
some entry in the tuple if the corresponding vertex is of degree > a and < a,
respectively.

For an edge zy € F(G), its weight is the sum of degrees of two ends, denoted
by w(zy). If min.cp(e) w(e) = w, then we say that G has the minimum weight
w, and say the edges with weight w are light edges of G. (In some earlier
papers, “light edge” was defined as an edge with weight at most 13. But in [8],
the meaning of “light edge” was changed, and in the present paper, we use the
definition in [8].)

The interesting for light edges stemmed from the famous Kotzig’s Theorem
[10]. Tt states that the minimum weight of every 3-dimension polyhedral graph
(i.e., 3-connected planar graph) is at most 13, and if the graph has no 3-vertices
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then the minimum weight of it is at most 11. Furthermore these bounds are
sharp. Afterward, this theorem is developed by many graph-theorists. Accord-
ing to Griinbaum (see [7]), Erdés conjectured that Kotzig’s conclusion holds
for every planar graph of minimum degree at least 3, which was proved by Bar-
nette (but never published, see [7]) and by Borodin [3] in 1989 independently.
Readers may consult [9] for more results on this topic.

This paper focuses on light edges of 1-planar graphs. A graph G is called
1-planar if it can be drawn in the plane such that each edge is crossed by at
most one other edge, while the drawing is called a 1-planar drawing of G and a
crossing point is called by a crossing for short. Note that we assume that the
interiors of any two edges are not tangent and any three distinct edges do not
intersect at a crossing in common throughout this paper.

The conception of 1-planar graphs was introduced by Ringle [2] in the solu-
tion of simultaneous vertex-face coloring problem. Since then, 1-planar graphs
have been studied extensively and lots of interesting results have appeared on
acyclic coloring [4], decomposition [5], light subgraphs [11] and edge coloring
[12, 13]. Especially, Fabrici and Madaras [6] investigated the local structure of
1-planar graph and they showed the following result which implies that each
light edge in a 3-connected 1-planar graph has weight at most 40.

Theorem 1.1 ([6]). Every 3-connected 1-planar graph G contains an edge with
both ends of degree at most 20 in G. The bound 20 is the best possible.

Fic. 1

In [6], the authors gave an example to show the sharpness of the bound 20
as follows: for each triangle face f of the icosahedron, insert three new vertices
in the interior of f, add 9 edges joining the new vertices and the vertices of
f, see Fig. 1. Then the resulting graph has only edges of type (3,20) and
(20,20). This example also indicates that 40 might not be the best bound of
the minimum weight of 3-connected 1-planar graphs.

In 2012, Huddk and Sugerek [8] proved the following theorem.

Theorem 1.2 ([8]). Every 1-planar graph G of minimum degree 6 > 4 contains
an edge of type (4,137), (5,97), (6,87) or (7,7). In particular, the minimum
weight of G is at most 17, and it is at most 14 when § > 4.
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Based on the example mentioned above, the authors of [8] proposed the
following conjecture.

Conjecture 1.3 ([8]). Every 1-planar graph of minimum degree 6 > 3 contains
an edge of type (3,207), (4,137), (5,97), (6,87) or (7,7).

Motivated by this conjecture, we prove the following theorem in the present
paper.

Theorem 1.4. Fvery 3-connected 1-planar graph G contains an edge of type
(3,227), (4,137), (5,97), (6,87) or (7,7). In particular, the minimum weight
of G is at most 25.

2. Proof of Theorem 1.4

Suppose Theorem 1.4 does not hold. Let G be a counterexample to Theorem
1.4 with n vertices, such that G has the largest number of edges among all
counterexamples with n vertices.

Define a function ¢ on {3,4, 5, ...} such that ¢(-) satisfies the following table.

d [3 4 5 6 >7
o(d)[23 14 10 9 8

Noting G is a counterexample and the minimum degree of G is at least 3 since
G is 3-connected, the following observation holds clearly.

Observation 2.1. For every edge wv € E(G), ifdeg(u) = d < 7, then deg(v) >
o(d), i.e., every edge of G is of type (3,237), (4,14T), (5,107), (6,9%) or
(7*,8%).

Note that a 1-planar graph may have different 1-planar drawings. We use
D(G) to denote the set of 1-planar drawings of G with the least number of
crossings. Take D € D(G). Then it is easy to see that no edge is self-crossing
and adjacent edges (i.e., edges with a common end) do not cross in D. By the
above assumptions, G and D has the following properties.

(I) Gisa 3-connected 1-planar n-order graph of the minimum degree § > 3;
(IT) every edge of G is of type (3,237), (4,147), (5,107), (6,97) or (7+,8%);
(IIT) for all graphs satisfying above (I) and (II), the number of edges of G is
maximum;
(IV) D is a 1-planar drawing of G and has as few crossings as possible;
(V) no edge is self-crossing and adjacent edges do not cross in D.

For D € D(G), we can get a plane graph, denoted by D* and called associ-
ated plane graph of D, by replacing every crossing by a new 4-vertex. In D*,
a vertex is called false if it corresponds to a crossing of D, and an edge or face
is called false if it is incident with some false vertex. A vertex, edge or face is
called true if it is not false.

Denote by F(D*) the set of faces of D*. Since G is 3-connected, it is easy
to see D* is at least 2-connected. Then for every f € F(D*), the boundary of
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f is a cycle, denoted by 0f. The length of 0f is called the degree of f, denoted
by deg(f). We say a face f is an r-face, r—-face and r+-face if deg(f) = r,
deg(f) < r and deg(f) > r, respectively.

Let f be an r-face with vertices vy, vs,...,v, in a cyclic order. Then we
write f = [vjvy---v,.]. Furthermore, if deg(v;) = d;, then we say that f is
of type (d1,ds,...,d,) or fis a (di,ds,...,d,)-face. In a tuple denoting the
type of a face, we sometimes use a* and a~ for some entry in the tuple if the
corresponding vertex is of degree > a and < a, respectively. For a false face or
false edge, in the type tuple of it, we always write an entry as the symbol ® if
its corresponding vertex is false.

Next assign charge on the vertices and faces of D*. Define the initial charge
function chg(-) as follows:

cho(z) = deg(z) —4 for z € V(D*)U F(D*).

By Euler’s Formula, we have

Y (deglv) —4)+ D (deg(f) —4) = 8.

veV(DX) fEF(DX)

Z cho(z) = —8.

€V (DX)UF(DX)

Thus

Next we use a two-step discharging process to finish our proof. Denote by
ch;(z) the charge of x after ith discharging where ¢ = 1,2. We shall show that
cha(x) > 0 for every x € V(D*) U F(D*).

2.1. First-step

Some work in the first-step is similar with [8]. But some difference exists
between [8] and the present paper. For completeness, we shall write this part
as follows.

The discharging rules of the first-step:

Rule FO: The charge of every 4T-face and every 4-vertex is not changed.

Rule F1: Let d € [5, 8] be an integer. Assume that v is a d-vertex and f is an
incident 3-face of v.

e Subrule F1.1: If f is false, then move 2_@% units charge from v to

f.

e Subrule F1.2: If f is true and d € [5, 7], then move no charge from v
to f.

e Subrule F1.3: If f is true and d = 8, then move % unit charge from
vto f.

Rule F2: Assume that v is a 9-vertex and f is an incident 3-face of v.

e Subrule F2.1: If f is of type (9,6, ®), then move % units charge from
v to f.
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e Subrule F2.2: If f is of type (9,77, ®), then move % unit charge from
vto f.

e Subrule F2.3: If f is of type (9,9%,97), then move § unit charge
from v to f.

e Subrule F2.4: If f is true but not of type (9,9%,9%), then move %
unit charge from v to f.

Rule F3: Let d > 10 be an integer. Assume that v is a d-vertex and f is an
incident 3-face of v.

e Subrule F3.1: If f is of type (d,3,®), then move 1 unit charge from
vto f.

e Subrule F3.2: If f is of type (d,4,®), then move 1 unit charge from
v to f.

e Subrule F3.3: If f is of type (d, 5, ®), then move % units charge from
v to f.

e Subrule F3.4: If f is of type (d, 6,®), then move % units charge from
vto f.

e Subrule F3.5: If f is of type (d, 7+, ®), then move % unit charge from
v to f.

e Subrule F3.6: If f is true, then move % unit charge from v to f.

Lemma 2.2. Let f be a true 3-face of D*. Then chy(f) > 0.

Proof. Assume that f = [ujusus] and deg(u;) < deg(us) < deg(us). Denote
d; = deg(u;) for i =1,2,3.

Case 1. Assume 3 < d; < 7. Then dy,ds > ¢(dy) by Observation 2.1. If
3 < d; <5, then ds,d3 > 10, thus by Subrule F3.6, % is moved from us and ug
to f, respectively, and it follows that chq(f) = (3 —4) + % + % =0. If dy =6,
then ds,ds > 9, thus by Subrules F2.4 and F3.6, % is moved from wo and ug
to f, respectively, and it follows that chq(f) = (3 —4) + % + % =0.Ifdy =7,
then ds, d3 > 8, thus by Subrules F1.3, F2.4 and F3.6, % is moved from us and
uz to f, respectively, and it follows that chi(f) = (3 —4) + % + % =0.

Case 2. Assume d; > 8. If dy = 8, then dy,d3 > 8, thus by Subrules F1.3,
F2.4 and F3.6, % is moved from us and uz to f, respectively, and it follows
that chi(f) > (3—=4)4+1=0. If d = 9, then da,ds > 9, thus by Subrules
F2.3 and F3.6, at least % is moved from each u; to f for ¢ = 1,2, 3, and it
follows that chy(f) > (3 —4) +3- 4 = 0. If d; > 10, then dg,ds > 10, thus by
Subrule F3.6, % is moved from each u; to f for ¢ = 1,2, 3, and it follows that
chi(f)>(B—4)+3-1>0. O

Lemma 2.3. Let f be a false 3-face of D*. Then chy(f) > 0.

Proof. Assume that f = [ujugus]. Since f is false and D is a 1-planar drawing,
assume that w; is false and us and ug are true. Denote d; = deg(u;) for i = 2,3
and assume do < d3.
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Case 1. Assume 3 < dp < 7. Then d3 > ¢(dy) by Observation 2.1. If
dy = 3, then d3 > 23 and by Subrule F3.1, uz sends 1 to f, thus chy(f) =
(3—4)+1=0. If do = 4, then d3 > 14 and by Subrule F3.2, uz sends 1 to
f, thus chi(f) = (3—4)+1 = 0. If dy = 5, then d3 > 10, thus uz sends %
to f by Subrule F3.3 and usy sends i to f by Subrule F1.1, and it follows that
chi(f) > (3—4)+2+21=0. If d, = 6, then d3 > 9, thus uy sends % to f
by Subrule F1.1 and u3 sends % to f by Subrules F2.1 and F3.4, and it follows
that chi(f) > (3 —4) + % + % =0. If do =7, then d3 > 8, thus us sends % to
f by Subrule F1.1 and u3 sends % to f by Subrules F1.1, F2.2 and F3.5, and
it follows that chi(f) > (3—4)+ 1+ 1 =0.

Case 2. Assume dy > 8. If dy = 8, then d3 > 8, thus us sends % to f
by Subrule F1.1 and ug sends % to f by Subrules F1.1, F2.2 and F3.5, and it
follows that chy(f) > (3 —4)+ 1+ 1 =0. If d, = 9, then d3 > 9, thus uy
sends % to f by Subrule F2.2 and ug sends % to f by Subrules F2.2 and F3.5,
and it follows that chi(f) > (3 —4)+ 1 + 1 = 0. If d» > 10, then d3 > 10,
thus by Subrule F3.5, us and ugz send % to f, respectively, and it follows that

chi(f)>3B-4)+i+i=0. O
Lemma 2.4. Let v be a d-vertex of D* where 4 < d < 8. Then chy(v) > 0.

Proof. If d = 4, then the charge of v is not changed by Rule F0, thus chy(v) =
cho(v) =4—4=0. Assume 5 < d < 8. By Rule F0, v does not send any charge
to any incident 4*-face. Thus it is sufficient to consider the incident 3-faces of
v. If d =8, then v sends % to every incident 3-face by Subrules F1.1 and F1.3,
thus chy(v) = (8 —4) — 8- 1 = 0. Assume 5 < d < 7. By Subrules F1.1 and
F1.2, v sends 2_‘@% to every incident false 3-face and does not send any charge

to any true incident 3-face. Since D is a 1-planar drawing, v has at most 2- L%J

incident false 3-faces. It follows that chy(v) > (d—4)— (2~ ng ) . % =0. O

Lemma 2.5. Let u € V(D*) and uvy,uvy € E(D*) such that no edge of
D* incident with u lies between uvy and uvy (in a cyclic order). Denote d; =
deg(v;) fori=1,2 and assume dy > do. If di+1 > ¢(da+1), then vivy € E(Q)
without crossing and uviveu bounds a face of D* .

Proof. Suppose that v1 is not adjacent to vy in G. Add a new edge to G joining
v1 and vg, and draw this edge along a route closed enough to the simple curve
formed by viu and wuws, see the thin curve in Fig. 2. Denote the resulting
graph and drawing by G1 and D1, respectively. Note that uv; and uvs are not
crossed and no edge incident with u lies between wvy and uvy in D*. Then
the new edge v1vs has no crossing in Dy. Thus D; is a 1-planar drawing and
G is a 1-planar graph. Since dy + 1 > ¢(da + 1), the new edge vav; is of type
(dy +1,¢(dz + 1)7) in Gy, thus Gy still is a counterexample to Theorem 1.4.
But G has more one edge than G, which contradicts the maximality of G.
Thus v1v2 € E(G).
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(% U1

u Vs u V2

uis true u is false

Fic. 2

Consider the closed simple curve formed by vyu, uve and vovy, denoted by
C. Suppose some edge e of G crossing v1vs in D. Since no edge incident with
lies between wvy and uvs, e is not adjacent to u. Thus e has an end w located
in the interior of C'. Redrawing v;vs along a route closed enough to the simple
curve formed by viu and uvs. Then we get a 1-planar drawing which has less
crossings than D, a contradiction. Thus vyv2 has no crossing.

Considering stereographic projection, assume that there is some true vertex
outside C'. Suppose some true vertex lies inside C. Note that uwvy, uvs and
v1v9 are not crossed and no edge incident with u lies between uv; and uwvsy. If
remove v1 and vy then the resulting graph is not connected, which contradicts
the 3-connectivity of G. Thus no true vertex lies inside C. It follows that no
false vertex lies inside C since D is 1-planar. Since uvi, uve and vyve are not
crossed, then no edge of G crosses C. Thus C' bounds a face of D*. O

Considering stereographic projection, in this paper, we always assume that
the face bounded by uv;vou is an inner-face.

Take an integer do € [3,7]. Let u € V(G) with deg(u) > ¢(do). Denote by
F(u) the set of incident faces of u. Define

Fi(u,do) = {f € F(u) | fis of type (deg(u),d,®) for every d € [do, 7]}
and
Fy(u,do) = {f € F(u) | f is of type (deg(u),¢(d)",®) for every d € [do,7]}.

Corollary 2.6. Let dy € [3,7] and u € V(G) with deg(u) > ¢(dy). For every
f € Fi(u,dy), there is exactly one f' € Fy(u,dy) neighbouring f; and for every
I’ € Fy(u,dg), there is at most one face f € Fy(u,dy) neighbouring f'.

Proof. Take d € [dp,7]. Assume f = [uvz] € Fi(u,dp) where v and z are d-
and false neighbour of u in D>, respectively. Assume that vz is contained in an
edge vw of G in D. Since d,dy < 7, deg(w) > ¢(d) > 8 and deg(u) > ¢(do) > 8
by Observation 2.1. Thus, by Lemma 2.5, uw € E(D*) and cycle uzwu bounds
a face, denoted by f’. Clearly, f’ € F5(u,dp). Since G is simple, the neighbour
of f sharing vz cannot incident with u, thus it is not a member of Fs(u,dy).
Noting d < 7 < 8 < ¢(d') for every d' € [dy, 7], the neighbour of f sharing
wv is not a member of Fy(u,dy). Thus there is exactly one f' € Fy(u,dp)
neighbouring f. Similarly, for every f’ € Fy, there is at most one face f €
Fi(u,dp) neighbouring f’. O



8 Z. P. LU AND N. SONG

Lemma 2.7. Let dy € [3,7] and u € V(G) with deg(u) =1 > ¢(do). If u has
exactly s incident 47 -faces, then |Fi(u,do)| < |“52|. Further, if s = 0 and
r = 2(mod 4), then |Fi(u,dg)| < § — 1.

Proof. By Corollary 2.6, |Fy(u,dp)| < |Fa(u,dp)|. Noting Fy (u, do)NFs(u,dy) =
0, then r = deg(u) > |Fi(u,do)| + |Fa(u,do)| + s > 2|F1(u,dp)| + s. Thus

Assume that s = 0 and r = 4k 4+ 2. Then |Fy(u,do)| < 2k + 1. Suppose
|F1(u,do)| = 2k+ 1. Then |Fy(u,do)| > |F1(u,dp)| = 2k+ 1. But deg(u) =r =
4k + 2, thus |Fy(u,dg)| = 2k + 1. Then F(u) = Fy(u,dp) U Fa(u,dp). Take a
face f = [uvzx] € Fy(u,dp) where v and z are d-neighbour (d € [dy, 7]) and false
neighbour of u in D*, respectively. Denote by f” the neighbour of f sharing
wv. Then f” & Fy(u,dy) by Corollary 2.6. But F(u) = Fy(u,dy) U Fa(u,dp),
thus f” € Fi(u,dy). It follows that for every f € Fi(u,dp), there is exactly
one " € Fy(u,dy) neighbouring f and sharing a true edge. Thus |Fj(u,dp)]| is
even, which contradicts |Fi(u,dp)| = 2k + 1. Hence |Fi(u,do)| < 2k + 1, i.e.,
IFy(u,do) < & — 1. O

Lemma 2.8. Let u be a 9-vertex. Then chy(u) > 0.

Proof. Let ai, as, as, asy and as denote the number of incident 4™-faces, incident
(9,6, ®)-faces, incident (9,77, ®)-faces, incident (9,97, 97)-faces and the other
true incident 3-faces of u, respectively. First we show that

(1) —3a1 +as —ayg < 3.

Take dy = 6. By Lemma 2.7, ay < |Fy(u,6)] < LQ_%J Then —3a; + as —
ay < 73a1+L9*%J —ay. Ifa; > 1, then —3a;+as—a4 < —3+ L%J —ay <1<3.
Assume a; = 0. Then ay < L%J = 4. If ag < 3, then —3a; + as —ag <
0+ 3—a4 < 3. Next assume a; = 0 and as = 4. Denote by ej,ea,..., €9
the nine edges of D* incident with u (do not consider the order). Note that
one (9,6, ®)-face cannot be a neighbour of another (9,6, ®)-face by sharing a
(9, ®)-edge (otherwise there is an (6, 6)-edge of G, which contradicts the choice
of G). Then there are four (9,®)-edges incident with u since az = 4, and
assume that ej, es, es and ey are of type (9,®). If one of e5, e, . . ., €9 is false,
then u has an incident face f with two false vertices, but deg(f) = 3 since
a1 = 0, which is impossible by the 1-planarity of D. Thus es,e€gq,...,e9 are
true. It follows that u has a true incident 3-face g (note a; = 0). By Corollary
2.6, there are four incident (9,9%, ®)-faces of u, which are neighbours of the
four incident (9,6, ®)-faces of u, respectively. Thus g is a (9,9%,97)-face. So
as =1and —3a; + a2 —ay =044 —1=3. Then (1) holds.

Note that

(2) a1 +az+as+as+as=9.
By (1) +3- (2), we have
4(12 + 3(13 + 2(14 + 3a5 S 30.
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Then by Rule F2, chy(u) =9—4— %ag — %G/g — %a4 — %ag) =5— %(4@2 +3as +
2a4+3a5)257%:0. [l

Lemma 2.9. Let u be an r-vertex where 10 < r < 13. Then chy(u) > 0.

Proof. Let a1, as, as, as and as denote the number of incident 4 -faces, incident
(r, 5, ®)-faces, incident (r, 6, ®)-faces, incident (r, 71, ®)-faces and incident true
3-faces of u, respectively. First we show that

(3) —2a1 + a2 +az < 2r — 16.

Take dy = 5. By Lemma 2.7, as + a3 < |F1(u,5)| < {%J If a; > 1, then
—2a; +az +a3z < —2a; + L = % < % < 2r — 16 since r > 10. Assume
that a; = 0. If r > 11, then —2a; + a2 + a3 <0+ 5 < 2r — 16. Next consider
the case of r = 10. Since 10 = 2(mod 4), as + a3 < § — 1 = 4 by Lemma 2.7.
Thus —2a; + ag + a3 < 4 = 2r — 16. Then (3) holds. Note that

(4) a1 +ag+as+as+as=r.
By (3) + 2 (4), we have

3as + 3asg + 2a4 + 2a5 < 4r — 16.

Then by Rule F3, chq(u) =r—4—%a2—%a3—%a4—%a5 > r—4—%a2—%a3—

(
tas— a5 =7 —4— $(3a2 + 3az + 2a4 +2a5) > r —4— ;(4r —16) =0. O
Lemma 2.10. Let u be an r-vertex with 14 <r < 22. Then chy(u) > 0.

Proof. Let ai, as, as, a4, as and ag denote the number of incident 4T-faces,
incident (r, 4, ®)-faces, incident (r, 5, ®)-faces, incident (r, 6, ®)-faces, incident
(r, 7%, ®)-faces and incident true 3-faces of u, respectively. First we show that

(5) —ai+as+asz+ag <r-—=8.

Take dy = 4. By Lemma 2.7, as + as + a4 < |Fi(u,4)| < L%J Thus
—a1+as+az+ag <29 Ifap > 1, then —ag +as+as+as < 53 <r—38
since r > 14. Next assume that a; = 0. If r > 16, then —a; + as + a3z + a4 <
0+5 <r—8. Ifr =15, then —a; +az+az+ay <0+ Ll—;J =7=1r—8. Next
consider the case of r = 14. Since 14 = 2(mod 4), ag + a3 +as < § —1 =6 by
Lemma 2.7. Thus —aj + a2 + a3 + a4 < 6 =r — 8. Then (5) holds. Note that

(6) a1 +as+as+as+as+ag =r.
By (5) + (6), we have
209 + 2a3 + 2a4 + a5 + ag < 2r — 8.

Then by Rule F3, ch;(u) = 7“—4—@2—%@3—%%—%@5—%@6 >r—4—ay—as—
a4f%a57%a6 = r—4f%(2a2+2a3+2a4+a5+a6) > 7’74—%(27’78) =0. O
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Let f € F(D*). If deg(f) = 3, then chi(f) > 0 by Lemmas 2.2 and 2.3.
If deg(f) > 4, then chy(f) = cho( ) = deg(f) —4 > 0 by Rule FO. Hence,
chi(f) > 0 for every f € F(D*). Let v € V(D*). If 4 < deg(v) < 8, then
chi(v) > 0 by Lemma 2.4. If deg(v) = 9, then chi(v) > 0 by Lemma 2.8.
If 10 < deg(v) < 13, then chy(v) > 0 by Lemma 2.9. If 14 < deg(v) < 22,
then chy(v) > 0 by Lemma 2.10. Hence, ch;i(v) > 0 when 4 < deg(v) < 22.
In summary, when we finish the first-step discharging, we have the following
table.

degree of faces | chq () degree of vertices | chy(+)
3 >0 3 -1
d>4 d—4>0 i<d<22 >0

2.2. Bad 3-vertices

Lemma 2.11. Let f = [vivg---v,] (r > 4) be a face of D*. If deg(vy) > 13,
then r = 4, v3 is false and vo and vy are true.

Proof. Suppose that v; is true for some 3 < j < r — 1. We claim that v,v; €
E(G). Suppose that v, and v; are not adjacent. Then add a new edge to D
joining v1 and v; in the interior of the face f of D*. Since deg(v1) > 13 and
0 > 3, the resulting graph is still a counterexample with n vertices but has more
edges, which contradicts the maximality of G. Thus v1v; € E(G). Since f is a
face, v1v; is located outside f in D*. Further, if v1v; has a crossing, then we
can redraw v, v; inside f, and lose a crossing, but D has the minimum crossings,
a contradiction. Let C' and C’ be the cycles vivg - - - v;v1 and vVj41 - UpULY
of D*, respectively. Since v1v; has two drawings, either v, lies inside C” or v,
inside C. Considering stereographic projection, assume that v, lies inside C’.
Then v, locates outside C', and further, since v;v; has no crossing, f is a face of
D* and adjacent edges do not cross, there is some true vertex located outside
C whether v, is true or not, denoted by u. For 1 < i < j, if some vertex v; is
true, then every path of G from v; to u must meet v; or v; since viv; has no
crossing and f is a face of D*, thus {vq,v;} is a 2-cut of G, which contradicts
3-connectivity of G. Tt follows that every v; (1 < i < j) is false. But no false
vertices are adjacent in D* since D is a 1-planar drawing. Since 3 < j <r—1,
we have j = 3, and thus v, is false. By the property (V) on Page 4, there are
two true neighbours of vy inside C'. Denote by w one of them. Then every
path of G from w to u must meet v or v; since v1v; has no crossing and f is
a face of D*, thus {v1,v,} is a 2-cut of G, which contradicts 3-connectivity of
G, again. Hence every v; is false for 3 < j <r — 1, in particular, vs is false.
Since D is a 1-planar drawing, no false vertices are adjacent. Thus r < 4.
But by the assumption of this lemma, r > 4, thus r = 4. Since vs is false, vy
and vy are true. O

Say an r-face f of D* is bad if f is incident with at least (r — 3) 3-vertices.
A face is good if it is not bad. For bad faces, we have some easy properties as
follows.
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Lemma 2.12. (1) Every 3-face is bad.
(2) A bad face has degree 3, 4, or 6.
(3) A bad 6-face is of type (3,®,3,®,3,®).

Proof. By the definition, (1) holds clearly. Let f be a bad r-face with r > 5.
By the property (IT) on Page 3, any two 3-vertices are not adjacent. Thus f has
at most | 5| incident 3-vertices. It follows that § > 7 — 3 since f is bad, thus
r < 6. Since r > 5, r =5 or 6. If r =5, then f has at most Lg] = 2 incident
3-vertices; on the other hand, f has at least 5 — 3 = 2 incident 3-vertices since
f is bad, thus f has exactly two incident 3-vertices. Similarly, if » = 6, then f
has exactly three incident 3-vertices. In a word, f has exactly (r — 3) incident
3-vertices, and the other three vertices are 237- or false vertices. By Lemma
2.11, f has no 23*-vertex. Hence, if r = 5, f is incident with three false
vertices, which is impossible by 1-planarity of D, and since r < 6, (2) holds;
if r =6, f is incident with three 3-vertices and three false vertices, thus (3)
holds. O

Lemma 2.13. Let f = [vix1vaxavszs] be a bad 6-face where v;’s and x;’s are 3-
and false vertices, respectively. Then Ng(vi) = Ng(ve) = Ng(vs). Moreover,
we can label the three neighbours by uy, us and us, such that

(1) V;Uj41 CTOSSES Viy1U; at Z;,

(2) viu; and u;u;41 are not crossed,

(3) these v;’s and x;’s are the only six vertices of D* inside uyususuy, where
1=1,2,3, ug = uy and vy = vy, see Fig. 3.

Fic. 3

Proof. Let Ng(vi) = {u1, ua, ug} such that x; and x3 are located on vyus and
vyug, respectively. Let Ng(ve) = {w1, wa, ws} such that z; and x5 are located
on vowy and wvews, respectively. Then xy is the crossing of vius and vow;.
Since deg(vz) = 3, deg(w1) > 23. Then by Lemma 2.5, viwy, € E(G) and
has no crossing. Since deg(vy) = 3, wy is coincide to some u,;. By the property
(V) on Page 4, wy # us. Since vyw; has no crossing but vyug has a crossing x3,
viwy # viug. It follows that wy # ug since G is simple. Thus w; = uy and then
viu1 has no crossing. Similarly, us = we and vousg (i.e., vowy) has no crossing.
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Since deg(vy) = 3, deg(u;) > 23 where ¢ = 1,2,3. By Lemma 2.5, ujusg is
an edge of G without crossing and wujziusui, uyviriu; and usverius bound
three faces of D, respectively. By repeating above argument, this lemma is
proved. O

Lemma 2.14. Let [ be a bad 4-face. Then f is of type (3,®,127,®) or
(3,237,127, ®). If f has two incident 3-vertices, then f is of type (3,2371,3, ®).

Proof. Since f is a bad 4-face, there is a 3-vertex u incident with f. Denote
f = [uzvy]. Suppose that x and y are true. Then by the property (II) on Page
3, x and y are 23*-vertices. By Lemma 2.5, zy € F(G) and has no crossing.
Since f is a face of D>, xy is located outside f. Since zy has no crossing and
f is a face, {x,y} is a 2-cut of G, which contradicts the 3-connectivity of G. It
follows that at least one of  and y is false, and say that y is false. Thus v is true
since D is a 1-planar drawing. If deg(v) > 13, then by Lemma 2.5, uv € E(G)
and has no crossing, but considering f is a face, we have {u,v} is a 2-cut of
G, a contradiction again. Thus deg(v) < 12. Then f is of type (3,®,127,®)
when z is false, or (3,237,127, ®) when z is true (by the property (II) on Page
3, deg(z) > 23 when z is true).

Assume that f has two incident 3-vertices u and v. Then f is of type
(3,23%,3,®) or (3,®,3,®). Suppose that f is a (3,®,3,®)-face. Then x and
y are false. Let wu; and vvy cross at x and uwus and vvy cross at y. By the
property (IT) on Page 3, deg(u;) > 23 and deg(v;) > 23 (i = 1,2). By Lemma
2.5, for i = 1,2, v;u and u;v are edges of G without crossing. Since vu; has no
crossing but vvy, has a crossing y, vu; # vvs. It follows that u; # vy since G
is simple. Similarly, us # v1. Further, v; # vy and u; # usg since G is simple;
uy # v1 and ug # vg by the property (V) on Page 4. Hence uy, us, v; and vy are
distinct pairwise. It follows that u has degree at least 4 since v;u and uu; are
edges of G, which contradicts deg(u) = 3. Thus f is a (3,237, 3, ®)-face. [

A 3-vertex is bad, if it is incident with three bad faces. Let v be a bad
3-vertex. Assume that Ng(v) = {u1,u2, us} such that vus, vue and vus round
v in a cyclic order in D. Then deg(u;) > 23 (i = 1,2,3). By Lemma 2.5, the
following lemma holds.

Lemma 2.15. Letv be a bad 3-vertex and u;’s keep the assumption above. As-
sume that v has no false neighbour in D*. Then G has a cycle C1 = ujuguzu
without crossing. Considering stereographic projection, assume that v lies in-
side Cy. Then v is the unique vertex of D* inside Cy, see Fig. 4.

We denote by H; the subgraph of G bounded by C; and fix the drawing
(up to stereographic projection) of H; shown in Fig. 4. In the present paper,
we shall define some H;’s, and when we say a graph H;, we assume that some
drawing of H; is fixed.

Lemma 2.16. Let v be a bad 3-vertex and u;’s keep the assumption above.
Assume that vuy is crossed by xy at w where uyw, zw, vw and yw round w
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Uy

Us %

Fic. 4. H;.

in a cyclic order and vuy has no crossing. Assume x # uy. Then xus € E(G)
without crossing and Twvugx bounds a (3,237,127, ®)-face of D*.

Proof. By a similar argument with Lemma 2.5, we can get that zus € E(G)
without crossing. Then xwvusx is a cycle of D*. Considering stereographic
projection, assume that us is located outside zwwvusx. Suppose there is a
true vertex z of D* lying inside zwvugz. Since deg(v) = 3 and every u; is not
located inside xwwvugx, every path from z to a true vertex outside xwvusx must
meet x or ug. Thus {x,us} is a 2-cut of G. That contradicts the 3-connectivity
of GG. Thus no true vertex inside zwvusz. It follows that no false vertex inside
zwvugx actually. Since zus and vus have no crossing, no edge of G crosses
zwvugz. Thus zwvusx bounds a face of D>, denoted by g. Since v is a bad
3-vertex, g is a bad 4-face. By Lemma 2.14, g is of type (3,237,127, ®). O

As Lemma 2.5, in this paper, we always assume that the face bounded by
zwvusx is an inner-face.

Lemma 2.17. Let v be a bad 3-vertexr and w;’s keep the assumption above.
Assume that vus and vus are not crossed but vuy is crossed by xy at w where
uiw, zw, vw and yw round w in a cyclic order. Then x # us or y # usg. Next
assume T # us.

Fic. 7. Hy.

(1) If y = uz and deg(z) = 3, then wiz,xus € E(G) without crossing, G
has a cycle Co = ujuguzuy without crossing and x is also a bad 3-vertex.
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Considering stereographic projection, assume that v lies inside Cs, then
there are exactly three vertices v, w and x of D* inside Cy, see Fig. 5.

(2) If y = us and deg(x) > 4, then G has a cycle C3 = ujrugusuy without
crossing and 4 < deg(x) < 12. Considering stereographic projection, as-
sume that v lies inside Cs, then there are exactly two vertices v and w of
D* inside C3, see Fig. 6.

(3) If y # wus, then G has a cycle Cy = uizusugyuy without crossing, 5 <
deg(z) < 12 and 5 < deg(y) < 12. Considering stereographic projection,
assume that v lies inside Cy, then there are exactly two vertices v and w
of D* inside Cy, see Fig. 7.

Proof. Note deg(u;) > 23. Then by Lemmas 2.5, yui, ujz and ususz are edges
of G without crossing and ywu,y, rwuiz and vuzusv bound faces, respectively.
Note usug has no crossing but xy has a crossing w. Then xy # usuz. Since
G is simple, then © # wug or y # wuz. Next assume x # uy. By Lemma
2.16, zus € E(G) without crossing, zwvusz bounds a face g and g is of type
(3,231,127, ®). Thus deg(x) < 12.

Assume y = uz. By Lemmas 2.5, vwugzv bounds a face of D*. If deg(z) = 3,
then wjus is an edge of G without crossing and zujusz bounds a face by
Lemmas 2.5, and since [zujug] is bad by Lemma 2.12, (1) holds; if deg(z) > 4,
since deg(z) < 12, then (2) holds.

Assume y # us. By Lemma 2.16, yus is an edge of G without crossing
and ywovuzy bounds a (3,23%,127,®)-face of D*, thus deg(y) < 12. Since
deg(xz) < 12 and deg(y) < 12 but deg(u;) > 23, z,y & {u1,u2,us}. Thus
ujzugugyuy is a cycle of D* (as Fig. 7). If deg(z) < 4 or deg(y) < 4, then xy
is a (47,127 )-edge of G, which contradicts the property (II) on Page 3. Thus
deg(x) > 5 and deg(y) > 5. Hence (3) holds. O

For i = 2,3,4, denote by H; the subgraph of G bounded by C; and fix the
drawing (up to stereographic projection) of H; shown in Fig. 5, Fig. 6 and
Fig. 7, respectively.

Lemma 2.18. Let v be a bad 3-vertex and u;’s keep the assumption above.
Assume that fori = 1,2, vu; is crossed by z;y; at w; such that u;w;, T;w;, Vw;
and y;w; round w; in a cyclic order and vug has no crossing. Denote by f the
face incident with x1, w1, v, we and yo. Then deg(f) =4 or 6.

(1) Assume deg(f) = 6. Then y1, x2 and us are coincide, Tiuz, Youi, U1x1,
youo € E(G) and z1 and yo are bad 3-vertices. Further xius and yauq
intersect at a crossing ws, ui1xy and yYysus are not crossed, and G has a cycle
Cs = wjususuy without crossing. Considering stereographic projection,
assume that v lies inside Cs. Then there are exactly six vertices 1, wy, v,
wa, Y2 and ws of D* inside C5, see Fig. 8.
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Fic. 8. Hs.
(2) Assume deg(f) =4. Then x1 = ya, and either xo # ug or y1 # us since G
is simple. Assume that xo # us. Then yiuy, ui1T1, T1uz, Usxe and Taus
are edges of G without crossing.

Fic. 10. Hj.

(2a) If y1 = us, then G has a cycle Cg = uzuixiuswous without crossing,
5 < deg(z1) < 12 and 5 < deg(zz) < 12. Considering stereographic
projection, assume that v lies inside Cg, then there are exactly three
vertices v, wy and wy of D* inside Cg, see Fig. 9.

(2b) Ifyy # us, then G has a cycle C7 = uix1ugxausyiuy without crossing,
5 < deg(z;) < 12 and 5 < deg(y;) < 12 for i = 1,2. Considering
stereographic projection, assume that v lies inside Cy, then there are
exactly three vertices v, wy and wy of D* inside the cycle Cy, see
Fig. 10.

Proof. By the assumption of this lemma, deg(f) > 4. Since v is a bad 3-vertex,
we have that f is a bad face, thus by Lemma 2.12, f is a 4- or 6-face. Since
every 3-face is bad by Lemma 2.12, if f is a 6-face, then (1) holds by Lemma
2.13.

Next assume deg(f) = 4. Then z; = y,. Since deg(v) = 3, deg(u;) >
23 by the property (II) on Page 3. By Lemma 2.5, yjui, uiz1, xjus and
usTo are edges of G without crossing and yywiuqyy, vywiT1u1, T1Wouex and
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uswoxaus bound faces, respectively. Since G is simple, either x5 # ug or
Y1 # uz. Assume xo # uz. By Lemma 2.16, uzzy € E(G) without crossing and
vwaxauszv bounds a face g;. Since v is a bad 3-vertex, f and ¢, are bad. By
Lemma 2.14, f is of type (3,®,127,®) and g is of type (3,23%,127,®), Thus
deg(x1) < 12 and deg(x2) < 12. It follows that deg(zz) > 5 and deg(z1) > 5;
otherwise z1x2 is a (47,127 )-edge, which contradicts the property (II) on Page
3. Thus 5 < deg(z1) < 12 and 5 < deg(zz) < 12. Since deg(u;) > 23,
{1‘1,&32} n {U1, UQ,Ug} = @

Assume y; = wuz. Then yjuiziusxoy; is a cycle of D*. By Lemma 2.5,
vwiy1v bounds a face of DX, then (2a) holds. Assume y; # us. By Lemma
2.16, yyuz € E(G) without crossing and vw;yjus bounds a (3,237,127, ®)-
face. Thus deg(y;) < 12. Since deg(z1) < 12 and deg(y1) < 12, deg(y1) > 5
by the property (II) on Page 3. Since deg(u;) > 23, y1 & {u1,us,us}. Since G
is simple, 1, 2 and y; are pairwise distinct. Thus uiz1usxouzy1uy is a cycle

of G, and (2b) holds. O

For ¢« = 5,6,7, denote by H; the subgraph of G bounded by C; and fix the
drawing (up to stereographic projection) of H; shown in Fig. 8, Fig. 9 and
Fig. 10, respectively.

Lemma 2.19. Let v be a bad 3-vertex and u;’s keep the assumption above.
Assume that for i = 1,2,3, vu; is crossed by x;y; at w; such that w;w;, x;w;,
vw; and y;w; round w; i a cyclic order. For i =1,2,3, denote by f; the face
incident with w;, v and w41 (wy = wy), then deg(f;) =4, ; = yir1 (ya = 1)
and 5 < deg(x;) < 12.

Moreover, G has a cycle Cg = uyxiusxausrsuy without crossing. Consider-
ing stereographic projection, assume that v lies inside Cg, then there are exactly
four vertices wy, we, w3 and v of D* inside Cg, see Fig. 11.

23 (Y1) 1 (Y2)

2 (Ys)

Fic. 11. Hs.

Proof. Since v is a bad 3-vertex, every f; is bad. Then deg(f;) = 3,4,6 by
Lemma 2.12. By the assumption of this lemma, deg(f;) > 4, but by Lemma
2.13, deg(f;) # 6. Thus deg(f;) = 4 for i = 1,2,3. Then z1 = ys, 2 = y3 and
x3 =y1. For ¢ = 1,2, 3, since every f; is a bad 4-face, deg(x;) < 12 by Lemma
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2.14, and then deg(z;) > 5 by the property (II) on Page 3. Since deg(u;) >
23, by Lemma 2.5, u;z;,z;u;+1 € F(G) without crossing and w;w;z;u; and
r;wiu+12; bound faces of D where uy = uj, respectively. Thus this lemma
holds. O

Denote by Hg the subgraph of G bounded by Cg and fix the drawing (up to
stereographic projection) of Hg shown in Fig. 11.

For ¢ € [1,8], denote by H; the set of subgraphs X of G (under D) such
that X is isomorphic to H; and containing a bad 3-vertex. Then every X € H;
keeps the drawing (up to stereographic projection) and the property (Lemmas
2.15, 2.17, 2.18 and 2.19, respectively) of H; under D.

By Lemmas 2.15, 2.17, 2.18 and 2.19, we have the following corollary.

Corollary 2.20. For every bad 3-vertex v, there is a unique X € H; for some
i € [1,8] containing v.

For every 23" -vertex u and i € [1, 8], denote H;(u) = {X € H; | u € V(X)}.
Then for X € H;(u), u is isomorphic to some u; (j = 1,2,3) of H;. For more
convenience, denote H; j(u) = {X € H; | v € V(X) and u is isomorphic to u;
of H;} where i € {3,6} and j € [1, 3].

Considering stereographic projection, next when we say that X € H;(u), we
always assume that X keeps the drawing of H; and every bad 3-vertices of X
is located inside the cycle of X isomorphic to C;.

2.3. Spanning vertices and enumeration

For a face f of D* and a vertex v of G, if v is incident with f or v is incident
with an edge e of G such that e contains an incident edge of f in D*, then call
v a spanning vertex of f.

Take a 23%-vertex u; and f; € F(uy). Considering stereographic projection,
assume that f; is an inner-face. Assume that deg(fi1) = 3 and no spanning
vertex of fi is a bad 3-vertex. If f; is false and denote f; = [ujv;w] where w
is a crossing formed by wjvy and vvs, then ujvs € E(G) without crossing and
cycle uywvsuy bounds a face of D* by Lemma 2.5, see Fig. 12. Denote by Hy
the subgraph (keep the drawing), and denote by Cy the cycle ujvivzuq. If fi is
true and denote f; = [ujvivs] where vy and v are true, then we get a triangle
[uv1v2]. For convenience, we denote by Hig the triangle [ujv1vs], and denote
by Cio the cycle ujvivauy. Note that in Hg and Hig, every v; is not a bad
3-vertex.

For i € {9,10}, denote by H; the set of subgraphs X of G (under D) which
is isomorphic to H; and keep the drawing (up to stereographic projection) and
the property of H;, i.e., no vertex is located inside (or outside, considering
stereographic projection) the cycle of X isomorphic to C; and no vertex of X is
a bad 3-vertex. For every 23%-vertex u, denote H;(u) = {X € H; | u € V(X)
and w is isomorphic to u; in H;} where i € {9,10}.
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Fic. 12. Hy

Considering stereographic projection, next when we say that X € H;(u)
(i € {9,10}), we always assume that X keeps the drawing of H; and no vertex
is located inside the cycle of X isomorphic to C;.

For a subgraph X of G, if restrict the drawing D in X, then we get a drawing
of X, and we denote it by D|x.

Lemma 2.21. Let u be a 23" -verter, X € H;(u) and Y € Hy(u) where
1 <4, <10 and X £ Y. If fx and fy are inner-faces incident with u in
(D|x)* and (Dly)*, respectively, then we have fx # fy in D*.

Proof. Since w is isomorphic to u; of Hg or Hyg by the definition of Hg(u) and
Hio(u), if 4, € {9,10}, then the conclusion holds clearly since X # Y and
fx and fy are incident with u. Next assume that ¢ € [1,8]. By observing
the results of Lemmas 2.15, 2.17, 2.18 and 2.19, we can find that X contains
a bad 3-vertex v which is a spanning vertex of fx. Suppose fx = fy in D*.
Then v is also a spanning bad 3-vertex of fy. But Hg and Hig do not contain
bad 3-vertex, thus i’ € [1,8]. Note that v is also a spanning bad 3-vertex of
fy. By observing the results of Lemmas 2.15, 2.17, 2.18 and 2.19, we have
v € V(Y). Then v is a bad 3-vertex of X and Y in common. But by Corollary
2.20, X =Y, a contradiction. (I

For a 23%-vertex u, denote h;(u) = |H;(u)| for ¢ € [1,10], and denote
hij(u) = |H; ;(uw)| for i € {3,6} and j € [1,3]. By Lemma 2.21, X € H,(u)
and Y € H;/(u) have no common inner-face incident with «. Then when we
enumerate the number of inner-faces incident with u, which are contained in
members of H;(u) for i € [1,10], we get an estimation of the degree of u as the
following lemma.

Lemma 2.22. Let u be a 237 -vertex. Then

deg(u) > 2hy (U) + 3h2(u) + 2h371(u) + 2h3,2(u) + 3h373(u) + 2h4(u)
+ 4hs (U) + 2h6,1(u) + 2h672(u) + 3h6,3 (u) + 2h7(u) + 2h8(u)
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2.4. Second-step

Recall that an r-face is bad if it is incident with at least (r — 3) 3-vertices,
and a 3-vertex is bad if every its incident face is bad; if a face or a 3-vertex is
not bad, then say it is good. Next we start the second-step discharging.

The discharging rules of the second-step:

Rule S1: Assume that v is a 3-vertex and f is a good face incident with v.
Then we move 1 from f to v.
Rule S2: Assume that v is a 3-vertex and f is a bad 6-face incident with v.
Then we move % from f to v.

Nezxt (in Rules S3-S10) we assume that v is a bad 3-vertex. Then there is a
unique X € H; containing v for some i € [1,8] and we identify X and H;.

Rule S3: If i = 1, then we move % from every u; to v where i = 1,2, 3.

Rule S4: If i = 2, then move % from u; to z and from wus to v, respectively,
and move % from wuy to v and to x, respectively, see Fig. 13.

Rule S5: If ¢ = 3, then move % from ug to v, move g from us to v, and move
1—14 from wusy to uq, see Fig. 14.

Fic. 13. Rule S4. F1G. 14. Rule S5.

Rule S6: If i = 4, then move % from us to v and from ug to v, respectively,

and move % from us to u; and from ws to wy, respectively, see Fig. 15.

F1Gc. 15. Rule S6.

Rule S7: If i = 5, then move % from wy to x1, from wug to yo and from ug to
v, respectively.
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Rule S8: If i = 6, then move i from uq to v, and move % from us to v, see
Fig. 16.

Rule S9: If i = 7, then move 1 from w3 to v, and move % from ugz to u; and
to ug, respectively, see Fig. 17.

F1c. 16. Rule S8. F1G. 17. Rule S9.

Rule S10: If i = 8, assume deg(z1) < deg(zs) < deg(z3), then move 1 from
u1 to v and from us to v, respectively, and move % from w3 to v, see Fig. 18.

Uy

T3 T,

F1c. 18. Rule S10 (deg(z1) < deg(xz2) < deg(xs)).
Lemma 2.23. If f € F(D*), then cha(f) > 0.

Proof. Denote d = deg(f). Assume d = 3. Then ch;(f) > 0 by Lemmas 2.2
and 2.3. Since d = 3, f is bad by the definition of bad faces. Thus Rules S1
and S2 do not change the charge of f. Since Rules S3-S10 do not change the
charge of any face, cha(f) = chi(f) > 0.

Assume d > 4. In the first-step discharging, the charge of every 4*-face is not
changed, thus chy(f) = d — 4. Suppose that f is good. Then there are at most
(d—4) 3-vertices incident with f. Thus by Rule S1, cha(f) > chi(f)—(d—4) >
0. Next assume that f is bad. If d=6, then there are three 3-vertices incident
with f by Lemma 2.12. By Rule S2, chy(f) = chi(f) =3 -2 =6—-4—-2=0.
If d # 6, then the charge of f is not changed in the second-step discharging.
Thus chy(f) = chi(f) =d—4>0. O
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Lemma 2.24. If v € V(D*) and 3 < deg(v) < 22, then chy(v) > 0.

Proof. If 4 < deg(v) < 22, then by Lemmas 2.4, 2.8, 2.9 and 2.10, chq(v) > 0.
Since no charge of v is lost in the second-step discharging, cha(v) = chy(v) > 0.
If deg(v) = 3, then by the rules of the first-step, ch;(v) =3 -4 =—1. Ifvisa
good 3-vertex, then there is at least one good face f incident with v. Then by
Rule S1, f sends 1 to v, thus cha(v) > chi(v) +1=-14+1=0.

Next assume that v is a bad 3-vertex. Then there is a unique X € H;
containing v for some ¢ € [1, 8] and we identify X and H;.

If i = 1, then by Rule S3, cha(v) = chi(v) +3-3 = —1+1 = 0. If
i = 2, then by Rule S4, cha(v) = chi(v) + 5 +2 = =1+ 1 = 0. (Note
that x is a bad 3-vertex too. Symmetrically, we have cha(z) > 0 too.) If
i = 3, then by Rule S5, cha(v) = chi(v) + 2 4+ & = -1+1=0. If i = 4,
then by Rule S6, cha(v) = chy(v) +2- 3 = =1+ 1 =0. If i =5, then by
Rule S2, f sends % to v, and by Rule S7, uz sends % to v, thus cha(v) =
chi(v)+ 4+ + 2 =-141=0. (Note that both z; and y, are bad 3-vertices
too. And symmetrically, cho(z1) > 0 and cha(yz) > 0 too.) If i = 6, then
by Rule S8, cho(v) = chi(v) + 1+ +2 = -1+1=10. If i = 7, then by
Rule S9, cha(v) = chi(v) +1 = =14+ 1 = 0. If i« = 8, then by Rule S10,
cho(v) = chi(v) +2- 2 +3=-1+1=0. 0

Consider H; where 1 < i < 10. Define the net-losing-charge of u; in Hj,
denoted by A;(u;), as the value of losing-charge minus getting-charge of w;
(1<j<3whenl<i<8;j=1wheni=9,10) restricted in one H; after the
two discharging steps. For example, in Hj, see Fig. 6, assume that deg(z) = 4,
then u; sends 3 to the face [uywus] by Subrule F3.5, sends 1 to the face [ujzw]
by Subrule F3.2 and gets 1—14 from uy by Rule S5, thus Az (uq) = %Jrlf ﬁ = 1—70.

Lemma 2.25. For subgraphs (keep the drawings under D) Hy, Hy, ..., Hyg
where v is a bad 3-verter, we have the following results.

(1) Ay(uy) =3 forj=1,2,3.
(2) Ag(uj) =% forj=1,2,3.
(3) As(y;) < ;70 for 5 =1,2 and Asz(u3) = %
4) Ay(uy) < £ forj=1,2,3.
EB; Aiguj; = %0 forj=1,2.3.
(6) Agluy) < % for 3 =1,2 and Ag¢(us) = %
(7) Az(uy) < 3 forj=1,2,3.
(8) A8(uj) < % fO’I“j =1,2,3.
(9) Ag(uy) < %
(10) Alo(ul) = %

Proof. Since deg(v) = 3, every u; (j = 1,2,3) is a 23*-vertex by Observation
2.1.
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(1) Consider Hy, see Fig. 4. By Subrule F3.6, u; sends % to faces [u;u;j41v]
and [uju;_1v] for j =1,2,3 (ug = uy and ug = ug), respectively. By Rule S3,
uj sends & to v for j =1,2,3. Thus Ay(u;) =23+ % =14

(2) Consider H, see Fig. 5. By Subrule F3.5, u; sends 1 to the face [ujwus).
By Subrule F3.1, u; sends 1 to [ujwz]. By Subrule F3.6, u; sends 3 to the face
[urzus]. By Rule S4, u; sends % to . Thus Ag(u;) = % + 1+ % + % = % By
Subrule F3.6, uy sends % to faces [ugzui] and [usvus], respectively. Since v is
a bad 3-vertex, [xwvus] is a bad 4-face, thus us neither sends any charge to it,
nor gets any charge from it. By Rule S4, us sends % to v and to x, respectively.
Thus Ag(ug) =2 5 +2- 2 = Z. Symmetrically, As(ug) = I.

(3) Cousider Hs, see Fig. 6. By Subrule F3.5, u; sends % to the face [ujwug).
By Subrules F3.2-F3.5, u; sends at most 1 to [ujwz]. By Rule S5, u; gets
from uy. Note that u; does not send any charge to v or z. Thus Az(u;) <
% +1-— 1—14 = 1—70. By Subrule F3.6, us sends % to the face [usvus]. Since v is
bad, [ugvwz] is a bad 4-face, thus us neither sends any charge to it, nor gets
any charge from it. By Rule S5, uy sends g to v, and sends ﬁ to v;. Thus
As(uz) = % + g + ﬁ = 2. By Subrule F3.5, ug sends % to the face [uzwuq].
By Subrule F3.1, uz sends 1 to [ugwv]. By Subrule F3.6, uz sends % to the face
[usvus]. By Rule S5, uz sends % to v. Thus Az(uz) = % +1+ % + % = 1—75

(4) Consider Hy, see Fig. 7. By Lemma 2.17, 5 < deg(x),deg(y) < 12.
Then by Subrules F3.3-F3.5, u; sends at most 2 to faces [ujwy] and [ujwaz],
respectively. By Rule S6, u; gets % from wug and wug, respectively. Thus
Ay(ug) < 2 % -2 ~% = %. By Subrule F3.6, u; (j = 2,3) sends é to
the face [usvus]. By Rule S6, u; sends % to uy, and sends % to v. Thus
M) < 5+5+3 =75

(5) Consider Hs, see Fig. 8. By Subrule F3.5, u; sends 3 to faces [ujw;us]
and [ujwsus], respectively. By Subrule F3.1, u; sends 1 to faces [ujzjw;]
and [ujxjws), respectively. By Rule S7, uy sends % to 1. Thus As(uy) =
2.3 +2-1+ 1 =10 Symmetrically, As(uz) = As(uz) = 2.

(6) Consider Hg, see Fig. 9. By (2a) of Lemma 2.18, 5 < deg(z1) < 12. Then
by Subrules F3.3-F3.5, u; sends at most % to the face [ujwyz1]. By Subrule
F3.5, u; sends % to the face [ujwiug]. By Rule S8, uy sends i to v. Thus
Ag(ur) < 34+ 14 1 =2 By (2a) of Lemma 2.18, 5 < deg(z), deg(z2) < 12.
Then by Subrules F3.3-F3.5, uy sends at most % to faces [ugwex1] and [ugwazs],
respectively. Thus Ag(ug) < 2 - % = % By Subrule F3.5, uz sends % to the
face [ujwiuz]. By Subrule F3.1, uz sends 1 to the face [uzw;v]. By Rule S8,
u; sends % to v. Thus Ag(us) = % +1+ % = %.

(7) Consider Hr, see Fig. 10. By (2b) of Lemma 2.18, 5 < deg(z1), deg(y1) <
12. Then by Subrules F3.3-F3.5, u; sends at most % to faces [ujwiy1] and
[ugwy 1], respectively. By Rule S9, u; gets % from ug. Thus Az (up) < 2%—% =
3. Similarly, A7(uz) < 3. Since v is a bad 3-vertex, [ugyiwiv] and [uzzow,v]
are bad 4-faces. Then ug neither sends any charge to them, nor gets any charge



ON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH 23

from them. By Rule S9, u3 sends % to uy and wug, respectively, and sends 1 to
v. Thus A7(ug) <2-3+1=3.

(8) Consider Hg, see Fig. 11. Assume that deg(z1) < deg(zz) < deg(zs).
If deg(z1) > 8, then deg(zz) > deg(xzz) > 8; otherwise, deg(z1) < 7, then by
Observation 2.1, we also have deg(xs) > deg(z2) > 8. Further, by Lemma
2.19, 5 < deg(x1) < 12 and 8 < deg(z2), deg(z3) < 12. Since deg(zy) > 5,
by Subrules F3.3-F3.5, we have that u; sends at most % to the face [ujwyxq]
and us sends at most % to the face [uswaxq]. Since deg(x2) > 8, by Subrule
F3.5, we have that us sends at most % to the face [ugwaws] and ug sends at
most  to the face [uswszs]. Similarly, since deg(x3) > 8, by Subrule F3.5, we
have that us sends at most % to the face [uswsxs] and u; sends at most % to
the face [ujwixs]. By Rule S10, u; and wus send % to v, respectively, and us
sends % to v. Thus Ag(u1) < %—l—%—I—i = %, Ag(ug) < %—!—%—!—% = % and
As(ug) < 14+14+1—3

(9) Consider Hy, see Fig 12. Assume that deg(v;) < deg(vs). If deg(vy) > 8,
then deg(vs) > 8; otherwise deg(vy) < 7, then by Observation 2.1, we also have
deg(vs) > 8. By Subrules F3.1-F3.5, u; sends at most 1 to the face [ujwwvi].
By Subrule F3.5, u; sends at most 3 to the face [ujwuvs] since deg(vs) > 8.
Since none of vy, v and v3 is a bad 3-vertex, we have that u; does not send
any charge to v1, vy or vs. Thus A;(up) < % +1= %

(10) Consider Hyg. By Subrule F3.6, u1 sends § to f, thus Ajg(u1) O

_1
5
Define the total net-losing-charge of a 23T -vertex u as the value of losing-

charge minus getting-charge of u. Recall the definition of spanning vertices. A

spanning vertex of a face f of D* is a vertex of GG, which is incident with f,

or is incident with an edge e of GG such that e contains an incident edge of f in

D*. We have the following lemma.

Lemma 2.26. Let u be a 237 -vertex. Then

4 7 10 10 15 7
Alu) < Zhi(u) + She(u) + —hs(u) + —hs2(u) + —hss(u) + ~ha(u)
3 3 7 7 7 6
10 3 3 9 4 3
+ §h5(u) + Ehﬁyl(u) + §h672(u) + Zhﬁyg(u) + §h7(u) + ihg(u)
3 1

Proof. Let f be an incident face of u. Assume that f has a spanning bad 3-
vertex v’. Then by Lemmas 2.15, 2.17, 2.18 and 2.19, there is a unique X € H;
for ¢ € [1,8], which contains v’ and f under D. Since u is incident with f,
X contains u. Thus, since deg(u) > 23, uv’ € E(G) by Lemmas 2.15, 2.17,
2.18 and 2.19, and then X € H;(u). Thus the part of total net-losing-charge
of u formed by X can be checked by (1)-(8) of Lemma 2.25. Assume that no
spanning vertex of f is a bad 3-vertex. If deg(f) > 4, then u does not lose
charge to f in the two steps of discharging, thus we do not consider this case.
If deg(f) = 3, then there is a unique Y € H;y (u) for ¢/ € {9,10} containing f
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under D (note for Y € H; (u), w is isomorphic to u; of H;/). Thus the part
of total net-losing-charge of u formed by Y can be checked by (9) and (10) of
Lemma 2.25. Hence, by Lemma 2.25, this lemma holds. O

Lemma 2.27. Let u be a 23" -vertex. Then cha(u) > 0.
Proof. Denote d(u) = deg(u). By inequality (8) (Lemma 2.26), we have

A(U) S % [th(u) + 3h2(u) + 2h371(u) + 2h372(u) + 3h373(u) + 2h4(u)
+ 4h5 (u) + 2h671(u) + 2h6,2(u) + 3h673(u) + 2h7(u) + 2h8 (U)

Further, by inequality (7) (Lemma 2.22) we have A(u) < 2d(u). Thus cha(u) =
(d(u) —4) — A(u) > (d(u) —4) — 3d(u) = Ld(u) — 4. When d(u) > 24, we have
cha(u) > 0.

Next assume that d(u) = 23. By inequality (8), we have

Au) < (% — g) - 4hs(u) + g[th(u) + 3ha(u) + 2hs,1(u) + 2h3 2 (u)

+ 3h3’3 (’LL) + 2h4(u) + 4hs (u) + 2h6,1(u) + 2h6’2 (’LL) + 3h6,3(u)
+ 2h7(u) + 2hg(u) + 2h9(u) + hlo(u)]

Further, by inequality (7) (Lemma 2.22), we have A(u) < 2h
4hs(u) < d(u) = 23, we have hs(u) < 5. Thus chy(u) = (d
d(u) —4 — 2hs(u) — §d(u) = 3d(u) — Zhs(u) —4 > 2-(23—5) -4 =0.

Thus this lemma holds. O

By Lemmas 2.23, 2.24 and 2.27, for every z € V(D*)U F(D*), cha(z) > 0.

But
Z cha(z) = Z cho(z) = -8 <0,
2EV(DX)UF(DX) 2€V(DX)UF(DX)
a contradiction. Therefore, we prove Theorem 1.4.
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