ON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH

Zai Ping Lu and Ning Song

Abstract

A graph is called 1-planar if it can be drawn in the Euclidean plane \mathbb{R}^{2} such that each edge is crossed by at most one other edge. The weight of an edge is the sum of degrees of two ends. It is known that every planar graph of minimum degree $\delta \geq 3$ has an edge with weight at most 13. In the present paper, we show the existence of edges with weight at most 25 in 3-connected 1-planar graphs.

1. Introduction

All graphs considered in this paper are finite, simple, undirected and connected. The notations and terminology used but undefined here can be found in the book of Bondy and Murty [1].

Let G be a graph, and denote the vertex set and edge set of G by $V(G)$ and $E(G)$, respectively. We denote the degree of a vertex $v \in V(G)$ by $\operatorname{deg}(v)$. For a positive integer k, we say that a vertex $v \in V(G)$ is a k-vertex, k^{+}-vertex and k^{-}-vertex if $\operatorname{deg}(v)=k, \operatorname{deg}(v) \geq k$ and $\operatorname{deg}(v) \leq k$, respectively. For positive integers a and b, if $x y \in E(G)$ with $\operatorname{deg}(x)=a$ and $\operatorname{deg}(y)=b$, then we say that $x y$ is of type (a, b) or $x y$ is an (a, b)-edge, and say x is an a-neighbour of y. For a tuple denoted type of an edge, we sometimes use a^{+}and a^{-}for some entry in the tuple if the corresponding vertex is of degree $\geq a$ and $\leq a$, respectively.

For an edge $x y \in E(G)$, its weight is the sum of degrees of two ends, denoted by $w(x y)$. If $\min _{e \in E(G)} w(e)=w$, then we say that G has the minimum weight w, and say the edges with weight w are light edges of G. (In some earlier papers, "light edge" was defined as an edge with weight at most 13. But in [8], the meaning of "light edge" was changed, and in the present paper, we use the definition in [8].)

The interesting for light edges stemmed from the famous Kotzig's Theorem [10]. It states that the minimum weight of every 3-dimension polyhedral graph (i.e., 3 -connected planar graph) is at most 13 , and if the graph has no 3 -vertices

[^0]then the minimum weight of it is at most 11. Furthermore these bounds are sharp. Afterward, this theorem is developed by many graph-theorists. According to Grünbaum (see [7]), Erdős conjectured that Kotzig's conclusion holds for every planar graph of minimum degree at least 3 , which was proved by Barnette (but never published, see [7]) and by Borodin [3] in 1989 independently. Readers may consult [9] for more results on this topic.

This paper focuses on light edges of 1-planar graphs. A graph G is called 1-planar if it can be drawn in the plane such that each edge is crossed by at most one other edge, while the drawing is called a 1-planar drawing of G and a crossing point is called by a crossing for short. Note that we assume that the interiors of any two edges are not tangent and any three distinct edges do not intersect at a crossing in common throughout this paper.

The conception of 1-planar graphs was introduced by Ringle [2] in the solution of simultaneous vertex-face coloring problem. Since then, 1-planar graphs have been studied extensively and lots of interesting results have appeared on acyclic coloring [4], decomposition [5], light subgraphs [11] and edge coloring [12, 13]. Especially, Fabrici and Madaras [6] investigated the local structure of 1-planar graph and they showed the following result which implies that each light edge in a 3 -connected 1-planar graph has weight at most 40.

Theorem 1.1 ([6]). Every 3-connected 1-planar graph G contains an edge with both ends of degree at most 20 in G. The bound 20 is the best possible.

Fig. 1
In [6], the authors gave an example to show the sharpness of the bound 20 as follows: for each triangle face f of the icosahedron, insert three new vertices in the interior of f, add 9 edges joining the new vertices and the vertices of f, see Fig. 1. Then the resulting graph has only edges of type $(3,20)$ and $(20,20)$. This example also indicates that 40 might not be the best bound of the minimum weight of 3-connected 1-planar graphs.

In 2012, Hudák and Sugerek [8] proved the following theorem.
Theorem 1.2 ([8]). Every 1-planar graph G of minimum degree $\delta \geq 4$ contains an edge of type $\left(4,13^{-}\right),\left(5,9^{-}\right),\left(6,8^{-}\right)$or $(7,7)$. In particular, the minimum weight of G is at most 17 , and it is at most 14 when $\delta>4$.

Based on the example mentioned above, the authors of [8] proposed the following conjecture.
Conjecture 1.3 ([8]). Every 1-planar graph of minimum degree $\delta \geq 3$ contains an edge of type $\left(3,20^{-}\right),\left(4,13^{-}\right),\left(5,9^{-}\right),\left(6,8^{-}\right)$or $(7,7)$.

Motivated by this conjecture, we prove the following theorem in the present paper.

Theorem 1.4. Every 3-connected 1-planar graph G contains an edge of type $\left(3,22^{-}\right),\left(4,13^{-}\right),\left(5,9^{-}\right),\left(6,8^{-}\right)$or $(7,7)$. In particular, the minimum weight of G is at most 25 .

2. Proof of Theorem 1.4

Suppose Theorem 1.4 does not hold. Let G be a counterexample to Theorem 1.4 with n vertices, such that G has the largest number of edges among all counterexamples with n vertices.

Define a function ϕ on $\{3,4,5, \ldots\}$ such that $\phi(\cdot)$ satisfies the following table.

d	3	4	5	6	≥ 7
$\phi(d)$	23	14	10	9	8

Noting G is a counterexample and the minimum degree of G is at least 3 since G is 3-connected, the following observation holds clearly.

Observation 2.1. For every edge $u v \in E(G)$, if $\operatorname{deg}(u)=d \leq 7$, then $\operatorname{deg}(v) \geq$ $\phi(d)$, i.e., every edge of G is of type $\left(3,23^{+}\right),\left(4,14^{+}\right),\left(5,10^{+}\right),\left(6,9^{+}\right)$or $\left(7^{+}, 8^{+}\right)$.

Note that a 1-planar graph may have different 1-planar drawings. We use $\mathcal{D}(G)$ to denote the set of 1-planar drawings of G with the least number of crossings. Take $D \in \mathcal{D}(G)$. Then it is easy to see that no edge is self-crossing and adjacent edges (i.e., edges with a common end) do not cross in D. By the above assumptions, G and D has the following properties.
(I) G is a 3 -connected 1-planar n-order graph of the minimum degree $\delta \geq 3$;
(II) every edge of G is of type $\left(3,23^{+}\right),\left(4,14^{+}\right),\left(5,10^{+}\right),\left(6,9^{+}\right)$or $\left(7^{+}, 8^{+}\right)$;
(III) for all graphs satisfying above (I) and (II), the number of edges of G is maximum;
(IV) D is a 1-planar drawing of G and has as few crossings as possible;
(V) no edge is self-crossing and adjacent edges do not cross in D.

For $D \in \mathcal{D}(G)$, we can get a plane graph, denoted by D^{\times}and called associated plane graph of D, by replacing every crossing by a new 4 -vertex. In D^{\times}, a vertex is called false if it corresponds to a crossing of D, and an edge or face is called false if it is incident with some false vertex. A vertex, edge or face is called true if it is not false.

Denote by $F\left(D^{\times}\right)$the set of faces of D^{\times}. Since G is 3-connected, it is easy to see D^{\times}is at least 2-connected. Then for every $f \in F\left(D^{\times}\right)$, the boundary of
f is a cycle, denoted by ∂f. The length of ∂f is called the degree of f, denoted by $\operatorname{deg}(f)$. We say a face f is an r-face, r^{-}-face and r^{+}-face if $\operatorname{deg}(f)=r$, $\operatorname{deg}(f) \leq r$ and $\operatorname{deg}(f) \geq r$, respectively.

Let f be an r-face with vertices $v_{1}, v_{2}, \ldots, v_{r}$ in a cyclic order. Then we write $f=\left[v_{1} v_{2} \cdots v_{r}\right]$. Furthermore, if $\operatorname{deg}\left(v_{i}\right)=d_{i}$, then we say that f is of type $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ or f is a $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-face. In a tuple denoting the type of a face, we sometimes use a^{+}and a^{-}for some entry in the tuple if the corresponding vertex is of degree $\geq a$ and $\leq a$, respectively. For a false face or false edge, in the type tuple of it, we always write an entry as the symbol \otimes if its corresponding vertex is false.

Next assign charge on the vertices and faces of D^{\times}. Define the initial charge function $c h_{0}(\cdot)$ as follows:

$$
c h_{0}(x)=\operatorname{deg}(x)-4 \text { for } x \in V\left(D^{\times}\right) \cup F\left(D^{\times}\right) .
$$

By Euler's Formula, we have

$$
\sum_{v \in V\left(D^{\times}\right)}(\operatorname{deg}(v)-4)+\sum_{f \in F\left(D^{\times}\right)}(\operatorname{deg}(f)-4)=-8 .
$$

Thus

$$
\sum_{x \in V\left(D^{\times}\right) \cup F\left(D^{\times}\right)} c h_{0}(x)=-8 .
$$

Next we use a two-step discharging process to finish our proof. Denote by $c h_{i}(x)$ the charge of x after i th discharging where $i=1,2$. We shall show that $\operatorname{ch}_{2}(x) \geq 0$ for every $x \in V\left(D^{\times}\right) \cup F\left(D^{\times}\right)$.

2.1. First-step

Some work in the first-step is similar with [8]. But some difference exists between [8] and the present paper. For completeness, we shall write this part as follows.

The discharging rules of the first-step:

Rule F0: The charge of every 4^{+}-face and every 4 -vertex is not changed.
Rule F1: Let $d \in[5,8]$ be an integer. Assume that v is a d-vertex and f is an incident 3 -face of v.

- Subrule F1.1: If f is false, then move $\frac{d-4}{2 \cdot[d / 2\rfloor}$ units charge from v to f.
- Subrule F1.2: If f is true and $d \in[5,7]$, then move no charge from v to f.
- Subrule F1.3: If f is true and $d=8$, then move $\frac{1}{2}$ unit charge from v to f.
Rule F2: Assume that v is a 9 -vertex and f is an incident 3 -face of v.
- Subrule F2.1: If f is of type $(9,6, \otimes)$, then move $\frac{2}{3}$ units charge from v to f.
- Subrule F2.2: If f is of type $\left(9,7^{+}, \otimes\right)$, then move $\frac{1}{2}$ unit charge from v to f.
- Subrule F2.3: If f is of type $\left(9,9^{+}, 9^{+}\right)$, then move $\frac{1}{3}$ unit charge from v to f.
- Subrule F2.4: If f is true but not of type $\left(9,9^{+}, 9^{+}\right)$, then move $\frac{1}{2}$ unit charge from v to f.
Rule F3: Let $d \geq 10$ be an integer. Assume that v is a d-vertex and f is an incident 3 -face of v.
- Subrule F3.1: If f is of type $(d, 3, \otimes)$, then move 1 unit charge from v to f.
- Subrule F3.2: If f is of type $(d, 4, \otimes)$, then move 1 unit charge from v to f.
- Subrule F3.3: If f is of type $(d, 5, \otimes)$, then move $\frac{3}{4}$ units charge from v to f.
- Subrule F3.4: If f is of type $(d, 6, \otimes)$, then move $\frac{2}{3}$ units charge from v to f.
- Subrule F3.5: If f is of type $\left(d, 7^{+}, \otimes\right)$, then move $\frac{1}{2}$ unit charge from v to f.
- Subrule F3.6: If f is true, then move $\frac{1}{2}$ unit charge from v to f.

Lemma 2.2. Let f be a true 3 -face of D^{\times}. Then $c h_{1}(f) \geq 0$.
Proof. Assume that $f=\left[u_{1} u_{2} u_{3}\right]$ and $\operatorname{deg}\left(u_{1}\right) \leq \operatorname{deg}\left(u_{2}\right) \leq \operatorname{deg}\left(u_{3}\right)$. Denote $d_{i}=\operatorname{deg}\left(u_{i}\right)$ for $i=1,2,3$.

Case 1. Assume $3 \leq d_{1} \leq 7$. Then $d_{2}, d_{3} \geq \phi\left(d_{1}\right)$ by Observation 2.1. If $3 \leq d_{1} \leq 5$, then $d_{2}, d_{3} \geq 10$, thus by Subrule F3.6, $\frac{1}{2}$ is moved from u_{2} and u_{3} to f, respectively, and it follows that $c h_{1}(f)=(3-4)+\frac{1}{2}+\frac{1}{2}=0$. If $d_{1}=6$, then $d_{2}, d_{3} \geq 9$, thus by Subrules F2.4 and F3.6, $\frac{1}{2}$ is moved from u_{2} and u_{3} to f, respectively, and it follows that $c h_{1}(f)=(3-4)+\frac{1}{2}+\frac{1}{2}=0$. If $d_{1}=7$, then $d_{2}, d_{3} \geq 8$, thus by Subrules F1.3, F2.4 and F3.6, $\frac{1}{2}$ is moved from u_{2} and u_{3} to f, respectively, and it follows that $c h_{1}(f)=(3-4)+\frac{1}{2}+\frac{1}{2}=0$.

Case 2. Assume $d_{1} \geq 8$. If $d_{1}=8$, then $d_{2}, d_{3} \geq 8$, thus by Subrules F1.3, F2.4 and F3.6, $\frac{1}{2}$ is moved from u_{2} and u_{3} to f, respectively, and it follows that $\operatorname{ch}_{1}(f) \geq(3-4)+1=0$. If $d_{1}=9$, then $d_{2}, d_{3} \geq 9$, thus by Subrules F2.3 and F3.6, at least $\frac{1}{3}$ is moved from each u_{i} to f for $i=1,2,3$, and it follows that $c h_{1}(f) \geq(3-4)+3 \cdot \frac{1}{3}=0$. If $d_{1} \geq 10$, then $d_{2}, d_{3} \geq 10$, thus by Subrule F3.6, $\frac{1}{2}$ is moved from each u_{i} to f for $i=1,2,3$, and it follows that $c h_{1}(f) \geq(3-4)+3 \cdot \frac{1}{2}>0$.

Lemma 2.3. Let f be a false 3 -face of D^{\times}. Then $\operatorname{ch}_{1}(f) \geq 0$.
Proof. Assume that $f=\left[u_{1} u_{2} u_{3}\right]$. Since f is false and D is a 1-planar drawing, assume that u_{1} is false and u_{2} and u_{3} are true. Denote $d_{i}=\operatorname{deg}\left(u_{i}\right)$ for $i=2,3$ and assume $d_{2} \leq d_{3}$.

Case 1. Assume $3 \leq d_{2} \leq 7$. Then $d_{3} \geq \phi\left(d_{2}\right)$ by Observation 2.1. If $d_{2}=3$, then $d_{3} \geq 23$ and by Subrule F3.1, u_{3} sends 1 to f, thus $c h_{1}(f)=$ $(3-4)+1=0$. If $d_{2}=4$, then $d_{3} \geq 14$ and by Subrule F3.2, u_{3} sends 1 to f, thus $\operatorname{ch}_{1}(f)=(3-4)+1=0$. If $d_{2}=5$, then $d_{3} \geq 10$, thus u_{3} sends $\frac{3}{4}$ to f by Subrule F3.3 and u_{2} sends $\frac{1}{4}$ to f by Subrule F1.1, and it follows that $c h_{1}(f) \geq(3-4)+\frac{3}{4}+\frac{1}{4}=0$. If $d_{2}=6$, then $d_{3} \geq 9$, thus u_{2} sends $\frac{1}{3}$ to f by Subrule F1.1 and u_{3} sends $\frac{2}{3}$ to f by Subrules F2.1 and F3.4, and it follows that $c h_{1}(f) \geq(3-4)+\frac{1}{3}+\frac{2}{3}=0$. If $d_{2}=7$, then $d_{3} \geq 8$, thus u_{2} sends $\frac{1}{2}$ to f by Subrule F1.1 and u_{3} sends $\frac{1}{2}$ to f by Subrules F1.1, F2.2 and F3.5, and it follows that $c h_{1}(f) \geq(3-4)+\frac{1}{2}+\frac{1}{2}=0$.

Case 2. Assume $d_{2} \geq 8$. If $d_{2}=8$, then $d_{3} \geq 8$, thus u_{2} sends $\frac{1}{2}$ to f by Subrule F1.1 and u_{3} sends $\frac{1}{2}$ to f by Subrules F1.1, F2.2 and F3.5, and it follows that $c h_{1}(f) \geq(3-4)+\frac{1}{2}+\frac{1}{2}=0$. If $d_{2}=9$, then $d_{3} \geq 9$, thus u_{2} sends $\frac{1}{2}$ to f by Subrule F2.2 and u_{3} sends $\frac{1}{2}$ to f by Subrules F2.2 and F3.5, and it follows that $c h_{1}(f) \geq(3-4)+\frac{1}{2}+\frac{1}{2}=0$. If $d_{2} \geq 10$, then $d_{3} \geq 10$, thus by Subrule F3.5, u_{2} and u_{3} send $\frac{1}{2}$ to f, respectively, and it follows that $c h_{1}(f) \geq(3-4)+\frac{1}{2}+\frac{1}{2}=0$.

Lemma 2.4. Let v be a d-vertex of D^{\times}where $4 \leq d \leq 8$. Then $c h_{1}(v) \geq 0$.
Proof. If $d=4$, then the charge of v is not changed by Rule F0, thus $c h_{1}(v)=$ $c h_{0}(v)=4-4=0$. Assume $5 \leq d \leq 8$. By Rule $\mathrm{F} 0, v$ does not send any charge to any incident 4^{+}-face. Thus it is sufficient to consider the incident 3 -faces of v. If $d=8$, then v sends $\frac{1}{2}$ to every incident 3 -face by Subrules F1.1 and F1.3, thus $c h_{1}(v)=(8-4)-8 \cdot \frac{1}{2}=0$. Assume $5 \leq d \leq 7$. By Subrules F1.1 and F1.2, v sends $\frac{d-4}{2 \cdot\lfloor d / 2\rfloor}$ to every incident false 3 -face and does not send any charge to any true incident 3 -face. Since D is a 1-planar drawing, v has at most $2 \cdot\left\lfloor\frac{d}{2}\right\rfloor$ incident false 3-faces. It follows that $c h_{1}(v) \geq(d-4)-\left(2 \cdot\left\lfloor\frac{d}{2}\right\rfloor\right) \cdot \frac{d-4}{2 \cdot\lfloor d / 2\rfloor}=0$.
Lemma 2.5. Let $u \in V\left(D^{\times}\right)$and $u v_{1}, u v_{2} \in E\left(D^{\times}\right)$such that no edge of D^{\times}incident with u lies between $u v_{1}$ and $u v_{2}$ (in a cyclic order). Denote $d_{i}=$ $\operatorname{deg}\left(v_{i}\right)$ for $i=1,2$ and assume $d_{1} \geq d_{2}$. If $d_{1}+1 \geq \phi\left(d_{2}+1\right)$, then $v_{1} v_{2} \in E(G)$ without crossing and $u v_{1} v_{2} u$ bounds a face of D^{\times}.

Proof. Suppose that v_{1} is not adjacent to v_{2} in G. Add a new edge to G joining v_{1} and v_{2}, and draw this edge along a route closed enough to the simple curve formed by $v_{1} u$ and $u v_{2}$, see the thin curve in Fig. 2. Denote the resulting graph and drawing by G_{1} and D_{1}, respectively. Note that $u v_{1}$ and $u v_{2}$ are not crossed and no edge incident with u lies between $u v_{1}$ and $u v_{2}$ in D^{\times}. Then the new edge $v_{1} v_{2}$ has no crossing in D_{1}. Thus D_{1} is a 1 -planar drawing and G_{1} is a 1 -planar graph. Since $d_{1}+1 \geq \phi\left(d_{2}+1\right)$, the new edge $v_{2} v_{1}$ is of type $\left(d_{2}+1, \phi\left(d_{2}+1\right)^{+}\right)$in G_{1}, thus G_{1} still is a counterexample to Theorem 1.4. But G_{1} has more one edge than G, which contradicts the maximality of G. Thus $v_{1} v_{2} \in E(G)$.

Fig. 2
Consider the closed simple curve formed by $v_{1} u, u v_{2}$ and $v_{2} v_{1}$, denoted by C. Suppose some edge e of G crossing $v_{1} v_{2}$ in D. Since no edge incident with u lies between $u v_{1}$ and $u v_{2}, e$ is not adjacent to u. Thus e has an end w located in the interior of C. Redrawing $v_{1} v_{2}$ along a route closed enough to the simple curve formed by $v_{1} u$ and $u v_{2}$. Then we get a 1 -planar drawing which has less crossings than D, a contradiction. Thus $v_{1} v_{2}$ has no crossing.

Considering stereographic projection, assume that there is some true vertex outside C. Suppose some true vertex lies inside C. Note that $u v_{1}, u v_{2}$ and $v_{1} v_{2}$ are not crossed and no edge incident with u lies between $u v_{1}$ and $u v_{2}$. If remove v_{1} and v_{2} then the resulting graph is not connected, which contradicts the 3 -connectivity of G. Thus no true vertex lies inside C. It follows that no false vertex lies inside C since D is 1-planar. Since $u v_{1}, u v_{2}$ and $v_{1} v_{2}$ are not crossed, then no edge of G crosses C. Thus C bounds a face of D^{\times}.

Considering stereographic projection, in this paper, we always assume that the face bounded by $u v_{1} v_{2} u$ is an inner-face.

Take an integer $d_{0} \in[3,7]$. Let $u \in V(G)$ with $\operatorname{deg}(u) \geq \phi\left(d_{0}\right)$. Denote by $F(u)$ the set of incident faces of u. Define

$$
F_{1}\left(u, d_{0}\right)=\left\{f \in F(u) \mid f \text { is of type }(\operatorname{deg}(u), d, \otimes) \text { for every } d \in\left[d_{0}, 7\right]\right\}
$$

and
$F_{2}\left(u, d_{0}\right)=\left\{f \in F(u) \mid f\right.$ is of type $\left(\operatorname{deg}(u), \phi(d)^{+}, \otimes\right)$ for every $\left.d \in\left[d_{0}, 7\right]\right\}$.
Corollary 2.6. Let $d_{0} \in[3,7]$ and $u \in V(G)$ with $\operatorname{deg}(u) \geq \phi\left(d_{0}\right)$. For every $f \in F_{1}\left(u, d_{0}\right)$, there is exactly one $f^{\prime} \in F_{2}\left(u, d_{0}\right)$ neighbouring f; and for every $f^{\prime} \in F_{2}\left(u, d_{0}\right)$, there is at most one face $f \in F_{1}\left(u, d_{0}\right)$ neighbouring f^{\prime}.

Proof. Take $d \in\left[d_{0}, 7\right]$. Assume $f=[u v x] \in F_{1}\left(u, d_{0}\right)$ where v and x are d and false neighbour of u in D^{\times}, respectively. Assume that $v x$ is contained in an edge $v w$ of G in D. Since $d, d_{0} \leq 7, \operatorname{deg}(w) \geq \phi(d) \geq 8$ and $\operatorname{deg}(u) \geq \phi\left(d_{0}\right) \geq 8$ by Observation 2.1. Thus, by Lemma 2.5, $u w \in E\left(D^{\times}\right)$and cycle $u x w u$ bounds a face, denoted by f^{\prime}. Clearly, $f^{\prime} \in F_{2}\left(u, d_{0}\right)$. Since G is simple, the neighbour of f sharing $v x$ cannot incident with u, thus it is not a member of $F_{2}\left(u, d_{0}\right)$. Noting $d \leq 7<8 \leq \phi\left(d^{\prime}\right)$ for every $d^{\prime} \in\left[d_{0}, 7\right]$, the neighbour of f sharing $u v$ is not a member of $F_{2}\left(u, d_{0}\right)$. Thus there is exactly one $f^{\prime} \in F_{2}\left(u, d_{0}\right)$ neighbouring f. Similarly, for every $f^{\prime} \in F_{2}$, there is at most one face $f \in$ $F_{1}\left(u, d_{0}\right)$ neighbouring f^{\prime}.

Lemma 2.7. Let $d_{0} \in[3,7]$ and $u \in V(G)$ with $\operatorname{deg}(u)=r \geq \phi\left(d_{0}\right)$. If u has exactly s incident 4^{+}-faces, then $\left|F_{1}\left(u, d_{0}\right)\right| \leq\left\lfloor\frac{r-s}{2}\right\rfloor$. Further, if $s=0$ and $r \equiv 2(\bmod 4)$, then $\left|F_{1}\left(u, d_{0}\right)\right| \leq \frac{r}{2}-1$.
Proof. By Corollary 2.6, $\left|F_{1}\left(u, d_{0}\right)\right| \leq\left|F_{2}\left(u, d_{0}\right)\right|$. Noting $F_{1}\left(u, d_{0}\right) \cap F_{2}\left(u, d_{0}\right)=$ \emptyset, then $r=\operatorname{deg}(u) \geq\left|F_{1}\left(u, d_{0}\right)\right|+\left|F_{2}\left(u, d_{0}\right)\right|+s \geq 2\left|F_{1}\left(u, d_{0}\right)\right|+s$. Thus $\left|F_{1}\left(u, d_{0}\right)\right| \leq\left\lfloor\frac{r-s}{2}\right\rfloor$.

Assume that $s=0$ and $r=4 k+2$. Then $\left|F_{1}\left(u, d_{0}\right)\right| \leq 2 k+1$. Suppose $\left|F_{1}\left(u, d_{0}\right)\right|=2 k+1$. Then $\left|F_{2}\left(u, d_{0}\right)\right| \geq\left|F_{1}\left(u, d_{0}\right)\right|=2 k+1$. But $\operatorname{deg}(u)=r=$ $4 k+2$, thus $\left|F_{2}\left(u, d_{0}\right)\right|=2 k+1$. Then $F(u)=F_{1}\left(u, d_{0}\right) \cup F_{2}\left(u, d_{0}\right)$. Take a face $f=[u v x] \in F_{1}\left(u, d_{0}\right)$ where v and x are d-neighbour $\left(d \in\left[d_{0}, 7\right]\right)$ and false neighbour of u in D^{\times}, respectively. Denote by $f^{\prime \prime}$ the neighbour of f sharing $u v$. Then $f^{\prime \prime} \notin F_{2}\left(u, d_{0}\right)$ by Corollary 2.6. But $F(u)=F_{1}\left(u, d_{0}\right) \cup F_{2}\left(u, d_{0}\right)$, thus $f^{\prime \prime} \in F_{1}\left(u, d_{0}\right)$. It follows that for every $f \in F_{1}\left(u, d_{0}\right)$, there is exactly one $f^{\prime \prime} \in F_{1}\left(u, d_{0}\right)$ neighbouring f and sharing a true edge. Thus $\left|F_{1}\left(u, d_{0}\right)\right|$ is even, which contradicts $\left|F_{1}\left(u, d_{0}\right)\right|=2 k+1$. Hence $\left|F_{1}\left(u, d_{0}\right)\right|<2 k+1$, i.e., $\left|F_{1}\left(u, d_{0}\right)\right| \leq \frac{r}{2}-1$.

Lemma 2.8. Let u be a 9 -vertex. Then $c h_{1}(u) \geq 0$.
Proof. Let $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} denote the number of incident 4^{+}-faces, incident $(9,6, \otimes)$-faces, incident $\left(9,7^{+}, \otimes\right)$-faces, incident $\left(9,9^{+}, 9^{+}\right)$-faces and the other true incident 3 -faces of u, respectively. First we show that

$$
\begin{equation*}
-3 a_{1}+a_{2}-a_{4} \leq 3 \tag{1}
\end{equation*}
$$

Take $d_{0}=6$. By Lemma 2.7, $a_{2} \leq\left|F_{1}(u, 6)\right| \leq\left\lfloor\frac{9-a_{1}}{2}\right\rfloor$. Then $-3 a_{1}+a_{2}-$ $a_{4} \leq-3 a_{1}+\left\lfloor\frac{9-a_{1}}{2}\right\rfloor-a_{4}$. If $a_{1} \geq 1$, then $-3 a_{1}+a_{2}-a_{4} \leq-3+\left\lfloor\frac{8}{2}\right\rfloor-a_{4} \leq 1<3$. Assume $a_{1}=0$. Then $a_{2} \leq\left\lfloor\frac{9}{2}\right\rfloor=4$. If $a_{2} \leq 3$, then $-3 a_{1}+a_{2}-a_{4} \leq$ $0+3-a_{4} \leq 3$. Next assume $a_{1}=0$ and $a_{2}=4$. Denote by $e_{1}, e_{2}, \ldots, e_{9}$ the nine edges of D^{\times}incident with u (do not consider the order). Note that one $(9,6, \otimes)$-face cannot be a neighbour of another $(9,6, \otimes)$-face by sharing a $(9, \otimes)$-edge (otherwise there is an $(6,6)$-edge of G, which contradicts the choice of G). Then there are four $(9, \otimes)$-edges incident with u since $a_{2}=4$, and assume that e_{1}, e_{2}, e_{3} and e_{4} are of type $(9, \otimes)$. If one of $e_{5}, e_{6}, \ldots, e_{9}$ is false, then u has an incident face f with two false vertices, but $\operatorname{deg}(f)=3$ since $a_{1}=0$, which is impossible by the 1-planarity of D. Thus $e_{5}, e_{6}, \ldots, e_{9}$ are true. It follows that u has a true incident 3 -face g (note $a_{1}=0$). By Corollary 2.6 , there are four incident $\left(9,9^{+}, \otimes\right)$-faces of u, which are neighbours of the four incident $(9,6, \otimes)$-faces of u, respectively. Thus g is a $\left(9,9^{+}, 9^{+}\right)$-face. So $a_{4}=1$ and $-3 a_{1}+a_{2}-a_{4}=0+4-1=3$. Then (1) holds.

Note that

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=9 \tag{2}
\end{equation*}
$$

By (1) $+3 \cdot(2)$, we have

$$
4 a_{2}+3 a_{3}+2 a_{4}+3 a_{5} \leq 30
$$

Then by Rule F2, $c h_{1}(u)=9-4-\frac{2}{3} a_{2}-\frac{1}{2} a_{3}-\frac{1}{3} a_{4}-\frac{1}{2} a_{5}=5-\frac{1}{6}\left(4 a_{2}+3 a_{3}+\right.$ $\left.2 a_{4}+3 a_{5}\right) \geq 5-\frac{30}{6}=0$.

Lemma 2.9. Let u be an r-vertex where $10 \leq r \leq 13$. Then $c h_{1}(u) \geq 0$.
Proof. Let $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} denote the number of incident 4^{+}-faces, incident $(r, 5, \otimes)$-faces, incident $(r, 6, \otimes)$-faces, incident $\left(r, 7^{+}, \otimes\right)$-faces and incident true 3 -faces of u, respectively. First we show that

$$
\begin{equation*}
-2 a_{1}+a_{2}+a_{3} \leq 2 r-16 \tag{3}
\end{equation*}
$$

Take $d_{0}=5$. By Lemma 2.7, $a_{2}+a_{3} \leq\left|F_{1}(u, 5)\right| \leq\left\lfloor\frac{r-a_{1}}{2}\right\rfloor$. If $a_{1} \geq 1$, then $-2 a_{1}+a_{2}+a_{3} \leq-2 a_{1}+\frac{r-a_{1}}{2}=\frac{r-5 a_{1}}{2} \leq \frac{r-5}{2} \leq 2 r-16$ since $r \geq 10$. Assume that $a_{1}=0$. If $r \geq 11$, then $-2 a_{1}+a_{2}+a_{3} \leq 0+\frac{r}{2} \leq 2 r-16$. Next consider the case of $r=10$. Since $10 \equiv 2(\bmod 4), a_{2}+a_{3} \leq \frac{r}{2}-1=4$ by Lemma 2.7. Thus $-2 a_{1}+a_{2}+a_{3} \leq 4=2 r-16$. Then (3) holds. Note that

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=r \tag{4}
\end{equation*}
$$

By $(3)+2 \cdot(4)$, we have

$$
3 a_{2}+3 a_{3}+2 a_{4}+2 a_{5} \leq 4 r-16
$$

Then by Rule F3, $c h_{1}(u)=r-4-\frac{3}{4} a_{2}-\frac{2}{3} a_{3}-\frac{1}{2} a_{4}-\frac{1}{2} a_{5} \geq r-4-\frac{3}{4} a_{2}-\frac{3}{4} a_{3}-$ $\frac{1}{2} a_{4}-\frac{1}{2} a_{5}=r-4-\frac{1}{4}\left(3 a_{2}+3 a_{3}+2 a_{4}+2 a_{5}\right) \geq r-4-\frac{1}{4}(4 r-16)=0$.

Lemma 2.10. Let u be an r-vertex with $14 \leq r \leq 22$. Then $c h_{1}(u) \geq 0$.
Proof. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6} denote the number of incident 4^{+}-faces, incident $(r, 4, \otimes)$-faces, incident $(r, 5, \otimes)$-faces, incident $(r, 6, \otimes)$-faces, incident $\left(r, 7^{+}, \otimes\right)$-faces and incident true 3 -faces of u, respectively. First we show that

$$
\begin{equation*}
-a_{1}+a_{2}+a_{3}+a_{4} \leq r-8 \tag{5}
\end{equation*}
$$

Take $d_{0}=4$. By Lemma 2.7, $a_{2}+a_{3}+a_{4} \leq\left|F_{1}(u, 4)\right| \leq\left\lfloor\frac{r-a_{1}}{2}\right\rfloor$. Thus $-a_{1}+a_{2}+a_{3}+a_{4} \leq \frac{r-3 a_{1}}{2}$. If $a_{1} \geq 1$, then $-a_{1}+a_{2}+a_{3}+a_{4} \leq \frac{r-3}{2} \leq r-8$ since $r \geq 14$. Next assume that $a_{1}=0$. If $r \geq 16$, then $-a_{1}+a_{2}+a_{3}+a_{4} \leq$ $0+\frac{r}{2} \leq r-8$. If $r=15$, then $-a_{1}+a_{2}+a_{3}+a_{4} \leq 0+\left\lfloor\frac{15}{2}\right\rfloor=7=r-8$. Next consider the case of $r=14$. Since $14 \equiv 2(\bmod 4), a_{2}+a_{3}+a_{4} \leq \frac{r}{2}-1=6$ by Lemma 2.7. Thus $-a_{1}+a_{2}+a_{3}+a_{4} \leq 6=r-8$. Then (5) holds. Note that

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=r . \tag{6}
\end{equation*}
$$

By $(5)+(6)$, we have

$$
2 a_{2}+2 a_{3}+2 a_{4}+a_{5}+a_{6} \leq 2 r-8
$$

Then by Rule F3, $c h_{1}(u)=r-4-a_{2}-\frac{3}{4} a_{3}-\frac{2}{3} a_{4}-\frac{1}{2} a_{5}-\frac{1}{2} a_{6} \geq r-4-a_{2}-a_{3}-$ $a_{4}-\frac{1}{2} a_{5}-\frac{1}{2} a_{6}=r-4-\frac{1}{2}\left(2 a_{2}+2 a_{3}+2 a_{4}+a_{5}+a_{6}\right) \geq r-4-\frac{1}{2}(2 r-8)=0$.

Let $f \in F\left(D^{\times}\right)$. If $\operatorname{deg}(f)=3$, then $c h_{1}(f) \geq 0$ by Lemmas 2.2 and 2.3. If $\operatorname{deg}(f) \geq 4$, then $c h_{1}(f)=c h_{0}(f)=\operatorname{deg}(f)-4 \geq 0$ by Rule F0. Hence, $c h_{1}(f) \geq 0$ for every $f \in F\left(D^{\times}\right)$. Let $v \in V\left(D^{\times}\right)$. If $4 \leq \operatorname{deg}(v) \leq 8$, then $c h_{1}(v) \geq 0$ by Lemma 2.4. If $\operatorname{deg}(v)=9$, then $c h_{1}(v) \geq 0$ by Lemma 2.8. If $10 \leq \operatorname{deg}(v) \leq 13$, then $c h_{1}(v) \geq 0$ by Lemma 2.9. If $14 \leq \operatorname{deg}(v) \leq 22$, then $c h_{1}(v) \geq 0$ by Lemma 2.10. Hence, $c h_{1}(v) \geq 0$ when $4 \leq \operatorname{deg}(v) \leq 22$. In summary, when we finish the first-step discharging, we have the following table.

degree of faces	$c h_{1}(\cdot)$	degree of vertices	$c h_{1}(\cdot)$
3	≥ 0	3	-1
$d \geq 4$	$d-4 \geq 0$	$4 \leq d \leq 22$	≥ 0

2.2. Bad 3-vertices

Lemma 2.11. Let $f=\left[v_{1} v_{2} \cdots v_{r}\right](r \geq 4)$ be a face of D^{\times}. If $\operatorname{deg}\left(v_{1}\right) \geq 13$, then $r=4, v_{3}$ is false and v_{2} and v_{4} are true.

Proof. Suppose that v_{j} is true for some $3 \leq j \leq r-1$. We claim that $v_{1} v_{j} \in$ $E(G)$. Suppose that v_{1} and v_{j} are not adjacent. Then add a new edge to D joining v_{1} and v_{j} in the interior of the face f of D^{\times}. Since $\operatorname{deg}\left(v_{1}\right) \geq 13$ and $\delta \geq 3$, the resulting graph is still a counterexample with n vertices but has more edges, which contradicts the maximality of G. Thus $v_{1} v_{j} \in E(G)$. Since f is a face, $v_{1} v_{j}$ is located outside f in D^{\times}. Further, if $v_{1} v_{j}$ has a crossing, then we can redraw $v_{1} v_{j}$ inside f, and lose a crossing, but D has the minimum crossings, a contradiction. Let C and C^{\prime} be the cycles $v_{1} v_{2} \cdots v_{j} v_{1}$ and $v_{j} v_{j+1} \cdots v_{r} v_{1} v_{j}$ of D^{\times}, respectively. Since $v_{1} v_{j}$ has two drawings, either v_{2} lies inside C^{\prime} or v_{r} inside C. Considering stereographic projection, assume that v_{2} lies inside C^{\prime}. Then v_{r} locates outside C, and further, since $v_{1} v_{j}$ has no crossing, f is a face of D^{\times}and adjacent edges do not cross, there is some true vertex located outside C whether v_{r} is true or not, denoted by u. For $1<i<j$, if some vertex v_{i} is true, then every path of G from v_{i} to u must meet v_{1} or v_{j} since $v_{1} v_{j}$ has no crossing and f is a face of D^{\times}, thus $\left\{v_{1}, v_{j}\right\}$ is a 2 -cut of G, which contradicts 3 -connectivity of G. It follows that every $v_{i}(1<i<j)$ is false. But no false vertices are adjacent in D^{\times}since D is a 1-planar drawing. Since $3 \leq j \leq r-1$, we have $j=3$, and thus v_{2} is false. By the property (V) on Page 4 , there are two true neighbours of v_{2} inside C. Denote by w one of them. Then every path of G from w to u must meet v_{1} or v_{j} since $v_{1} v_{j}$ has no crossing and f is a face of D^{\times}, thus $\left\{v_{1}, v_{j}\right\}$ is a 2 -cut of G, which contradicts 3 -connectivity of G, again. Hence every v_{j} is false for $3 \leq j \leq r-1$, in particular, v_{3} is false.

Since D is a 1-planar drawing, no false vertices are adjacent. Thus $r \leq 4$. But by the assumption of this lemma, $r \geq 4$, thus $r=4$. Since v_{3} is false, v_{2} and v_{4} are true.

Say an r-face f of D^{\times}is bad if f is incident with at least $(r-3) 3$-vertices. A face is good if it is not bad. For bad faces, we have some easy properties as follows.

Lemma 2.12. (1) Every 3 -face is bad.
(2) A bad face has degree 3, 4, or 6 .
(3) A bad 6-face is of type $(3, \otimes, 3, \otimes, 3, \otimes)$.

Proof. By the definition, (1) holds clearly. Let f be a bad r-face with $r \geq 5$. By the property (II) on Page 3, any two 3 -vertices are not adjacent. Thus f has at most $\left\lfloor\frac{r}{2}\right\rfloor$ incident 3 -vertices. It follows that $\frac{r}{2} \geq r-3$ since f is bad, thus $r \leq 6$. Since $r \geq 5, r=5$ or 6 . If $r=5$, then f has at most $\left\lfloor\frac{5}{2}\right\rfloor=2$ incident 3 -vertices; on the other hand, f has at least $5-3=2$ incident 3 -vertices since f is bad, thus f has exactly two incident 3 -vertices. Similarly, if $r=6$, then f has exactly three incident 3 -vertices. In a word, f has exactly $(r-3)$ incident 3 -vertices, and the other three vertices are 23^{+}- or false vertices. By Lemma 2.11, f has no 23^{+}-vertex. Hence, if $r=5, f$ is incident with three false vertices, which is impossible by 1-planarity of D, and since $r \leq 6$, (2) holds; if $r=6, f$ is incident with three 3 -vertices and three false vertices, thus (3) holds.

Lemma 2.13. Let $f=\left[v_{1} x_{1} v_{2} x_{2} v_{3} x_{3}\right]$ be a bad 6 -face where v_{i} 's and x_{i} 's are 3and false vertices, respectively. Then $N_{G}\left(v_{1}\right)=N_{G}\left(v_{2}\right)=N_{G}\left(v_{3}\right)$. Moreover, we can label the three neighbours by u_{1}, u_{2} and u_{3}, such that
(1) $v_{i} u_{i+1}$ crosses $v_{i+1} u_{i}$ at x_{i},
(2) $v_{i} u_{i}$ and $u_{i} u_{i+1}$ are not crossed,
(3) these v_{i} 's and x_{i} 's are the only six vertices of D^{\times}inside $u_{1} u_{2} u_{3} u_{1}$, where $i=1,2,3, u_{4}=u_{1}$ and $v_{4}=v_{1}$, see Fig. 3.

Fig. 3
Proof. Let $N_{G}\left(v_{1}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$ such that x_{1} and x_{3} are located on $v_{1} u_{2}$ and $v_{1} u_{3}$, respectively. Let $N_{G}\left(v_{2}\right)=\left\{w_{1}, w_{2}, w_{3}\right\}$ such that x_{1} and x_{2} are located on $v_{2} w_{1}$ and $v_{2} w_{3}$, respectively. Then x_{1} is the crossing of $v_{1} u_{2}$ and $v_{2} w_{1}$.

Since $\operatorname{deg}\left(v_{2}\right)=3, \operatorname{deg}\left(w_{1}\right) \geq 23$. Then by Lemma $2.5, v_{1} w_{1} \in E(G)$ and has no crossing. Since $\operatorname{deg}\left(v_{1}\right)=3, w_{1}$ is coincide to some u_{i}. By the property (V) on Page $4, w_{1} \neq u_{2}$. Since $v_{1} w_{1}$ has no crossing but $v_{1} u_{3}$ has a crossing x_{3}, $v_{1} w_{1} \neq v_{1} u_{3}$. It follows that $w_{1} \neq u_{3}$ since G is simple. Thus $w_{1}=u_{1}$ and then $v_{1} u_{1}$ has no crossing. Similarly, $u_{2}=w_{2}$ and $v_{2} u_{2}$ (i.e., $v_{2} w_{2}$) has no crossing.

Since $\operatorname{deg}\left(v_{1}\right)=3, \operatorname{deg}\left(u_{i}\right) \geq 23$ where $i=1,2,3$. By Lemma $2.5, u_{1} u_{2}$ is an edge of G without crossing and $u_{1} x_{1} u_{2} u_{1}, u_{1} v_{1} x_{1} u_{1}$ and $u_{2} v_{2} x_{1} u_{2}$ bound three faces of D^{\times}, respectively. By repeating above argument, this lemma is proved.
Lemma 2.14. Let f be a bad 4-face. Then f is of type $\left(3, \otimes, 12^{-}, \otimes\right)$ or $\left(3,23^{+}, 12^{-}, \otimes\right)$. If f has two incident 3 -vertices, then f is of type $\left(3,23^{+}, 3, \otimes\right)$.

Proof. Since f is a bad 4 -face, there is a 3 -vertex u incident with f. Denote $f=[u x v y]$. Suppose that x and y are true. Then by the property (II) on Page $3, x$ and y are 23^{+}-vertices. By Lemma $2.5, x y \in E(G)$ and has no crossing. Since f is a face of $D^{\times}, x y$ is located outside f. Since $x y$ has no crossing and f is a face, $\{x, y\}$ is a 2 -cut of G, which contradicts the 3 -connectivity of G. It follows that at least one of x and y is false, and say that y is false. Thus v is true since D is a 1-planar drawing. If $\operatorname{deg}(v) \geq 13$, then by Lemma 2.5, $u v \in E(G)$ and has no crossing, but considering f is a face, we have $\{u, v\}$ is a 2 -cut of G, a contradiction again. Thus $\operatorname{deg}(v) \leq 12$. Then f is of type $\left(3, \otimes, 12^{-}, \otimes\right)$ when x is false, or $\left(3,23^{+}, 12^{-}, \otimes\right)$ when x is true (by the property (II) on Page $3, \operatorname{deg}(x) \geq 23$ when x is true).

Assume that f has two incident 3-vertices u and v. Then f is of type $\left(3,23^{+}, 3, \otimes\right)$ or $(3, \otimes, 3, \otimes)$. Suppose that f is a $(3, \otimes, 3, \otimes)$-face. Then x and y are false. Let $u u_{1}$ and $v v_{1}$ cross at x and $u u_{2}$ and $v v_{2}$ cross at y. By the property (II) on Page $3, \operatorname{deg}\left(u_{i}\right) \geq 23$ and $\operatorname{deg}\left(v_{i}\right) \geq 23(i=1,2)$. By Lemma 2.5 , for $i=1,2, v_{i} u$ and $u_{i} v$ are edges of G without crossing. Since $v u_{1}$ has no crossing but $v v_{2}$ has a crossing $y, v u_{1} \neq v v_{2}$. It follows that $u_{1} \neq v_{2}$ since G is simple. Similarly, $u_{2} \neq v_{1}$. Further, $v_{1} \neq v_{2}$ and $u_{1} \neq u_{2}$ since G is simple; $u_{1} \neq v_{1}$ and $u_{2} \neq v_{2}$ by the property (V) on Page 4 . Hence u_{1}, u_{2}, v_{1} and v_{2} are distinct pairwise. It follows that u has degree at least 4 since $v_{i} u$ and $u u_{i}$ are edges of G, which contradicts $\operatorname{deg}(u)=3$. Thus f is a $\left(3,23^{+}, 3, \otimes\right)$-face.

A 3-vertex is bad, if it is incident with three bad faces. Let v be a bad 3 -vertex. Assume that $N_{G}(v)=\left\{u_{1}, u_{2}, u_{3}\right\}$ such that $v u_{1}, v u_{2}$ and $v u_{3}$ round v in a cyclic order in D. Then $\operatorname{deg}\left(u_{i}\right) \geq 23(i=1,2,3)$. By Lemma 2.5, the following lemma holds.

Lemma 2.15. Let v be a bad 3-vertex and u_{i} 's keep the assumption above. Assume that v has no false neighbour in D^{\times}. Then G has a cycle $C_{1}=u_{1} u_{2} u_{3} u_{1}$ without crossing. Considering stereographic projection, assume that v lies inside C_{1}. Then v is the unique vertex of D^{\times}inside C_{1}, see Fig. 4 .

We denote by H_{1} the subgraph of G bounded by C_{1} and fix the drawing (up to stereographic projection) of H_{1} shown in Fig. 4. In the present paper, we shall define some H_{i} 's, and when we say a graph H_{i}, we assume that some drawing of H_{i} is fixed.
Lemma 2.16. Let v be a bad 3-vertex and u_{i} 's keep the assumption above. Assume that $v u_{1}$ is crossed by $x y$ at w where $u_{1} w, x w$, vw and yw round w

Fig. 4. H_{1}.
in a cyclic order and vu has no crossing. Assume $x \neq u_{2}$. Then $x u_{2} \in E(G)$ without crossing and $x w v u_{2} x$ bounds a $\left(3,23^{+}, 12^{-}, \otimes\right)$-face of D^{\times}.

Proof. By a similar argument with Lemma 2.5, we can get that $x u_{2} \in E(G)$ without crossing. Then $x w v u_{2} x$ is a cycle of D^{\times}. Considering stereographic projection, assume that u_{3} is located outside $x w v u_{2} x$. Suppose there is a true vertex z of D^{\times}lying inside $x w v u_{2} x$. Since $\operatorname{deg}(v)=3$ and every u_{i} is not located inside $x w v u_{2} x$, every path from z to a true vertex outside $x w v u_{2} x$ must meet x or u_{2}. Thus $\left\{x, u_{2}\right\}$ is a 2 -cut of G. That contradicts the 3 -connectivity of G. Thus no true vertex inside $x w v u_{2} x$. It follows that no false vertex inside $x w v u_{2} x$ actually. Since $x u_{2}$ and $v u_{2}$ have no crossing, no edge of G crosses $x w v u_{2} x$. Thus $x w v u_{2} x$ bounds a face of D^{\times}, denoted by g. Since v is a bad 3 -vertex, g is a bad 4 -face. By Lemma 2.14, g is of type ($3,23^{+}, 12^{-}, \otimes$).

As Lemma 2.5, in this paper, we always assume that the face bounded by $x w v u_{2} x$ is an inner-face.

Lemma 2.17. Let v be a bad 3-vertex and u_{i} 's keep the assumption above. Assume that $v u_{2}$ and $v u_{3}$ are not crossed but vu u_{1} is crossed by $x y$ at w where $u_{1} w, x w$, vw and $y w$ round w in a cyclic order. Then $x \neq u_{2}$ or $y \neq u_{3}$. Next assume $x \neq u_{2}$.

Fig. 5. H_{2}.

Fig. 6. H_{3}.

Fig. 7. H_{4}.
(1) If $y=u_{3}$ and $\operatorname{deg}(x)=3$, then $u_{1} x, x u_{2} \in E(G)$ without crossing, G has a cycle $C_{2}=u_{1} u_{2} u_{3} u_{1}$ without crossing and x is also a bad 3-vertex.

Considering stereographic projection, assume that v lies inside C_{2}, then there are exactly three vertices v, w and x of D^{\times}inside C_{2}, see Fig. 5.
(2) If $y=u_{3}$ and $\operatorname{deg}(x) \geq 4$, then G has a cycle $C_{3}=u_{1} x u_{2} u_{3} u_{1}$ without crossing and $4 \leq \operatorname{deg}(x) \leq 12$. Considering stereographic projection, assume that v lies inside C_{3}, then there are exactly two vertices v and w of D^{\times}inside C_{3}, see Fig. 6.
(3) If $y \neq u_{3}$, then G has a cycle $C_{4}=u_{1} x u_{2} u_{3} y u_{1}$ without crossing, $5 \leq$ $\operatorname{deg}(x) \leq 12$ and $5 \leq \operatorname{deg}(y) \leq 12$. Considering stereographic projection, assume that v lies inside C_{4}, then there are exactly two vertices v and w of D^{\times}inside C_{4}, see Fig. 7 .

Proof. Note $\operatorname{deg}\left(u_{i}\right) \geq 23$. Then by Lemmas 2.5, $y u_{1}, u_{1} x$ and $u_{2} u_{3}$ are edges of G without crossing and $y w u_{1} y, x w u_{1} x$ and $v u_{3} u_{2} v$ bound faces, respectively. Note $u_{2} u_{3}$ has no crossing but $x y$ has a crossing w. Then $x y \neq u_{2} u_{3}$. Since G is simple, then $x \neq u_{2}$ or $y \neq u_{3}$. Next assume $x \neq u_{2}$. By Lemma 2.16, $x u_{2} \in E(G)$ without crossing, $x w v u_{2} x$ bounds a face g and g is of type $\left(3,23^{+}, 12^{-}, \otimes\right)$. Thus $\operatorname{deg}(x) \leq 12$.

Assume $y=u_{3}$. By Lemmas 2.5, $v w u_{3} v$ bounds a face of D^{\times}. If $\operatorname{deg}(x)=3$, then $u_{1} u_{2}$ is an edge of G without crossing and $x u_{1} u_{2} x$ bounds a face by Lemmas 2.5, and since $\left[x u_{1} u_{2}\right]$ is bad by Lemma 2.12, (1) holds; if $\operatorname{deg}(x) \geq 4$, since $\operatorname{deg}(x) \leq 12$, then (2) holds.

Assume $y \neq u_{3}$. By Lemma 2.16, $y u_{3}$ is an edge of G without crossing and $y w v u_{3} y$ bounds a $\left(3,23^{+}, 12^{-}, \otimes\right)$-face of D^{\times}, thus $\operatorname{deg}(y) \leq 12$. Since $\operatorname{deg}(x) \leq 12$ and $\operatorname{deg}(y) \leq 12$ but $\operatorname{deg}\left(u_{i}\right) \geq 23, x, y \notin\left\{u_{1}, u_{2}, u_{3}\right\}$. Thus $u_{1} x u_{2} u_{3} y u_{1}$ is a cycle of D^{\times}(as Fig. 7). If $\operatorname{deg}(x) \leq 4$ or $\operatorname{deg}(y) \leq 4$, then $x y$ is a $\left(4^{-}, 12^{-}\right)$-edge of G, which contradicts the property (II) on Page 3. Thus $\operatorname{deg}(x) \geq 5$ and $\operatorname{deg}(y) \geq 5$. Hence (3) holds.

For $i=2,3,4$, denote by H_{i} the subgraph of G bounded by C_{i} and fix the drawing (up to stereographic projection) of H_{i} shown in Fig. 5, Fig. 6 and Fig. 7, respectively.

Lemma 2.18. Let v be a bad 3-vertex and u_{i} 's keep the assumption above. Assume that for $i=1,2, v u_{i}$ is crossed by $x_{i} y_{i}$ at w_{i} such that $u_{i} w_{i}, x_{i} w_{i}, v w_{i}$ and $y_{i} w_{i}$ round w_{i} in a cyclic order and vu u_{3} has no crossing. Denote by f the face incident with x_{1}, w_{1}, v, w_{2} and y_{2}. Then $\operatorname{deg}(f)=4$ or 6 .
(1) Assume $\operatorname{deg}(f)=6$. Then y_{1}, x_{2} and u_{3} are coincide, $x_{1} u_{2}, y_{2} u_{1}, u_{1} x_{1}$, $y_{2} u_{2} \in E(G)$ and x_{1} and y_{2} are bad 3-vertices. Further $x_{1} u_{2}$ and $y_{2} u_{1}$ intersect at a crossing $w_{3}, u_{1} x_{1}$ and $y_{2} u_{2}$ are not crossed, and G has a cycle $C_{5}=u_{1} u_{2} u_{3} u_{1}$ without crossing. Considering stereographic projection, assume that v lies inside C_{5}. Then there are exactly six vertices x_{1}, w_{1}, v, w_{2}, y_{2} and w_{3} of D^{\times}inside C_{5}, see Fig. 8.

Fig. 8. H_{5}.
(2) Assume $\operatorname{deg}(f)=4$. Then $x_{1}=y_{2}$, and either $x_{2} \neq u_{3}$ or $y_{1} \neq u_{3}$ since G is simple. Assume that $x_{2} \neq u_{3}$. Then $y_{1} u_{1}, u_{1} x_{1}, x_{1} u_{2}, u_{2} x_{2}$ and $x_{2} u_{3}$ are edges of G without crossing.

Fig. 9. H_{6}.

Fig. 10. H_{7}.
(2a) If $y_{1}=u_{3}$, then G has a cycle $C_{6}=u_{3} u_{1} x_{1} u_{2} x_{2} u_{3}$ without crossing, $5 \leq \operatorname{deg}\left(x_{1}\right) \leq 12$ and $5 \leq \operatorname{deg}\left(x_{2}\right) \leq 12$. Considering stereographic projection, assume that v lies inside C_{6}, then there are exactly three vertices v, w_{1} and w_{2} of D^{\times}inside C_{6}, see Fig. 9 .
(2b) If $y_{1} \neq u_{3}$, then G has a cycle $C_{7}=u_{1} x_{1} u_{2} x_{2} u_{3} y_{1} u_{1}$ without crossing, $5 \leq \operatorname{deg}\left(x_{i}\right) \leq 12$ and $5 \leq \operatorname{deg}\left(y_{i}\right) \leq 12$ for $i=1,2$. Considering stereographic projection, assume that v lies inside C_{7}, then there are exactly three vertices v, w_{1} and w_{2} of D^{\times}inside the cycle C_{7}, see Fig. 10.

Proof. By the assumption of this lemma, $\operatorname{deg}(f) \geq 4$. Since v is a bad 3 -vertex, we have that f is a bad face, thus by Lemma $2.12, f$ is a 4 - or 6 -face. Since every 3 -face is bad by Lemma 2.12, if f is a 6 -face, then (1) holds by Lemma 2.13 .

Next assume $\operatorname{deg}(f)=4$. Then $x_{1}=y_{2}$. Since $\operatorname{deg}(v)=3, \operatorname{deg}\left(u_{i}\right) \geq$ 23 by the property (II) on Page 3. By Lemma 2.5, $y_{1} u_{1}, u_{1} x_{1}, x_{1} u_{2}$ and $u_{2} x_{2}$ are edges of G without crossing and $y_{1} w_{1} u_{1} y_{1}, u_{1} w_{1} x_{1} u_{1}, x_{1} w_{2} u_{2} x_{1}$ and
$u_{2} w_{2} x_{2} u_{2}$ bound faces, respectively. Since G is simple, either $x_{2} \neq u_{3}$ or $y_{1} \neq u_{3}$. Assume $x_{2} \neq u_{3}$. By Lemma 2.16, $u_{3} x_{2} \in E(G)$ without crossing and $v w_{2} x_{2} u_{3} v$ bounds a face g_{1}. Since v is a bad 3 -vertex, f and g_{1} are bad. By Lemma 2.14, f is of type $\left(3, \otimes, 12^{-}, \otimes\right)$ and g_{1} is of type $\left(3,23^{+}, 12^{-}, \otimes\right)$, Thus $\operatorname{deg}\left(x_{1}\right) \leq 12$ and $\operatorname{deg}\left(x_{2}\right) \leq 12$. It follows that $\operatorname{deg}\left(x_{2}\right) \geq 5$ and $\operatorname{deg}\left(x_{1}\right) \geq 5$; otherwise $x_{1} x_{2}$ is a ($4^{-}, 12^{-}$)-edge, which contradicts the property (II) on Page 3. Thus $5 \leq \operatorname{deg}\left(x_{1}\right) \leq 12$ and $5 \leq \operatorname{deg}\left(x_{2}\right) \leq 12$. Since $\operatorname{deg}\left(u_{i}\right) \geq 23$, $\left\{x_{1}, x_{2}\right\} \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\emptyset$.

Assume $y_{1}=u_{3}$. Then $y_{1} u_{1} x_{1} u_{2} x_{2} y_{1}$ is a cycle of D^{\times}. By Lemma 2.5, $v w_{1} y_{1} v$ bounds a face of D^{\times}, then (2a) holds. Assume $y_{1} \neq u_{3}$. By Lemma 2.16, $y_{1} u_{3} \in E(G)$ without crossing and $v w_{1} y_{1} u_{3}$ bounds a $\left(3,23^{+}, 12^{-}, \otimes\right)$ face. Thus $\operatorname{deg}\left(y_{1}\right) \leq 12$. Since $\operatorname{deg}\left(x_{1}\right) \leq 12$ and $\operatorname{deg}\left(y_{1}\right) \leq 12, \operatorname{deg}\left(y_{1}\right) \geq 5$ by the property (II) on Page 3. Since $\operatorname{deg}\left(u_{i}\right) \geq 23, y_{1} \notin\left\{u_{1}, u_{2}, u_{3}\right\}$. Since G is simple, x_{1}, x_{2} and y_{1} are pairwise distinct. Thus $u_{1} x_{1} u_{2} x_{2} u_{3} y_{1} u_{1}$ is a cycle of G, and (2b) holds.

For $i=5,6,7$, denote by H_{i} the subgraph of G bounded by C_{i} and fix the drawing (up to stereographic projection) of H_{i} shown in Fig. 8, Fig. 9 and Fig. 10, respectively.

Lemma 2.19. Let v be a bad 3-vertex and u_{i} 's keep the assumption above. Assume that for $i=1,2,3, v u_{i}$ is crossed by $x_{i} y_{i}$ at w_{i} such that $u_{i} w_{i}, x_{i} w_{i}$, $v w_{i}$ and $y_{i} w_{i}$ round w_{i} in a cyclic order. For $i=1,2$, 3, denote by f_{i} the face incident with w_{i}, v and $w_{i+1}\left(w_{4}=w_{1}\right)$, then $\operatorname{deg}\left(f_{i}\right)=4, x_{i}=y_{i+1}\left(y_{4}=y_{1}\right)$ and $5 \leq \operatorname{deg}\left(x_{i}\right) \leq 12$.

Moreover, G has a cycle $C_{8}=u_{1} x_{1} u_{2} x_{2} u_{3} x_{3} u_{1}$ without crossing. Considering stereographic projection, assume that v lies inside C_{8}, then there are exactly four vertices w_{1}, w_{2}, w_{3} and v of D^{\times}inside C_{8}, see Fig. 11.

Fig. 11. H_{8}.
Proof. Since v is a bad 3 -vertex, every f_{i} is bad. Then $\operatorname{deg}\left(f_{i}\right)=3,4,6$ by Lemma 2.12. By the assumption of this lemma, $\operatorname{deg}\left(f_{i}\right) \geq 4$, but by Lemma 2.13, $\operatorname{deg}\left(f_{i}\right) \neq 6$. Thus $\operatorname{deg}\left(f_{i}\right)=4$ for $i=1,2,3$. Then $x_{1}=y_{2}, x_{2}=y_{3}$ and $x_{3}=y_{1}$. For $i=1,2,3$, since every f_{i} is a bad 4 -face, $\operatorname{deg}\left(x_{i}\right) \leq 12$ by Lemma
2.14, and then $\operatorname{deg}\left(x_{i}\right) \geq 5$ by the property (II) on Page 3 . Since $\operatorname{deg}\left(u_{i}\right) \geq$ 23, by Lemma 2.5, $u_{i} x_{i}, x_{i} u_{i+1} \in E(G)$ without crossing and $u_{i} w_{i} x_{i} u_{i}$ and $x_{i} w_{i} u_{i+1} x_{i}$ bound faces of D where $u_{4}=u_{1}$, respectively. Thus this lemma holds.

Denote by H_{8} the subgraph of G bounded by C_{8} and fix the drawing (up to stereographic projection) of H_{8} shown in Fig. 11.

For $i \in[1,8]$, denote by \mathcal{H}_{i} the set of subgraphs X of G (under D) such that X is isomorphic to H_{i} and containing a bad 3 -vertex. Then every $X \in \mathcal{H}_{i}$ keeps the drawing (up to stereographic projection) and the property (Lemmas 2.15, 2.17, 2.18 and 2.19 , respectively) of H_{i} under D.

By Lemmas 2.15, 2.17, 2.18 and 2.19, we have the following corollary.
Corollary 2.20. For every bad 3-vertex v, there is a unique $X \in \mathcal{H}_{i}$ for some $i \in[1,8]$ containing v.

For every 23^{+}-vertex u and $i \in[1,8]$, denote $\mathcal{H}_{i}(u)=\left\{X \in \mathcal{H}_{i} \mid u \in V(X)\right\}$. Then for $X \in \mathcal{H}_{i}(u), u$ is isomorphic to some $u_{j}(j=1,2,3)$ of H_{i}. For more convenience, denote $\mathcal{H}_{i, j}(u)=\left\{X \in \mathcal{H}_{i} \mid u \in V(X)\right.$ and u is isomorphic to u_{j} of $\left.H_{i}\right\}$ where $i \in\{3,6\}$ and $j \in[1,3]$.

Considering stereographic projection, next when we say that $X \in \mathcal{H}_{i}(u)$, we always assume that X keeps the drawing of H_{i} and every bad 3-vertices of X is located inside the cycle of X isomorphic to C_{i}.

2.3. Spanning vertices and enumeration

For a face f of D^{\times}and a vertex v of G, if v is incident with f or v is incident with an edge e of G such that e contains an incident edge of f in D^{\times}, then call v a spanning vertex of f.

Take a 23^{+}-vertex u_{1} and $f_{1} \in F\left(u_{1}\right)$. Considering stereographic projection, assume that f_{1} is an inner-face. Assume that $\operatorname{deg}\left(f_{1}\right)=3$ and no spanning vertex of f_{1} is a bad 3 -vertex. If f_{1} is false and denote $f_{1}=\left[u_{1} v_{1} w\right]$ where w is a crossing formed by $u_{1} v_{2}$ and $v_{1} v_{3}$, then $u_{1} v_{3} \in E(G)$ without crossing and cycle $u_{1} w v_{3} u_{1}$ bounds a face of D^{\times}by Lemma 2.5, see Fig. 12. Denote by H_{9} the subgraph (keep the drawing), and denote by C_{9} the cycle $u_{1} v_{1} v_{3} u_{1}$. If f_{1} is true and denote $f_{1}=\left[u_{1} v_{1} v_{2}\right]$ where v_{1} and v_{2} are true, then we get a triangle [$u_{1} v_{1} v_{2}$]. For convenience, we denote by H_{10} the triangle [$u_{1} v_{1} v_{2}$], and denote by C_{10} the cycle $u_{1} v_{1} v_{2} u_{1}$. Note that in H_{9} and H_{10}, every v_{j} is not a bad 3 -vertex.

For $i \in\{9,10\}$, denote by \mathcal{H}_{i} the set of subgraphs X of G (under D) which is isomorphic to H_{i} and keep the drawing (up to stereographic projection) and the property of H_{i}, i.e., no vertex is located inside (or outside, considering stereographic projection) the cycle of X isomorphic to C_{i} and no vertex of X is a bad 3 -vertex. For every 23^{+}-vertex u, denote $\mathcal{H}_{i}(u)=\left\{X \in \mathcal{H}_{i} \mid u \in V(X)\right.$ and u is isomorphic to u_{1} in $\left.H_{i}\right\}$ where $i \in\{9,10\}$.

Fig. 12. H_{9}

Considering stereographic projection, next when we say that $X \in \mathcal{H}_{i}(u)$ ($i \in\{9,10\}$), we always assume that X keeps the drawing of H_{i} and no vertex is located inside the cycle of X isomorphic to C_{i}.

For a subgraph X of G, if restrict the drawing D in X, then we get a drawing of X, and we denote it by $\left.D\right|_{X}$.

Lemma 2.21. Let u be a 23^{+}-vertex, $X \in \mathcal{H}_{i}(u)$ and $Y \in \mathcal{H}_{i^{\prime}}(u)$ where $1 \leq i, i^{\prime} \leq 10$ and $X \neq Y$. If f_{X} and f_{Y} are inner-faces incident with u in $\left(\left.D\right|_{X}\right)^{\times}$and $\left(\left.D\right|_{Y}\right)^{\times}$, respectively, then we have $f_{X} \neq f_{Y}$ in D^{\times}.

Proof. Since u is isomorphic to u_{1} of H_{9} or H_{10} by the definition of $\mathcal{H}_{9}(u)$ and $\mathcal{H}_{10}(u)$, if $i, i^{\prime} \in\{9,10\}$, then the conclusion holds clearly since $X \neq Y$ and f_{X} and f_{Y} are incident with u. Next assume that $i \in[1,8]$. By observing the results of Lemmas 2.15, 2.17, 2.18 and 2.19, we can find that X contains a bad 3-vertex v which is a spanning vertex of f_{X}. Suppose $f_{X}=f_{Y}$ in D^{\times}. Then v is also a spanning bad 3 -vertex of f_{Y}. But H_{9} and H_{10} do not contain bad 3 -vertex, thus $i^{\prime} \in[1,8]$. Note that v is also a spanning bad 3 -vertex of f_{Y}. By observing the results of Lemmas 2.15, 2.17, 2.18 and 2.19, we have $v \in V(Y)$. Then v is a bad 3 -vertex of X and Y in common. But by Corollary $2.20, X=Y$, a contradiction.

For a 23^{+}-vertex u, denote $h_{i}(u)=\left|\mathcal{H}_{i}(u)\right|$ for $i \in[1,10]$, and denote $h_{i, j}(u)=\left|\mathcal{H}_{i, j}(u)\right|$ for $i \in\{3,6\}$ and $j \in[1,3]$. By Lemma 2.21, $X \in \mathcal{H}_{i}(u)$ and $Y \in \mathcal{H}_{i^{\prime}}(u)$ have no common inner-face incident with u. Then when we enumerate the number of inner-faces incident with u, which are contained in members of $\mathcal{H}_{i}(u)$ for $i \in[1,10]$, we get an estimation of the degree of u as the following lemma.

Lemma 2.22. Let u be a 23^{+}-vertex. Then

$$
\begin{align*}
\operatorname{deg}(u) \geq & 2 h_{1}(u)+3 h_{2}(u)+2 h_{3,1}(u)+2 h_{3,2}(u)+3 h_{3,3}(u)+2 h_{4}(u) \\
& +4 h_{5}(u)+2 h_{6,1}(u)+2 h_{6,2}(u)+3 h_{6,3}(u)+2 h_{7}(u)+2 h_{8}(u) \\
& +2 h_{9}(u)+h_{10}(u) \tag{7}
\end{align*}
$$

2.4. Second-step

Recall that an r-face is bad if it is incident with at least $(r-3) 3$-vertices, and a 3 -vertex is bad if every its incident face is bad; if a face or a 3 -vertex is not bad, then say it is good. Next we start the second-step discharging.

The discharging rules of the second-step:

Rule S1: Assume that v is a 3 -vertex and f is a good face incident with v. Then we move 1 from f to v.
Rule S2: Assume that v is a 3 -vertex and f is a bad 6 -face incident with v. Then we move $\frac{2}{3}$ from f to v.

Next (in Rules S3-S10) we assume that v is a bad 3-vertex. Then there is a unique $X \in \mathcal{H}_{i}$ containing v for some $i \in[1,8]$ and we identify X and H_{i}.
Rule S3: If $i=1$, then we move $\frac{1}{3}$ from every u_{i} to v where $i=1,2,3$.
Rule S4: If $i=2$, then move $\frac{1}{3}$ from u_{1} to x and from u_{3} to v, respectively, and move $\frac{2}{3}$ from u_{2} to v and to x, respectively, see Fig. 13.
Rule S5: If $i=3$, then move $\frac{1}{7}$ from u_{3} to v, move $\frac{6}{7}$ from u_{2} to v, and move $\frac{1}{14}$ from u_{2} to u_{1}, see Fig. 14.

Fig. 13. Rule S4.

Fig. 14. Rule S5.

Rule S6: If $i=4$, then move $\frac{1}{2}$ from u_{2} to v and from u_{3} to v, respectively, and move $\frac{1}{6}$ from u_{2} to u_{1} and from u_{3} to u_{1}, respectively, see Fig. 15 .

Fig. 15. Rule S6.
Rule S7: If $i=5$, then move $\frac{1}{3}$ from u_{1} to x_{1}, from u_{2} to y_{2} and from u_{3} to v, respectively.

Rule S8: If $i=6$, then move $\frac{1}{4}$ from u_{1} to v, and move $\frac{3}{4}$ from u_{3} to v, see Fig. 16.
Rule S9: If $i=7$, then move 1 from u_{3} to v, and move $\frac{1}{6}$ from u_{3} to u_{1} and to u_{2}, respectively, see Fig. 17.

Fig. 16. Rule S8.

Fig. 17. Rule S9.

Rule S10: If $i=8$, assume $\operatorname{deg}\left(x_{1}\right) \leq \operatorname{deg}\left(x_{2}\right) \leq \operatorname{deg}\left(x_{3}\right)$, then move $\frac{1}{4}$ from u_{1} to v and from u_{2} to v, respectively, and move $\frac{1}{2}$ from u_{3} to v, see Fig. 18.

Fig. 18. Rule $\operatorname{S10}\left(\operatorname{deg}\left(x_{1}\right) \leq \operatorname{deg}\left(x_{2}\right) \leq \operatorname{deg}\left(x_{3}\right)\right)$.
Lemma 2.23. If $f \in F\left(D^{\times}\right)$, then $\operatorname{ch}_{2}(f) \geq 0$.
Proof. Denote $d=\operatorname{deg}(f)$. Assume $d=3$. Then $c h_{1}(f) \geq 0$ by Lemmas 2.2 and 2.3. Since $d=3, f$ is bad by the definition of bad faces. Thus Rules S1 and S 2 do not change the charge of f. Since Rules S3-S10 do not change the charge of any face, $c h_{2}(f)=c h_{1}(f) \geq 0$.

Assume $d \geq 4$. In the first-step discharging, the charge of every 4^{+}-face is not changed, thus $c h_{1}(f)=d-4$. Suppose that f is good. Then there are at most $(d-4) 3$-vertices incident with f. Thus by Rule $\mathrm{S} 1, \operatorname{ch}_{2}(f) \geq c h_{1}(f)-(d-4) \geq$ 0 . Next assume that f is bad. If $d=6$, then there are three 3 -vertices incident with f by Lemma 2.12. By Rule S2, $c h_{2}(f)=c h_{1}(f)-3 \cdot \frac{2}{3}=6-4-2=0$. If $d \neq 6$, then the charge of f is not changed in the second-step discharging. Thus $c h_{2}(f)=c h_{1}(f)=d-4 \geq 0$.

Lemma 2.24. If $v \in V\left(D^{\times}\right)$and $3 \leq \operatorname{deg}(v) \leq 22$, then $c h_{2}(v) \geq 0$.
Proof. If $4 \leq \operatorname{deg}(v) \leq 22$, then by Lemmas 2.4, 2.8, 2.9 and $2.10, c h_{1}(v) \geq 0$. Since no charge of v is lost in the second-step discharging, $c h_{2}(v)=c h_{1}(v) \geq 0$. If $\operatorname{deg}(v)=3$, then by the rules of the first-step, $c h_{1}(v)=3-4=-1$. If v is a good 3 -vertex, then there is at least one good face f incident with v. Then by Rule $\mathrm{S} 1, f$ sends 1 to v, thus $c h_{2}(v) \geq c h_{1}(v)+1=-1+1=0$.

Next assume that v is a bad 3 -vertex. Then there is a unique $X \in H_{i}$ containing v for some $i \in[1,8]$ and we identify X and H_{i}.

If $i=1$, then by Rule $\mathrm{S} 3, c h_{2}(v)=\operatorname{ch}_{1}(v)+3 \cdot \frac{1}{3}=-1+1=0$. If $i=2$, then by Rule $\mathrm{S} 4, c h_{2}(v)=c h_{1}(v)+\frac{1}{3}+\frac{2}{3}=-1+1=0$. (Note that x is a bad 3 -vertex too. Symmetrically, we have $\operatorname{ch}_{2}(x) \geq 0$ too.) If $i=3$, then by Rule $\mathrm{S} 5, c h_{2}(v)=c h_{1}(v)+\frac{1}{7}+\frac{6}{7}=-1+1=0$. If $i=4$, then by Rule $\mathrm{S} 6, c h_{2}(v)=c h_{1}(v)+2 \cdot \frac{1}{2}=-1+1=0$. If $i=5$, then by Rule S2, f sends $\frac{2}{3}$ to v, and by Rule $\mathrm{S} 7, u_{3}$ sends $\frac{1}{3}$ to v, thus $c h_{2}(v)=$ $c h_{1}(v)+\frac{1}{3}+\frac{2}{3}=-1+1=0$. (Note that both x_{1} and y_{2} are bad 3 -vertices too. And symmetrically, $c h_{2}\left(x_{1}\right) \geq 0$ and $c h_{2}\left(y_{2}\right) \geq 0$ too.) If $i=6$, then by Rule $\mathrm{S} 8, c h_{2}(v)=c h_{1}(v)+\frac{1}{4}+\frac{3}{4}=-1+1=0$. If $i=7$, then by Rule S9, $c h_{2}(v)=c h_{1}(v)+1=-1+1=0$. If $i=8$, then by Rule S10, $c h_{2}(v)=\operatorname{ch}_{1}(v)+2 \cdot \frac{1}{4}+\frac{1}{2}=-1+1=0$.

Consider H_{i} where $1 \leq i \leq 10$. Define the net-losing-charge of u_{j} in H_{i}, denoted by $\Delta_{i}\left(u_{j}\right)$, as the value of losing-charge minus getting-charge of u_{j} $(1 \leq j \leq 3$ when $1 \leq i \leq 8 ; j=1$ when $i=9,10)$ restricted in one H_{i} after the two discharging steps. For example, in H_{3}, see Fig. 6, assume that $\operatorname{deg}(x)=4$, then u_{1} sends $\frac{1}{2}$ to the face $\left[u_{1} w u_{3}\right]$ by Subrule F3.5, sends 1 to the face $\left[u_{1} x w\right]$ by Subrule F3.2 and gets $\frac{1}{14}$ from u_{2} by Rule S5, thus $\Delta_{3}\left(u_{1}\right)=\frac{1}{2}+1-\frac{1}{14}=\frac{10}{7}$.

Lemma 2.25. For subgraphs (keep the drawings under D) $H_{1}, H_{2}, \ldots, H_{10}$ where v is a bad 3-vertex, we have the following results.
(1) $\Delta_{1}\left(u_{j}\right)=\frac{4}{3}$ for $j=1,2,3$.
(2) $\Delta_{2}\left(u_{j}\right)=\frac{7}{3}$ for $j=1,2,3$.
(3) $\Delta_{3}\left(u_{j}\right) \leq \frac{10}{7}$ for $j=1,2$ and $\Delta_{3}\left(u_{3}\right)=\frac{15}{7}$.
(4) $\Delta_{4}\left(u_{j}\right) \leq \frac{7}{6}$ for $j=1,2,3$.
(5) $\Delta_{5}\left(u_{j}\right)=\frac{10}{3}$ for $j=1,2,3$.
(6) $\Delta_{6}\left(u_{j}\right) \leq \frac{3}{2}$ for $j=1,2$ and $\Delta_{6}\left(u_{3}\right)=\frac{9}{4}$.
(7) $\Delta_{7}\left(u_{j}\right) \leq \frac{4}{3}$ for $j=1,2,3$.
(8) $\Delta_{8}\left(u_{j}\right) \leq \frac{3}{2}$ for $j=1,2,3$.
(9) $\Delta_{9}\left(u_{1}\right) \leq \frac{3}{2}$.
(10) $\Delta_{10}\left(u_{1}\right)=\frac{1}{2}$.

Proof. Since $\operatorname{deg}(v)=3$, every $u_{j}(j=1,2,3)$ is a 23^{+}-vertex by Observation 2.1.
(1) Consider H_{1}, see Fig. 4. By Subrule F3.6, u_{j} sends $\frac{1}{2}$ to faces $\left[u_{j} u_{j+1} v\right]$ and $\left[u_{j} u_{j-1} v\right]$ for $j=1,2,3\left(u_{4}=u_{1}\right.$ and $\left.u_{0}=u_{3}\right)$, respectively. By Rule S3, u_{j} sends $\frac{1}{3}$ to v for $j=1,2,3$. Thus $\Delta_{1}\left(u_{j}\right)=2 \cdot \frac{1}{2}+\frac{1}{3}=\frac{4}{3}$.
(2) Consider H_{2}, see Fig. 5. By Subrule F3.5, u_{1} sends $\frac{1}{2}$ to the face $\left[u_{1} w u_{3}\right]$. By Subrule F3.1, u_{1} sends 1 to $\left[u_{1} w x\right]$. By Subrule F3.6, u_{1} sends $\frac{1}{2}$ to the face $\left[u_{1} x u_{2}\right]$. By Rule S4, u_{1} sends $\frac{1}{3}$ to x. Thus $\Delta_{2}\left(u_{1}\right)=\frac{1}{2}+1+\frac{1}{2}+\frac{1}{3}=\frac{7}{3}$. By Subrule F3.6, u_{2} sends $\frac{1}{2}$ to faces $\left[u_{2} x u_{1}\right]$ and $\left[u_{2} v u_{3}\right]$, respectively. Since v is a bad 3 -vertex, $\left[x w v u_{2}\right]$ is a bad 4 -face, thus u_{2} neither sends any charge to it, nor gets any charge from it. By Rule $\mathrm{S} 4, u_{2}$ sends $\frac{2}{3}$ to v and to x, respectively. Thus $\Delta_{2}\left(u_{2}\right)=2 \cdot \frac{1}{2}+2 \cdot \frac{2}{3}=\frac{7}{3}$. Symmetrically, $\Delta_{2}\left(u_{3}\right)=\frac{7}{3}$.
(3) Consider H_{3}, see Fig. 6. By Subrule F3.5, u_{1} sends $\frac{1}{2}$ to the face $\left[u_{1} w u_{3}\right]$. By Subrules F3.2-F3.5, u_{1} sends at most 1 to $\left[u_{1} w x\right]$. By Rule S5, u_{1} gets $\frac{1}{14}$ from u_{2}. Note that u_{1} does not send any charge to v or x. Thus $\Delta_{3}\left(u_{1}\right) \leq$ $\frac{1}{2}+1-\frac{1}{14}=\frac{10}{7}$. By Subrule F3.6, u_{2} sends $\frac{1}{2}$ to the face $\left[u_{2} v u_{3}\right]$. Since v is bad, $\left[u_{2} v w x\right]$ is a bad 4 -face, thus u_{2} neither sends any charge to it, nor gets any charge from it. By Rule $\mathrm{S} 5, u_{2}$ sends $\frac{6}{7}$ to v, and sends $\frac{1}{14}$ to v_{1}. Thus $\Delta_{3}\left(u_{2}\right)=\frac{1}{2}+\frac{6}{7}+\frac{1}{14}=\frac{10}{7}$. By Subrule F3.5, u_{3} sends $\frac{1}{2}$ to the face $\left[u_{3} w u_{1}\right]$. By Subrule F3.1, u_{3} sends 1 to $\left[u_{3} w v\right]$. By Subrule F3.6, u_{3} sends $\frac{1}{2}$ to the face $\left[u_{3} v u_{2}\right]$. By Rule S5, u_{3} sends $\frac{1}{7}$ to v. Thus $\Delta_{3}\left(u_{3}\right)=\frac{1}{2}+1+\frac{1}{2}+\frac{1}{7}=\frac{15}{7}$.
(4) Consider H_{4}, see Fig. 7. By Lemma 2.17, $5 \leq \operatorname{deg}(x), \operatorname{deg}(y) \leq 12$. Then by Subrules F3.3-F3.5, u_{1} sends at most $\frac{3}{4}$ to faces $\left[u_{1} w y\right]$ and $\left[u_{1} w x\right]$, respectively. By Rule S6, u_{1} gets $\frac{1}{6}$ from u_{2} and u_{3}, respectively. Thus $\Delta_{4}\left(u_{1}\right) \leq 2 \cdot \frac{3}{4}-2 \cdot \frac{1}{6}=\frac{7}{6}$. By Subrule F3.6, $u_{j}(j=2,3)$ sends $\frac{1}{2}$ to the face $\left[u_{2} v u_{3}\right]$. By Rule S6, u_{j} sends $\frac{1}{6}$ to u_{1}, and sends $\frac{1}{2}$ to v. Thus $\Delta_{4}\left(u_{j}\right) \leq \frac{1}{2}+\frac{1}{6}+\frac{1}{2}=\frac{7}{6}$.
(5) Consider H_{5}, see Fig. 8. By Subrule F3.5, u_{1} sends $\frac{1}{2}$ to faces $\left[u_{1} w_{1} u_{3}\right]$ and $\left[u_{1} w_{3} u_{2}\right]$, respectively. By Subrule F3.1, u_{1} sends 1 to faces $\left[u_{1} x_{1} w_{1}\right.$] and $\left[u_{1} x_{1} w_{3}\right]$, respectively. By Rule $\mathrm{S} 7, u_{1}$ sends $\frac{1}{3}$ to x_{1}. Thus $\Delta_{5}\left(u_{1}\right)=$ $2 \cdot \frac{1}{2}+2 \cdot 1+\frac{1}{3}=\frac{10}{3}$. Symmetrically, $\Delta_{5}\left(u_{2}\right)=\Delta_{5}\left(u_{3}\right)=\frac{10}{3}$.
(6) Consider H_{6}, see Fig. 9. By (2a) of Lemma 2.18, $5 \leq \operatorname{deg}\left(x_{1}\right) \leq 12$. Then by Subrules F3.3-F3.5, u_{1} sends at most $\frac{3}{4}$ to the face $\left[u_{1} w_{1} x_{1}\right.$]. By Subrule F3.5, u_{1} sends $\frac{1}{2}$ to the face $\left[u_{1} w_{1} u_{3}\right]$. By Rule $\mathrm{S} 8, u_{1}$ sends $\frac{1}{4}$ to v. Thus $\Delta_{6}\left(u_{1}\right) \leq \frac{3}{4}+\frac{1}{2}+\frac{1}{4}=\frac{3}{2}$. By (2a) of Lemma 2.18, $5 \leq \operatorname{deg}\left(x_{1}\right), \operatorname{deg}\left(x_{2}\right) \leq 12$. Then by Subrules F3.3-F3.5, u_{2} sends at most $\frac{3}{4}$ to faces [$u_{2} w_{2} x_{1}$] and [$u_{2} w_{2} x_{2}$], respectively. Thus $\Delta_{6}\left(u_{2}\right) \leq 2 \cdot \frac{3}{4}=\frac{3}{2}$. By Subrule F3.5, u_{3} sends $\frac{1}{2}$ to the face $\left[u_{1} w_{1} u_{3}\right]$. By Subrule F3.1, u_{3} sends 1 to the face $\left[u_{3} w_{1} v\right]$. By Rule S8, u_{1} sends $\frac{3}{4}$ to v. Thus $\Delta_{6}\left(u_{3}\right)=\frac{1}{2}+1+\frac{3}{4}=\frac{9}{4}$.
(7) Consider H_{7}, see Fig. 10. By (2b) of Lemma 2.18, $5 \leq \operatorname{deg}\left(x_{1}\right), \operatorname{deg}\left(y_{1}\right) \leq$ 12. Then by Subrules F3.3-F3.5, u_{1} sends at most $\frac{3}{4}$ to faces $\left[u_{1} w_{1} y_{1}\right]$ and $\left[u_{1} w_{1} x_{1}\right]$, respectively. By Rule S9, u_{1} gets $\frac{1}{6}$ from u_{3}. Thus $\Delta_{7}\left(u_{1}\right) \leq 2 \cdot \frac{3}{4}-\frac{1}{6}=$ $\frac{4}{3}$. Similarly, $\Delta_{7}\left(u_{2}\right) \leq \frac{4}{3}$. Since v is a bad 3 -vertex, $\left[u_{3} y_{1} w_{1} v\right]$ and $\left[u_{3} x_{2} w_{2} v\right]$ are bad 4 -faces. Then u_{3} neither sends any charge to them, nor gets any charge
from them. By Rule S9, u_{3} sends $\frac{1}{6}$ to u_{1} and u_{2}, respectively, and sends 1 to v. Thus $\Delta_{7}\left(u_{3}\right) \leq 2 \cdot \frac{1}{6}+1=\frac{4}{3}$.
(8) Consider H_{8}, see Fig. 11. Assume that $\operatorname{deg}\left(x_{1}\right) \leq \operatorname{deg}\left(x_{2}\right) \leq \operatorname{deg}\left(x_{3}\right)$. If $\operatorname{deg}\left(x_{1}\right) \geq 8$, then $\operatorname{deg}\left(x_{3}\right) \geq \operatorname{deg}\left(x_{2}\right) \geq 8$; otherwise, $\operatorname{deg}\left(x_{1}\right) \leq 7$, then by Observation 2.1, we also have $\operatorname{deg}\left(x_{3}\right) \geq \operatorname{deg}\left(x_{2}\right) \geq 8$. Further, by Lemma 2.19, $5 \leq \operatorname{deg}\left(x_{1}\right) \leq 12$ and $8 \leq \operatorname{deg}\left(x_{2}\right), \operatorname{deg}\left(x_{3}\right) \leq 12$. Since $\operatorname{deg}\left(x_{1}\right) \geq 5$, by Subrules F3.3-F3.5, we have that u_{1} sends at most $\frac{3}{4}$ to the face [$u_{1} w_{1} x_{1}$] and u_{2} sends at most $\frac{3}{4}$ to the face $\left[u_{2} w_{2} x_{1}\right]$. Since $\operatorname{deg}\left(x_{2}\right) \geq 8$, by Subrule F3.5, we have that u_{2} sends at most $\frac{1}{2}$ to the face $\left[u_{2} w_{2} x_{2}\right]$ and u_{3} sends at most $\frac{1}{2}$ to the face $\left[u_{3} w_{3} x_{2}\right]$. Similarly, $\operatorname{since} \operatorname{deg}\left(x_{3}\right) \geq 8$, by Subrule F3.5, we have that u_{3} sends at most $\frac{1}{2}$ to the face $\left[u_{3} w_{3} x_{3}\right]$ and u_{1} sends at most $\frac{1}{2}$ to the face $\left[u_{1} w_{1} x_{3}\right]$. By Rule S10, u_{1} and u_{2} send $\frac{1}{4}$ to v, respectively, and u_{3} sends $\frac{1}{2}$ to v. Thus $\Delta_{8}\left(u_{1}\right) \leq \frac{3}{4}+\frac{1}{2}+\frac{1}{4}=\frac{3}{2}, \Delta_{8}\left(u_{2}\right) \leq \frac{3}{4}+\frac{1}{2}+\frac{1}{4}=\frac{3}{2}$ and $\Delta_{8}\left(u_{3}\right) \leq \frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}$.
(9) Consider H_{9}, see Fig 12. Assume that $\operatorname{deg}\left(v_{1}\right) \leq \operatorname{deg}\left(v_{3}\right)$. If $\operatorname{deg}\left(v_{1}\right) \geq 8$, then $\operatorname{deg}\left(v_{3}\right) \geq 8$; otherwise $\operatorname{deg}\left(v_{1}\right) \leq 7$, then by Observation 2.1, we also have $\operatorname{deg}\left(v_{3}\right) \geq 8$. By Subrules F3.1-F3.5, u_{1} sends at most 1 to the face $\left[u_{1} w v_{1}\right]$. By Subrule F3.5, u_{1} sends at most $\frac{1}{2}$ to the face $\left[u_{1} w v_{3}\right]$ since $\operatorname{deg}\left(v_{3}\right) \geq 8$. Since none of v_{1}, v_{2} and v_{3} is a bad 3 -vertex, we have that u_{1} does not send any charge to v_{1}, v_{2} or v_{3}. Thus $\Delta_{i}\left(u_{1}\right) \leq \frac{1}{2}+1=\frac{3}{2}$.
(10) Consider H_{10}. By Subrule F3.6, u_{1} sends $\frac{1}{2}$ to f, thus $\Delta_{10}\left(u_{1}\right)=\frac{1}{2}$.

Define the total net-losing-charge of a 23^{+}-vertex u as the value of losingcharge minus getting-charge of u. Recall the definition of spanning vertices. A spanning vertex of a face f of D^{\times}is a vertex of G, which is incident with f, or is incident with an edge e of G such that e contains an incident edge of f in D^{\times}. We have the following lemma.

Lemma 2.26. Let u be a 23^{+}-vertex. Then

$$
\begin{aligned}
\Delta(u) \leq & \frac{4}{3} h_{1}(u)+\frac{7}{3} h_{2}(u)+\frac{10}{7} h_{3,1}(u)+\frac{10}{7} h_{3,2}(u)+\frac{15}{7} h_{3,3}(u)+\frac{7}{6} h_{4}(u) \\
& +\frac{10}{3} h_{5}(u)+\frac{3}{2} h_{6,1}(u)+\frac{3}{2} h_{6,2}(u)+\frac{9}{4} h_{6,3}(u)+\frac{4}{3} h_{7}(u)+\frac{3}{2} h_{8}(u) \\
& +\frac{3}{2} h_{9}(u)+\frac{1}{2} h_{10}(u) .
\end{aligned}
$$

Proof. Let f be an incident face of u. Assume that f has a spanning bad 3vertex v^{\prime}. Then by Lemmas 2.15, 2.17, 2.18 and 2.19, there is a unique $X \in \mathcal{H}_{i}$ for $i \in[1,8]$, which contains v^{\prime} and f under D. Since u is incident with f, X contains u. Thus, since $\operatorname{deg}(u) \geq 23, u v^{\prime} \in E(G)$ by Lemmas 2.15, 2.17, 2.18 and 2.19 , and then $X \in \mathcal{H}_{i}(u)$. Thus the part of total net-losing-charge of u formed by X can be checked by (1)-(8) of Lemma 2.25. Assume that no spanning vertex of f is a bad 3 -vertex. If $\operatorname{deg}(f) \geq 4$, then u does not lose charge to f in the two steps of discharging, thus we do not consider this case. If $\operatorname{deg}(f)=3$, then there is a unique $Y \in \mathcal{H}_{i^{\prime}}(u)$ for $i^{\prime} \in\{9,10\}$ containing f
under D (note for $Y \in \mathcal{H}_{i^{\prime}}(u), u$ is isomorphic to u_{1} of $H_{i^{\prime}}$). Thus the part of total net-losing-charge of u formed by Y can be checked by (9) and (10) of Lemma 2.25. Hence, by Lemma 2.25, this lemma holds.
Lemma 2.27. Let u be a 23^{+}-vertex. Then $\operatorname{ch}_{2}(u) \geq 0$.
Proof. Denote $d(u)=\operatorname{deg}(u)$. By inequality (8) (Lemma 2.26), we have

$$
\begin{aligned}
\Delta(u) \leq & \frac{5}{6}\left[2 h_{1}(u)+3 h_{2}(u)+2 h_{3,1}(u)+2 h_{3,2}(u)+3 h_{3,3}(u)+2 h_{4}(u)\right. \\
& +4 h_{5}(u)+2 h_{6,1}(u)+2 h_{6,2}(u)+3 h_{6,3}(u)+2 h_{7}(u)+2 h_{8}(u) \\
& \left.+2 h_{9}(u)+h_{10}(u)\right] .
\end{aligned}
$$

Further, by inequality (7) (Lemma 2.22) we have $\Delta(u) \leq \frac{5}{6} d(u)$. Thus $c_{2}(u)=$ $(d(u)-4)-\Delta(u) \geq(d(u)-4)-\frac{5}{6} d(u)=\frac{1}{6} d(u)-4$. When $d(u) \geq 24$, we have $c h_{2}(u) \geq 0$.

Next assume that $d(u)=23$. By inequality (8), we have

$$
\begin{aligned}
\Delta(u) \leq & \left(\frac{5}{6}-\frac{7}{9}\right) \cdot 4 h_{5}(u)+\frac{7}{9}\left[2 h_{1}(u)+3 h_{2}(u)+2 h_{3,1}(u)+2 h_{3,2}(u)\right. \\
& +3 h_{3,3}(u)+2 h_{4}(u)+4 h_{5}(u)+2 h_{6,1}(u)+2 h_{6,2}(u)+3 h_{6,3}(u) \\
& \left.+2 h_{7}(u)+2 h_{8}(u)+2 h_{9}(u)+h_{10}(u)\right]
\end{aligned}
$$

Further, by inequality (7) (Lemma 2.22), we have $\Delta(u) \leq \frac{2}{9} h_{5}(u)+\frac{7}{9} d(u)$. Since $4 h_{5}(u) \leq d(u)=23$, we have $h_{5}(u) \leq 5$. Thus $c h_{2}(u)=(d(u)-4)-\Delta(u) \geq$ $d(u)-4-\frac{2}{9} h_{5}(u)-\frac{7}{9} d(u)=\frac{2}{9} d(u)-\frac{2}{9} h_{5}(u)-4 \geq \frac{2}{9} \cdot(23-5)-4=0$.

Thus this lemma holds.
By Lemmas 2.23, 2.24 and 2.27, for every $x \in V\left(D^{\times}\right) \cup F\left(D^{\times}\right), c h_{2}(x) \geq 0$. But

$$
\sum_{x \in V\left(D^{\times}\right) \cup F\left(D^{\times}\right)} c h_{2}(x)=\sum_{x \in V\left(D^{\times}\right) \cup F\left(D^{\times}\right)} c h_{0}(x)=-8<0,
$$

a contradiction. Therefore, we prove Theorem 1.4.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, Berlin, 2008.
[2] O. V. Borodin, Solution of the Ringel problems on vertex-face coloring of planar graphs and coloring of 1-planar graphs, Metody Discret. Anal. 41 (1984), 12-26.
[3] , On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989), 180-185.
[4] O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena, Acyclic colouring of 1-planar graphs, Discrete Math. 114 (2001), no. 1-3, 29-41.
[5] J. Czap and D. Hudák, On drawings and decompositions of 1-planar graphs, Electron. J. Combin. 20 (2013), no. 2, 54-60.
[6] I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007), no. 7-8, 854-865.
[7] B. Grünbaum, New views on some old questions of combinatorial geometry, IColloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I, pp. 451-468. Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976.
[8] D. Hudák and P. Šugerek, Light edges in 1-planar graphs with prescribed minimum degree, Discuss. Math. Graph Theory 32 (2012), no. 3, 545-556.
[9] S. Jendrol and H.-J. Voss, Light subgraphs of graphs embedded in the plane-A survey, Discrete Math. 313 (2013), no. 4, 406-421.
[10] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Časpis. Slovensk. Akad. Vied (Math. Slovaca) 5 (1955), 101-113.
[11] X. Zhang, Light 3-cycles in 1-planar graphs with degree restrictions, Bull. Korean Math. Soc. 51 (2014), no. 2, 511-17.
[12] X. Zhang and J. Wu, On edge colorings of 1-planar graphs, Inform. Process. Lett. 111 (2011), no. 3, 124-128.
[13] , On edge colorings of 1-planar graphs without adjacent triangles, Inform. Process. Lett. 112 (2012), no. 4, 138-142.

Zai Ping Lu
Center for Combinatorics
LPMC-TJKLC
Nankai University
Tianjin 300071, P. R. China
E-mail address: lu@nankai.edu.cn
Ning Song
Center for Combinatorics
LPMC-TJKLC
Nankai University
Tianjin 300071, P. R. China
E-mail address: nsong28@sina.com

[^0]: Received April 7, 2016; Revised July 29, 2016.
 2010 Mathematics Subject Classification. 05C10, 68R10.
 Key words and phrases. 1-planar graph, weight, light edge.

