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ON THE MINIMUM WEIGHT OF A 3-CONNECTED

1-PLANAR GRAPH

Zai Ping Lu and Ning Song

Abstract. A graph is called 1-planar if it can be drawn in the Euclidean

plane R2 such that each edge is crossed by at most one other edge. The
weight of an edge is the sum of degrees of two ends. It is known that

every planar graph of minimum degree δ ≥ 3 has an edge with weight

at most 13. In the present paper, we show the existence of edges with
weight at most 25 in 3-connected 1-planar graphs.

1. Introduction

All graphs considered in this paper are finite, simple, undirected and con-
nected. The notations and terminology used but undefined here can be found
in the book of Bondy and Murty [1].

Let G be a graph, and denote the vertex set and edge set of G by V (G) and
E(G), respectively. We denote the degree of a vertex v ∈ V (G) by deg(v). For
a positive integer k, we say that a vertex v ∈ V (G) is a k-vertex, k+-vertex and
k−-vertex if deg(v) = k, deg(v) ≥ k and deg(v) ≤ k, respectively. For positive
integers a and b, if xy ∈ E(G) with deg(x) = a and deg(y) = b, then we say
that xy is of type (a, b) or xy is an (a, b)-edge, and say x is an a-neighbour
of y. For a tuple denoted type of an edge, we sometimes use a+ and a− for
some entry in the tuple if the corresponding vertex is of degree ≥ a and ≤ a,
respectively.

For an edge xy ∈ E(G), its weight is the sum of degrees of two ends, denoted
by w(xy). If mine∈E(G) w(e) = w, then we say that G has the minimum weight
w, and say the edges with weight w are light edges of G. (In some earlier
papers, “light edge” was defined as an edge with weight at most 13. But in [8],
the meaning of “light edge” was changed, and in the present paper, we use the
definition in [8].)

The interesting for light edges stemmed from the famous Kotzig’s Theorem
[10]. It states that the minimum weight of every 3-dimension polyhedral graph
(i.e., 3-connected planar graph) is at most 13, and if the graph has no 3-vertices
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then the minimum weight of it is at most 11. Furthermore these bounds are
sharp. Afterward, this theorem is developed by many graph-theorists. Accord-
ing to Grünbaum (see [7]), Erdős conjectured that Kotzig’s conclusion holds
for every planar graph of minimum degree at least 3, which was proved by Bar-
nette (but never published, see [7]) and by Borodin [3] in 1989 independently.
Readers may consult [9] for more results on this topic.

This paper focuses on light edges of 1-planar graphs. A graph G is called
1-planar if it can be drawn in the plane such that each edge is crossed by at
most one other edge, while the drawing is called a 1-planar drawing of G and a
crossing point is called by a crossing for short. Note that we assume that the
interiors of any two edges are not tangent and any three distinct edges do not
intersect at a crossing in common throughout this paper.

The conception of 1-planar graphs was introduced by Ringle [2] in the solu-
tion of simultaneous vertex-face coloring problem. Since then, 1-planar graphs
have been studied extensively and lots of interesting results have appeared on
acyclic coloring [4], decomposition [5], light subgraphs [11] and edge coloring
[12, 13]. Especially, Fabrici and Madaras [6] investigated the local structure of
1-planar graph and they showed the following result which implies that each
light edge in a 3-connected 1-planar graph has weight at most 40.

Theorem 1.1 ([6]). Every 3-connected 1-planar graph G contains an edge with
both ends of degree at most 20 in G. The bound 20 is the best possible.

Fig. 1

In [6], the authors gave an example to show the sharpness of the bound 20
as follows: for each triangle face f of the icosahedron, insert three new vertices
in the interior of f , add 9 edges joining the new vertices and the vertices of
f , see Fig. 1. Then the resulting graph has only edges of type (3, 20) and
(20, 20). This example also indicates that 40 might not be the best bound of
the minimum weight of 3-connected 1-planar graphs.

In 2012, Hudák and Šugerek [8] proved the following theorem.

Theorem 1.2 ([8]). Every 1-planar graph G of minimum degree δ ≥ 4 contains
an edge of type (4, 13−), (5, 9−), (6, 8−) or (7, 7). In particular, the minimum
weight of G is at most 17, and it is at most 14 when δ > 4.
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Based on the example mentioned above, the authors of [8] proposed the
following conjecture.

Conjecture 1.3 ([8]). Every 1-planar graph of minimum degree δ ≥ 3 contains
an edge of type (3, 20−), (4, 13−), (5, 9−), (6, 8−) or (7, 7).

Motivated by this conjecture, we prove the following theorem in the present
paper.

Theorem 1.4. Every 3-connected 1-planar graph G contains an edge of type
(3, 22−), (4, 13−), (5, 9−), (6, 8−) or (7, 7). In particular, the minimum weight
of G is at most 25.

2. Proof of Theorem 1.4

Suppose Theorem 1.4 does not hold. Let G be a counterexample to Theorem
1.4 with n vertices, such that G has the largest number of edges among all
counterexamples with n vertices.

Define a function φ on {3, 4, 5, . . .} such that φ(·) satisfies the following table.

d 3 4 5 6 ≥ 7
φ(d) 23 14 10 9 8

Noting G is a counterexample and the minimum degree of G is at least 3 since
G is 3-connected, the following observation holds clearly.

Observation 2.1. For every edge uv ∈ E(G), if deg(u) = d ≤ 7, then deg(v) ≥
φ(d), i.e., every edge of G is of type (3, 23+), (4, 14+), (5, 10+), (6, 9+) or
(7+, 8+).

Note that a 1-planar graph may have different 1-planar drawings. We use
D(G) to denote the set of 1-planar drawings of G with the least number of
crossings. Take D ∈ D(G). Then it is easy to see that no edge is self-crossing
and adjacent edges (i.e., edges with a common end) do not cross in D. By the
above assumptions, G and D has the following properties.

(I) G is a 3-connected 1-planar n-order graph of the minimum degree δ ≥ 3;
(II) every edge ofG is of type (3, 23+), (4, 14+), (5, 10+), (6, 9+) or (7+, 8+);

(III) for all graphs satisfying above (I) and (II), the number of edges of G is
maximum;

(IV) D is a 1-planar drawing of G and has as few crossings as possible;
(V) no edge is self-crossing and adjacent edges do not cross in D.

For D ∈ D(G), we can get a plane graph, denoted by D× and called associ-
ated plane graph of D, by replacing every crossing by a new 4-vertex. In D×,
a vertex is called false if it corresponds to a crossing of D, and an edge or face
is called false if it is incident with some false vertex. A vertex, edge or face is
called true if it is not false.

Denote by F (D×) the set of faces of D×. Since G is 3-connected, it is easy
to see D× is at least 2-connected. Then for every f ∈ F (D×), the boundary of
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f is a cycle, denoted by ∂f . The length of ∂f is called the degree of f , denoted
by deg(f). We say a face f is an r-face, r−-face and r+-face if deg(f) = r,
deg(f) ≤ r and deg(f) ≥ r, respectively.

Let f be an r-face with vertices v1, v2, . . . , vr in a cyclic order. Then we
write f = [v1v2 · · · vr]. Furthermore, if deg(vi) = di, then we say that f is
of type (d1, d2, . . . , dr) or f is a (d1, d2, . . . , dr)-face. In a tuple denoting the
type of a face, we sometimes use a+ and a− for some entry in the tuple if the
corresponding vertex is of degree ≥ a and ≤ a, respectively. For a false face or
false edge, in the type tuple of it, we always write an entry as the symbol ⊗ if
its corresponding vertex is false.

Next assign charge on the vertices and faces of D×. Define the initial charge
function ch0(·) as follows:

ch0(x) = deg(x)− 4 for x ∈ V (D×) ∪ F (D×).

By Euler’s Formula, we have∑
v∈V (D×)

(deg(v)− 4) +
∑

f∈F (D×)

(deg(f)− 4) = −8.

Thus ∑
x∈V (D×)∪F (D×)

ch0(x) = −8.

Next we use a two-step discharging process to finish our proof. Denote by
chi(x) the charge of x after ith discharging where i = 1, 2. We shall show that
ch2(x) ≥ 0 for every x ∈ V (D×) ∪ F (D×).

2.1. First-step

Some work in the first-step is similar with [8]. But some difference exists
between [8] and the present paper. For completeness, we shall write this part
as follows.

The discharging rules of the first-step:

Rule F0: The charge of every 4+-face and every 4-vertex is not changed.

Rule F1: Let d ∈ [5, 8] be an integer. Assume that v is a d-vertex and f is an
incident 3-face of v.

• Subrule F1.1: If f is false, then move d−4
2·bd/2c units charge from v to

f .
• Subrule F1.2: If f is true and d ∈ [5, 7], then move no charge from v

to f .
• Subrule F1.3: If f is true and d = 8, then move 1

2 unit charge from
v to f .

Rule F2: Assume that v is a 9-vertex and f is an incident 3-face of v.

• Subrule F2.1: If f is of type (9, 6,⊗), then move 2
3 units charge from

v to f .
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• Subrule F2.2: If f is of type (9, 7+,⊗), then move 1
2 unit charge from

v to f .
• Subrule F2.3: If f is of type (9, 9+, 9+), then move 1

3 unit charge
from v to f .
• Subrule F2.4: If f is true but not of type (9, 9+, 9+), then move 1

2
unit charge from v to f .

Rule F3: Let d ≥ 10 be an integer. Assume that v is a d-vertex and f is an
incident 3-face of v.

• Subrule F3.1: If f is of type (d, 3,⊗), then move 1 unit charge from
v to f .
• Subrule F3.2: If f is of type (d, 4,⊗), then move 1 unit charge from
v to f .
• Subrule F3.3: If f is of type (d, 5,⊗), then move 3

4 units charge from
v to f .

• Subrule F3.4: If f is of type (d, 6,⊗), then move 2
3 units charge from

v to f .
• Subrule F3.5: If f is of type (d, 7+,⊗), then move 1

2 unit charge from
v to f .
• Subrule F3.6: If f is true, then move 1

2 unit charge from v to f .

Lemma 2.2. Let f be a true 3-face of D×. Then ch1(f) ≥ 0.

Proof. Assume that f = [u1u2u3] and deg(u1) ≤ deg(u2) ≤ deg(u3). Denote
di = deg(ui) for i = 1, 2, 3.

Case 1. Assume 3 ≤ d1 ≤ 7. Then d2, d3 ≥ φ(d1) by Observation 2.1. If
3 ≤ d1 ≤ 5, then d2, d3 ≥ 10, thus by Subrule F3.6, 1

2 is moved from u2 and u3
to f , respectively, and it follows that ch1(f) = (3− 4) + 1

2 + 1
2 = 0. If d1 = 6,

then d2, d3 ≥ 9, thus by Subrules F2.4 and F3.6, 1
2 is moved from u2 and u3

to f , respectively, and it follows that ch1(f) = (3− 4) + 1
2 + 1

2 = 0. If d1 = 7,

then d2, d3 ≥ 8, thus by Subrules F1.3, F2.4 and F3.6, 1
2 is moved from u2 and

u3 to f , respectively, and it follows that ch1(f) = (3− 4) + 1
2 + 1

2 = 0.
Case 2. Assume d1 ≥ 8. If d1 = 8, then d2, d3 ≥ 8, thus by Subrules F1.3,

F2.4 and F3.6, 1
2 is moved from u2 and u3 to f , respectively, and it follows

that ch1(f) ≥ (3 − 4) + 1 = 0. If d1 = 9, then d2, d3 ≥ 9, thus by Subrules
F2.3 and F3.6, at least 1

3 is moved from each ui to f for i = 1, 2, 3, and it

follows that ch1(f) ≥ (3− 4) + 3 · 13 = 0. If d1 ≥ 10, then d2, d3 ≥ 10, thus by

Subrule F3.6, 1
2 is moved from each ui to f for i = 1, 2, 3, and it follows that

ch1(f) ≥ (3− 4) + 3 · 12 > 0. �

Lemma 2.3. Let f be a false 3-face of D×. Then ch1(f) ≥ 0.

Proof. Assume that f = [u1u2u3]. Since f is false and D is a 1-planar drawing,
assume that u1 is false and u2 and u3 are true. Denote di = deg(ui) for i = 2, 3
and assume d2 ≤ d3.



Ah
ea

d 
of

 P
rin

t6 Z. P. LU AND N. SONG

Case 1. Assume 3 ≤ d2 ≤ 7. Then d3 ≥ φ(d2) by Observation 2.1. If
d2 = 3, then d3 ≥ 23 and by Subrule F3.1, u3 sends 1 to f , thus ch1(f) =
(3 − 4) + 1 = 0. If d2 = 4, then d3 ≥ 14 and by Subrule F3.2, u3 sends 1 to
f , thus ch1(f) = (3 − 4) + 1 = 0. If d2 = 5, then d3 ≥ 10, thus u3 sends 3

4

to f by Subrule F3.3 and u2 sends 1
4 to f by Subrule F1.1, and it follows that

ch1(f) ≥ (3 − 4) + 3
4 + 1

4 = 0. If d2 = 6, then d3 ≥ 9, thus u2 sends 1
3 to f

by Subrule F1.1 and u3 sends 2
3 to f by Subrules F2.1 and F3.4, and it follows

that ch1(f) ≥ (3− 4) + 1
3 + 2

3 = 0. If d2 = 7 , then d3 ≥ 8, thus u2 sends 1
2 to

f by Subrule F1.1 and u3 sends 1
2 to f by Subrules F1.1, F2.2 and F3.5, and

it follows that ch1(f) ≥ (3− 4) + 1
2 + 1

2 = 0.

Case 2. Assume d2 ≥ 8. If d2 = 8, then d3 ≥ 8, thus u2 sends 1
2 to f

by Subrule F1.1 and u3 sends 1
2 to f by Subrules F1.1, F2.2 and F3.5, and it

follows that ch1(f) ≥ (3 − 4) + 1
2 + 1

2 = 0. If d2 = 9, then d3 ≥ 9, thus u2
sends 1

2 to f by Subrule F2.2 and u3 sends 1
2 to f by Subrules F2.2 and F3.5,

and it follows that ch1(f) ≥ (3 − 4) + 1
2 + 1

2 = 0. If d2 ≥ 10, then d3 ≥ 10,

thus by Subrule F3.5, u2 and u3 send 1
2 to f , respectively, and it follows that

ch1(f) ≥ (3− 4) + 1
2 + 1

2 = 0. �

Lemma 2.4. Let v be a d-vertex of D× where 4 ≤ d ≤ 8. Then ch1(v) ≥ 0.

Proof. If d = 4, then the charge of v is not changed by Rule F0, thus ch1(v) =
ch0(v) = 4−4 = 0. Assume 5 ≤ d ≤ 8. By Rule F0, v does not send any charge
to any incident 4+-face. Thus it is sufficient to consider the incident 3-faces of
v. If d = 8, then v sends 1

2 to every incident 3-face by Subrules F1.1 and F1.3,

thus ch1(v) = (8 − 4) − 8 · 12 = 0. Assume 5 ≤ d ≤ 7. By Subrules F1.1 and

F1.2, v sends d−4
2·bd/2c to every incident false 3-face and does not send any charge

to any true incident 3-face. Since D is a 1-planar drawing, v has at most 2 · bd2c
incident false 3-faces. It follows that ch1(v) ≥ (d−4)−

(
2·
⌊
d
2

⌋)
· d−4
2·bd/2c = 0. �

Lemma 2.5. Let u ∈ V (D×) and uv1, uv2 ∈ E(D×) such that no edge of
D× incident with u lies between uv1 and uv2 (in a cyclic order). Denote di =
deg(vi) for i = 1, 2 and assume d1 ≥ d2. If d1+1 ≥ φ(d2+1), then v1v2 ∈ E(G)
without crossing and uv1v2u bounds a face of D×.

Proof. Suppose that v1 is not adjacent to v2 in G. Add a new edge to G joining
v1 and v2, and draw this edge along a route closed enough to the simple curve
formed by v1u and uv2, see the thin curve in Fig. 2. Denote the resulting
graph and drawing by G1 and D1, respectively. Note that uv1 and uv2 are not
crossed and no edge incident with u lies between uv1 and uv2 in D×. Then
the new edge v1v2 has no crossing in D1. Thus D1 is a 1-planar drawing and
G1 is a 1-planar graph. Since d1 + 1 ≥ φ(d2 + 1), the new edge v2v1 is of type
(d2 + 1, φ(d2 + 1)+) in G1, thus G1 still is a counterexample to Theorem 1.4.
But G1 has more one edge than G, which contradicts the maximality of G.
Thus v1v2 ∈ E(G).
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u v2

v1

u v2

v1

u is true u is false

Fig. 2

Consider the closed simple curve formed by v1u, uv2 and v2v1, denoted by
C. Suppose some edge e of G crossing v1v2 in D. Since no edge incident with u
lies between uv1 and uv2, e is not adjacent to u. Thus e has an end w located
in the interior of C. Redrawing v1v2 along a route closed enough to the simple
curve formed by v1u and uv2. Then we get a 1-planar drawing which has less
crossings than D, a contradiction. Thus v1v2 has no crossing.

Considering stereographic projection, assume that there is some true vertex
outside C. Suppose some true vertex lies inside C. Note that uv1, uv2 and
v1v2 are not crossed and no edge incident with u lies between uv1 and uv2. If
remove v1 and v2 then the resulting graph is not connected, which contradicts
the 3-connectivity of G. Thus no true vertex lies inside C. It follows that no
false vertex lies inside C since D is 1-planar. Since uv1, uv2 and v1v2 are not
crossed, then no edge of G crosses C. Thus C bounds a face of D×. �

Considering stereographic projection, in this paper, we always assume that
the face bounded by uv1v2u is an inner-face.

Take an integer d0 ∈ [3, 7]. Let u ∈ V (G) with deg(u) ≥ φ(d0). Denote by
F (u) the set of incident faces of u. Define

F1(u, d0) = {f ∈ F (u)
∣∣ f is of type (deg(u), d,⊗) for every d ∈ [d0, 7]}

and

F2(u, d0) = {f ∈ F (u)
∣∣ f is of type (deg(u), φ(d)+,⊗) for every d ∈ [d0, 7]}.

Corollary 2.6. Let d0 ∈ [3, 7] and u ∈ V (G) with deg(u) ≥ φ(d0). For every
f ∈ F1(u, d0), there is exactly one f ′ ∈ F2(u, d0) neighbouring f ; and for every
f ′ ∈ F2(u, d0), there is at most one face f ∈ F1(u, d0) neighbouring f ′.

Proof. Take d ∈ [d0, 7]. Assume f = [uvx] ∈ F1(u, d0) where v and x are d-
and false neighbour of u in D×, respectively. Assume that vx is contained in an
edge vw of G in D. Since d, d0 ≤ 7, deg(w) ≥ φ(d) ≥ 8 and deg(u) ≥ φ(d0) ≥ 8
by Observation 2.1. Thus, by Lemma 2.5, uw ∈ E(D×) and cycle uxwu bounds
a face, denoted by f ′. Clearly, f ′ ∈ F2(u, d0). Since G is simple, the neighbour
of f sharing vx cannot incident with u, thus it is not a member of F2(u, d0).
Noting d ≤ 7 < 8 ≤ φ(d′) for every d′ ∈ [d0, 7], the neighbour of f sharing
uv is not a member of F2(u, d0). Thus there is exactly one f ′ ∈ F2(u, d0)
neighbouring f . Similarly, for every f ′ ∈ F2, there is at most one face f ∈
F1(u, d0) neighbouring f ′. �
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Lemma 2.7. Let d0 ∈ [3, 7] and u ∈ V (G) with deg(u) = r ≥ φ(d0). If u has
exactly s incident 4+-faces, then |F1(u, d0)| ≤

⌊
r−s
2

⌋
. Further, if s = 0 and

r ≡ 2(mod 4), then |F1(u, d0)| ≤ r
2 − 1.

Proof. By Corollary 2.6, |F1(u, d0)| ≤ |F2(u, d0)|. Noting F1(u, d0)∩F2(u, d0) =
∅, then r = deg(u) ≥ |F1(u, d0)| + |F2(u, d0)| + s ≥ 2|F1(u, d0)| + s. Thus
|F1(u, d0)| ≤

⌊
r−s
2

⌋
.

Assume that s = 0 and r = 4k + 2. Then |F1(u, d0)| ≤ 2k + 1. Suppose
|F1(u, d0)| = 2k+ 1. Then |F2(u, d0)| ≥ |F1(u, d0)| = 2k+ 1. But deg(u) = r =
4k + 2, thus |F2(u, d0)| = 2k + 1. Then F (u) = F1(u, d0) ∪ F2(u, d0). Take a
face f = [uvx] ∈ F1(u, d0) where v and x are d-neighbour (d ∈ [d0, 7]) and false
neighbour of u in D×, respectively. Denote by f ′′ the neighbour of f sharing
uv. Then f ′′ 6∈ F2(u, d0) by Corollary 2.6. But F (u) = F1(u, d0) ∪ F2(u, d0),
thus f ′′ ∈ F1(u, d0). It follows that for every f ∈ F1(u, d0), there is exactly
one f ′′ ∈ F1(u, d0) neighbouring f and sharing a true edge. Thus |F1(u, d0)| is
even, which contradicts |F1(u, d0)| = 2k + 1. Hence |F1(u, d0)| < 2k + 1, i.e.,
|F1(u, d0)| ≤ r

2 − 1. �

Lemma 2.8. Let u be a 9-vertex. Then ch1(u) ≥ 0.

Proof. Let a1, a2, a3, a4 and a5 denote the number of incident 4+-faces, incident
(9, 6,⊗)-faces, incident (9, 7+,⊗)-faces, incident (9, 9+, 9+)-faces and the other
true incident 3-faces of u, respectively. First we show that

(1) −3a1 + a2 − a4 ≤ 3.

Take d0 = 6. By Lemma 2.7, a2 ≤ |F1(u, 6)| ≤
⌊
9−a1

2

⌋
. Then −3a1 + a2 −

a4 ≤ −3a1+
⌊
9−a1

2

⌋
−a4. If a1 ≥ 1, then −3a1+a2−a4 ≤ −3+

⌊
8
2

⌋
−a4 ≤ 1 < 3.

Assume a1 = 0. Then a2 ≤
⌊
9
2

⌋
= 4. If a2 ≤ 3, then −3a1 + a2 − a4 ≤

0 + 3 − a4 ≤ 3. Next assume a1 = 0 and a2 = 4. Denote by e1, e2, . . . , e9
the nine edges of D× incident with u (do not consider the order). Note that
one (9, 6,⊗)-face cannot be a neighbour of another (9, 6,⊗)-face by sharing a
(9,⊗)-edge (otherwise there is an (6, 6)-edge of G, which contradicts the choice
of G). Then there are four (9,⊗)-edges incident with u since a2 = 4, and
assume that e1, e2, e3 and e4 are of type (9,⊗). If one of e5, e6, . . . , e9 is false,
then u has an incident face f with two false vertices, but deg(f) = 3 since
a1 = 0, which is impossible by the 1-planarity of D. Thus e5, e6, . . . , e9 are
true. It follows that u has a true incident 3-face g (note a1 = 0). By Corollary
2.6, there are four incident (9, 9+,⊗)-faces of u, which are neighbours of the
four incident (9, 6,⊗)-faces of u, respectively. Thus g is a (9, 9+, 9+)-face. So
a4 = 1 and −3a1 + a2 − a4 = 0 + 4− 1 = 3. Then (1) holds.

Note that

(2) a1 + a2 + a3 + a4 + a5 = 9.

By (1) + 3 · (2), we have

4a2 + 3a3 + 2a4 + 3a5 ≤ 30.
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Then by Rule F2, ch1(u) = 9− 4− 2
3a2−

1
2a3−

1
3a4−

1
2a5 = 5− 1

6 (4a2 + 3a3 +

2a4 + 3a5) ≥ 5− 30
6 = 0. �

Lemma 2.9. Let u be an r-vertex where 10 ≤ r ≤ 13. Then ch1(u) ≥ 0.

Proof. Let a1, a2, a3, a4 and a5 denote the number of incident 4+-faces, incident
(r, 5,⊗)-faces, incident (r, 6,⊗)-faces, incident (r, 7+,⊗)-faces and incident true
3-faces of u, respectively. First we show that

(3) −2a1 + a2 + a3 ≤ 2r − 16.

Take d0 = 5. By Lemma 2.7, a2 + a3 ≤ |F1(u, 5)| ≤
⌊
r−a1

2

⌋
. If a1 ≥ 1, then

−2a1 + a2 + a3 ≤ −2a1 + r−a1

2 = r−5a1

2 ≤ r−5
2 ≤ 2r− 16 since r ≥ 10. Assume

that a1 = 0. If r ≥ 11, then −2a1 + a2 + a3 ≤ 0 + r
2 ≤ 2r − 16. Next consider

the case of r = 10. Since 10 ≡ 2(mod 4), a2 + a3 ≤ r
2 − 1 = 4 by Lemma 2.7.

Thus −2a1 + a2 + a3 ≤ 4 = 2r − 16. Then (3) holds. Note that

(4) a1 + a2 + a3 + a4 + a5 = r.

By (3) + 2 · (4), we have

3a2 + 3a3 + 2a4 + 2a5 ≤ 4r − 16.

Then by Rule F3, ch1(u) = r−4− 3
4a2−

2
3a3−

1
2a4−

1
2a5 ≥ r−4− 3

4a2−
3
4a3−

1
2a4 −

1
2a5 = r − 4− 1

4 (3a2 + 3a3 + 2a4 + 2a5) ≥ r − 4− 1
4 (4r − 16) = 0. �

Lemma 2.10. Let u be an r-vertex with 14 ≤ r ≤ 22. Then ch1(u) ≥ 0.

Proof. Let a1, a2, a3, a4, a5 and a6 denote the number of incident 4+-faces,
incident (r, 4,⊗)-faces, incident (r, 5,⊗)-faces, incident (r, 6,⊗)-faces, incident
(r, 7+,⊗)-faces and incident true 3-faces of u, respectively. First we show that

(5) −a1 + a2 + a3 + a4 ≤ r − 8.

Take d0 = 4. By Lemma 2.7, a2 + a3 + a4 ≤ |F1(u, 4)| ≤
⌊
r−a1

2

⌋
. Thus

−a1 + a2 + a3 + a4 ≤ r−3a1

2 . If a1 ≥ 1, then −a1 + a2 + a3 + a4 ≤ r−3
2 ≤ r− 8

since r ≥ 14. Next assume that a1 = 0. If r ≥ 16, then −a1 + a2 + a3 + a4 ≤
0 + r

2 ≤ r− 8. If r = 15, then −a1 + a2 + a3 + a4 ≤ 0 +
⌊
15
2

⌋
= 7 = r− 8. Next

consider the case of r = 14. Since 14 ≡ 2(mod 4), a2 + a3 + a4 ≤ r
2 − 1 = 6 by

Lemma 2.7. Thus −a1 + a2 + a3 + a4 ≤ 6 = r − 8. Then (5) holds. Note that

(6) a1 + a2 + a3 + a4 + a5 + a6 = r.

By (5) + (6), we have

2a2 + 2a3 + 2a4 + a5 + a6 ≤ 2r − 8.

Then by Rule F3, ch1(u) = r−4−a2− 3
4a3−

2
3a4−

1
2a5−

1
2a6 ≥ r−4−a2−a3−

a4− 1
2a5−

1
2a6 = r−4− 1

2 (2a2+2a3+2a4+a5+a6) ≥ r−4− 1
2 (2r−8) = 0. �
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Let f ∈ F (D×). If deg(f) = 3, then ch1(f) ≥ 0 by Lemmas 2.2 and 2.3.
If deg(f) ≥ 4, then ch1(f) = ch0(f) = deg(f) − 4 ≥ 0 by Rule F0. Hence,
ch1(f) ≥ 0 for every f ∈ F (D×). Let v ∈ V (D×). If 4 ≤ deg(v) ≤ 8, then
ch1(v) ≥ 0 by Lemma 2.4. If deg(v) = 9, then ch1(v) ≥ 0 by Lemma 2.8.
If 10 ≤ deg(v) ≤ 13, then ch1(v) ≥ 0 by Lemma 2.9. If 14 ≤ deg(v) ≤ 22,
then ch1(v) ≥ 0 by Lemma 2.10. Hence, ch1(v) ≥ 0 when 4 ≤ deg(v) ≤ 22.
In summary, when we finish the first-step discharging, we have the following
table.

degree of faces ch1(·) degree of vertices ch1(·)
3 ≥ 0 3 −1

d ≥ 4 d− 4 ≥ 0 4 ≤ d ≤ 22 ≥ 0

2.2. Bad 3-vertices

Lemma 2.11. Let f = [v1v2 · · · vr] (r ≥ 4) be a face of D×. If deg(v1) ≥ 13,
then r = 4, v3 is false and v2 and v4 are true.

Proof. Suppose that vj is true for some 3 ≤ j ≤ r − 1. We claim that v1vj ∈
E(G). Suppose that v1 and vj are not adjacent. Then add a new edge to D
joining v1 and vj in the interior of the face f of D×. Since deg(v1) ≥ 13 and
δ ≥ 3, the resulting graph is still a counterexample with n vertices but has more
edges, which contradicts the maximality of G. Thus v1vj ∈ E(G). Since f is a
face, v1vj is located outside f in D×. Further, if v1vj has a crossing, then we
can redraw v1vj inside f , and lose a crossing, but D has the minimum crossings,
a contradiction. Let C and C ′ be the cycles v1v2 · · · vjv1 and vjvj+1 · · · vrv1vj
of D×, respectively. Since v1vj has two drawings, either v2 lies inside C ′ or vr
inside C. Considering stereographic projection, assume that v2 lies inside C ′.
Then vr locates outside C, and further, since v1vj has no crossing, f is a face of
D× and adjacent edges do not cross, there is some true vertex located outside
C whether vr is true or not, denoted by u. For 1 < i < j, if some vertex vi is
true, then every path of G from vi to u must meet v1 or vj since v1vj has no
crossing and f is a face of D×, thus {v1, vj} is a 2-cut of G, which contradicts
3-connectivity of G. It follows that every vi (1 < i < j) is false. But no false
vertices are adjacent in D× since D is a 1-planar drawing. Since 3 ≤ j ≤ r− 1,
we have j = 3, and thus v2 is false. By the property (V) on Page 4, there are
two true neighbours of v2 inside C. Denote by w one of them. Then every
path of G from w to u must meet v1 or vj since v1vj has no crossing and f is
a face of D×, thus {v1, vj} is a 2-cut of G, which contradicts 3-connectivity of
G, again. Hence every vj is false for 3 ≤ j ≤ r − 1, in particular, v3 is false.

Since D is a 1-planar drawing, no false vertices are adjacent. Thus r ≤ 4.
But by the assumption of this lemma, r ≥ 4, thus r = 4. Since v3 is false, v2
and v4 are true. �

Say an r-face f of D× is bad if f is incident with at least (r− 3) 3-vertices.
A face is good if it is not bad. For bad faces, we have some easy properties as
follows.



Ah
ea

d 
of

 P
rin

tON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH 11

Lemma 2.12. (1) Every 3-face is bad.
(2) A bad face has degree 3, 4, or 6.
(3) A bad 6-face is of type (3,⊗, 3,⊗, 3,⊗).

Proof. By the definition, (1) holds clearly. Let f be a bad r-face with r ≥ 5.
By the property (II) on Page 3, any two 3-vertices are not adjacent. Thus f has
at most b r2c incident 3-vertices. It follows that r

2 ≥ r − 3 since f is bad, thus

r ≤ 6. Since r ≥ 5, r = 5 or 6. If r = 5, then f has at most b 52c = 2 incident
3-vertices; on the other hand, f has at least 5− 3 = 2 incident 3-vertices since
f is bad, thus f has exactly two incident 3-vertices. Similarly, if r = 6, then f
has exactly three incident 3-vertices. In a word, f has exactly (r − 3) incident
3-vertices, and the other three vertices are 23+- or false vertices. By Lemma
2.11, f has no 23+-vertex. Hence, if r = 5, f is incident with three false
vertices, which is impossible by 1-planarity of D, and since r ≤ 6, (2) holds;
if r = 6, f is incident with three 3-vertices and three false vertices, thus (3)
holds. �

Lemma 2.13. Let f = [v1x1v2x2v3x3] be a bad 6-face where vi’s and xi’s are 3-
and false vertices, respectively. Then NG(v1) = NG(v2) = NG(v3). Moreover,
we can label the three neighbours by u1, u2 and u3, such that

(1) viui+1 crosses vi+1ui at xi,
(2) viui and uiui+1 are not crossed,
(3) these vi’s and xi’s are the only six vertices of D× inside u1u2u3u1, where

i = 1, 2, 3, u4 = u1 and v4 = v1, see Fig. 3.

v1

v2v3

x1

x2

x3

u1

u2u3

f

Fig. 3

Proof. Let NG(v1) = {u1, u2, u3} such that x1 and x3 are located on v1u2 and
v1u3, respectively. Let NG(v2) = {w1, w2, w3} such that x1 and x2 are located
on v2w1 and v2w3, respectively. Then x1 is the crossing of v1u2 and v2w1.

Since deg(v2) = 3, deg(w1) ≥ 23. Then by Lemma 2.5, v1w1 ∈ E(G) and
has no crossing. Since deg(v1) = 3, w1 is coincide to some ui. By the property
(V) on Page 4, w1 6= u2. Since v1w1 has no crossing but v1u3 has a crossing x3,
v1w1 6= v1u3. It follows that w1 6= u3 since G is simple. Thus w1 = u1 and then
v1u1 has no crossing. Similarly, u2 = w2 and v2u2 (i.e., v2w2) has no crossing.
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Since deg(v1) = 3, deg(ui) ≥ 23 where i = 1, 2, 3. By Lemma 2.5, u1u2 is
an edge of G without crossing and u1x1u2u1, u1v1x1u1 and u2v2x1u2 bound
three faces of D×, respectively. By repeating above argument, this lemma is
proved. �

Lemma 2.14. Let f be a bad 4-face. Then f is of type (3,⊗, 12−,⊗) or
(3, 23+, 12−,⊗). If f has two incident 3-vertices, then f is of type (3, 23+, 3,⊗).

Proof. Since f is a bad 4-face, there is a 3-vertex u incident with f . Denote
f = [uxvy]. Suppose that x and y are true. Then by the property (II) on Page
3, x and y are 23+-vertices. By Lemma 2.5, xy ∈ E(G) and has no crossing.
Since f is a face of D×, xy is located outside f . Since xy has no crossing and
f is a face, {x, y} is a 2-cut of G, which contradicts the 3-connectivity of G. It
follows that at least one of x and y is false, and say that y is false. Thus v is true
since D is a 1-planar drawing. If deg(v) ≥ 13, then by Lemma 2.5, uv ∈ E(G)
and has no crossing, but considering f is a face, we have {u, v} is a 2-cut of
G, a contradiction again. Thus deg(v) ≤ 12. Then f is of type (3,⊗, 12−,⊗)
when x is false, or (3, 23+, 12−,⊗) when x is true (by the property (II) on Page
3, deg(x) ≥ 23 when x is true).

Assume that f has two incident 3-vertices u and v. Then f is of type
(3, 23+, 3,⊗) or (3,⊗, 3,⊗). Suppose that f is a (3,⊗, 3,⊗)-face. Then x and
y are false. Let uu1 and vv1 cross at x and uu2 and vv2 cross at y. By the
property (II) on Page 3, deg(ui) ≥ 23 and deg(vi) ≥ 23 (i = 1, 2). By Lemma
2.5, for i = 1, 2, viu and uiv are edges of G without crossing. Since vu1 has no
crossing but vv2 has a crossing y, vu1 6= vv2. It follows that u1 6= v2 since G
is simple. Similarly, u2 6= v1. Further, v1 6= v2 and u1 6= u2 since G is simple;
u1 6= v1 and u2 6= v2 by the property (V) on Page 4. Hence u1, u2, v1 and v2 are
distinct pairwise. It follows that u has degree at least 4 since viu and uui are
edges of G, which contradicts deg(u) = 3. Thus f is a (3, 23+, 3,⊗)-face. �

A 3-vertex is bad, if it is incident with three bad faces. Let v be a bad
3-vertex. Assume that NG(v) = {u1, u2, u3} such that vu1, vu2 and vu3 round
v in a cyclic order in D. Then deg(ui) ≥ 23 (i = 1, 2, 3). By Lemma 2.5, the
following lemma holds.

Lemma 2.15. Let v be a bad 3-vertex and ui’s keep the assumption above. As-
sume that v has no false neighbour in D×. Then G has a cycle C1 = u1u2u3u1
without crossing. Considering stereographic projection, assume that v lies in-
side C1. Then v is the unique vertex of D× inside C1, see Fig. 4.

We denote by H1 the subgraph of G bounded by C1 and fix the drawing
(up to stereographic projection) of H1 shown in Fig. 4. In the present paper,
we shall define some Hi’s, and when we say a graph Hi, we assume that some
drawing of Hi is fixed.

Lemma 2.16. Let v be a bad 3-vertex and ui’s keep the assumption above.
Assume that vu1 is crossed by xy at w where u1w, xw, vw and yw round w
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u1

v

u2u3

Fig. 4. H1.

in a cyclic order and vu2 has no crossing. Assume x 6= u2. Then xu2 ∈ E(G)
without crossing and xwvu2x bounds a (3, 23+, 12−,⊗)-face of D×.

Proof. By a similar argument with Lemma 2.5, we can get that xu2 ∈ E(G)
without crossing. Then xwvu2x is a cycle of D×. Considering stereographic
projection, assume that u3 is located outside xwvu2x. Suppose there is a
true vertex z of D× lying inside xwvu2x. Since deg(v) = 3 and every ui is not
located inside xwvu2x, every path from z to a true vertex outside xwvu2x must
meet x or u2. Thus {x, u2} is a 2-cut of G. That contradicts the 3-connectivity
of G. Thus no true vertex inside xwvu2x. It follows that no false vertex inside
xwvu2x actually. Since xu2 and vu2 have no crossing, no edge of G crosses
xwvu2x. Thus xwvu2x bounds a face of D×, denoted by g. Since v is a bad
3-vertex, g is a bad 4-face. By Lemma 2.14, g is of type (3, 23+, 12−,⊗). �

As Lemma 2.5, in this paper, we always assume that the face bounded by
xwvu2x is an inner-face.

Lemma 2.17. Let v be a bad 3-vertex and ui’s keep the assumption above.
Assume that vu2 and vu3 are not crossed but vu1 is crossed by xy at w where
u1w, xw, vw and yw round w in a cyclic order. Then x 6= u2 or y 6= u3. Next
assume x 6= u2.

u1

v

u2u3

w
x

(y)

g

Fig. 5. H2.

u1

v

u2u3

w x

(y)

g

Fig. 6. H3.

u1

v

u2

w
xy

u3

g

Fig. 7. H4.

(1) If y = u3 and deg(x) = 3, then u1x, xu2 ∈ E(G) without crossing, G
has a cycle C2 = u1u2u3u1 without crossing and x is also a bad 3-vertex.
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Considering stereographic projection, assume that v lies inside C2, then
there are exactly three vertices v, w and x of D× inside C2, see Fig. 5.

(2) If y = u3 and deg(x) ≥ 4, then G has a cycle C3 = u1xu2u3u1 without
crossing and 4 ≤ deg(x) ≤ 12. Considering stereographic projection, as-
sume that v lies inside C3, then there are exactly two vertices v and w of
D× inside C3, see Fig. 6.

(3) If y 6= u3, then G has a cycle C4 = u1xu2u3yu1 without crossing, 5 ≤
deg(x) ≤ 12 and 5 ≤ deg(y) ≤ 12. Considering stereographic projection,
assume that v lies inside C4, then there are exactly two vertices v and w
of D× inside C4, see Fig. 7.

Proof. Note deg(ui) ≥ 23. Then by Lemmas 2.5, yu1, u1x and u2u3 are edges
of G without crossing and ywu1y, xwu1x and vu3u2v bound faces, respectively.
Note u2u3 has no crossing but xy has a crossing w. Then xy 6= u2u3. Since
G is simple, then x 6= u2 or y 6= u3. Next assume x 6= u2. By Lemma
2.16, xu2 ∈ E(G) without crossing, xwvu2x bounds a face g and g is of type
(3, 23+, 12−,⊗). Thus deg(x) ≤ 12.

Assume y = u3. By Lemmas 2.5, vwu3v bounds a face of D×. If deg(x) = 3,
then u1u2 is an edge of G without crossing and xu1u2x bounds a face by
Lemmas 2.5, and since [xu1u2] is bad by Lemma 2.12, (1) holds; if deg(x) ≥ 4,
since deg(x) ≤ 12, then (2) holds.

Assume y 6= u3. By Lemma 2.16, yu3 is an edge of G without crossing
and ywvu3y bounds a (3, 23+, 12−,⊗)-face of D×, thus deg(y) ≤ 12. Since
deg(x) ≤ 12 and deg(y) ≤ 12 but deg(ui) ≥ 23, x, y 6∈ {u1, u2, u3}. Thus
u1xu2u3yu1 is a cycle of D× (as Fig. 7). If deg(x) ≤ 4 or deg(y) ≤ 4, then xy
is a (4−, 12−)-edge of G, which contradicts the property (II) on Page 3. Thus
deg(x) ≥ 5 and deg(y) ≥ 5. Hence (3) holds. �

For i = 2, 3, 4, denote by Hi the subgraph of G bounded by Ci and fix the
drawing (up to stereographic projection) of Hi shown in Fig. 5, Fig. 6 and
Fig. 7, respectively.

Lemma 2.18. Let v be a bad 3-vertex and ui’s keep the assumption above.
Assume that for i = 1, 2, vui is crossed by xiyi at wi such that uiwi, xiwi, vwi

and yiwi round wi in a cyclic order and vu3 has no crossing. Denote by f the
face incident with x1, w1, v, w2 and y2. Then deg(f) = 4 or 6.

(1) Assume deg(f) = 6. Then y1, x2 and u3 are coincide, x1u2, y2u1, u1x1,
y2u2 ∈ E(G) and x1 and y2 are bad 3-vertices. Further x1u2 and y2u1
intersect at a crossing w3, u1x1 and y2u2 are not crossed, and G has a cycle
C5 = u1u2u3u1 without crossing. Considering stereographic projection,
assume that v lies inside C5. Then there are exactly six vertices x1, w1, v,
w2, y2 and w3 of D× inside C5, see Fig. 8.
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x1

y2v

w2

w1

u1

u2u3 (   ,   )y1 x2

w3

f

Fig. 8. H5.

(2) Assume deg(f) = 4. Then x1 = y2, and either x2 6= u3 or y1 6= u3 since G
is simple. Assume that x2 6= u3. Then y1u1, u1x1, x1u2, u2x2 and x2u3
are edges of G without crossing.

v w2

w1

u1

u2

u3 (  )y1

x2

f

x1 y2(  )

g1

Fig. 9. H6.

x1 y2

v w2

w1

u1

u2

u3

(  )y1

x2

f

g1

g2

Fig. 10. H7.

(2a) If y1 = u3, then G has a cycle C6 = u3u1x1u2x2u3 without crossing,
5 ≤ deg(x1) ≤ 12 and 5 ≤ deg(x2) ≤ 12. Considering stereographic
projection, assume that v lies inside C6, then there are exactly three
vertices v, w1 and w2 of D× inside C6, see Fig. 9.

(2b) If y1 6= u3, then G has a cycle C7 = u1x1u2x2u3y1u1 without crossing,
5 ≤ deg(xi) ≤ 12 and 5 ≤ deg(yi) ≤ 12 for i = 1, 2. Considering
stereographic projection, assume that v lies inside C7, then there are
exactly three vertices v, w1 and w2 of D× inside the cycle C7, see
Fig. 10.

Proof. By the assumption of this lemma, deg(f) ≥ 4. Since v is a bad 3-vertex,
we have that f is a bad face, thus by Lemma 2.12, f is a 4- or 6-face. Since
every 3-face is bad by Lemma 2.12, if f is a 6-face, then (1) holds by Lemma
2.13.

Next assume deg(f) = 4. Then x1 = y2. Since deg(v) = 3, deg(ui) ≥
23 by the property (II) on Page 3. By Lemma 2.5, y1u1, u1x1, x1u2 and
u2x2 are edges of G without crossing and y1w1u1y1, u1w1x1u1, x1w2u2x1 and
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u2w2x2u2 bound faces, respectively. Since G is simple, either x2 6= u3 or
y1 6= u3. Assume x2 6= u3. By Lemma 2.16, u3x2 ∈ E(G) without crossing and
vw2x2u3v bounds a face g1. Since v is a bad 3-vertex, f and g1 are bad. By
Lemma 2.14, f is of type (3,⊗, 12−,⊗) and g1 is of type (3, 23+, 12−,⊗), Thus
deg(x1) ≤ 12 and deg(x2) ≤ 12. It follows that deg(x2) ≥ 5 and deg(x1) ≥ 5;
otherwise x1x2 is a (4−, 12−)-edge, which contradicts the property (II) on Page
3. Thus 5 ≤ deg(x1) ≤ 12 and 5 ≤ deg(x2) ≤ 12. Since deg(ui) ≥ 23,
{x1, x2} ∩ {u1, u2, u3} = ∅.

Assume y1 = u3. Then y1u1x1u2x2y1 is a cycle of D×. By Lemma 2.5,
vw1y1v bounds a face of D×, then (2a) holds. Assume y1 6= u3. By Lemma
2.16, y1u3 ∈ E(G) without crossing and vw1y1u3 bounds a (3, 23+, 12−,⊗)-
face. Thus deg(y1) ≤ 12. Since deg(x1) ≤ 12 and deg(y1) ≤ 12, deg(y1) ≥ 5
by the property (II) on Page 3. Since deg(ui) ≥ 23, y1 6∈ {u1, u2, u3}. Since G
is simple, x1, x2 and y1 are pairwise distinct. Thus u1x1u2x2u3y1u1 is a cycle
of G, and (2b) holds. �

For i = 5, 6, 7, denote by Hi the subgraph of G bounded by Ci and fix the
drawing (up to stereographic projection) of Hi shown in Fig. 8, Fig. 9 and
Fig. 10, respectively.

Lemma 2.19. Let v be a bad 3-vertex and ui’s keep the assumption above.
Assume that for i = 1, 2, 3, vui is crossed by xiyi at wi such that uiwi, xiwi,
vwi and yiwi round wi in a cyclic order. For i = 1, 2, 3, denote by fi the face
incident with wi, v and wi+1 (w4 = w1), then deg(fi) = 4, xi = yi+1 (y4 = y1)
and 5 ≤ deg(xi) ≤ 12.

Moreover, G has a cycle C8 = u1x1u2x2u3x3u1 without crossing. Consider-
ing stereographic projection, assume that v lies inside C8, then there are exactly
four vertices w1, w2, w3 and v of D× inside C8, see Fig. 11.

(  )

(  )x2 y3

v

u1

u2u3

x1 y2(  )x3 y1
w1

w2

w3

f 1

f 2

f 3

Fig. 11. H8.

Proof. Since v is a bad 3-vertex, every fi is bad. Then deg(fi) = 3, 4, 6 by
Lemma 2.12. By the assumption of this lemma, deg(fi) ≥ 4, but by Lemma
2.13, deg(fi) 6= 6. Thus deg(fi) = 4 for i = 1, 2, 3. Then x1 = y2, x2 = y3 and
x3 = y1. For i = 1, 2, 3, since every fi is a bad 4-face, deg(xi) ≤ 12 by Lemma
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2.14, and then deg(xi) ≥ 5 by the property (II) on Page 3. Since deg(ui) ≥
23, by Lemma 2.5, uixi, xiui+1 ∈ E(G) without crossing and uiwixiui and
xiwiui+1xi bound faces of D where u4 = u1, respectively. Thus this lemma
holds. �

Denote by H8 the subgraph of G bounded by C8 and fix the drawing (up to
stereographic projection) of H8 shown in Fig. 11.

For i ∈ [1, 8], denote by Hi the set of subgraphs X of G (under D) such
that X is isomorphic to Hi and containing a bad 3-vertex. Then every X ∈ Hi

keeps the drawing (up to stereographic projection) and the property (Lemmas
2.15, 2.17, 2.18 and 2.19, respectively) of Hi under D.

By Lemmas 2.15, 2.17, 2.18 and 2.19, we have the following corollary.

Corollary 2.20. For every bad 3-vertex v, there is a unique X ∈ Hi for some
i ∈ [1, 8] containing v.

For every 23+-vertex u and i ∈ [1, 8], denote Hi(u) = {X ∈ Hi | u ∈ V (X)}.
Then for X ∈ Hi(u), u is isomorphic to some uj (j = 1, 2, 3) of Hi. For more
convenience, denote Hi,j(u) = {X ∈ Hi | u ∈ V (X) and u is isomorphic to uj
of Hi} where i ∈ {3, 6} and j ∈ [1, 3].

Considering stereographic projection, next when we say that X ∈ Hi(u), we
always assume that X keeps the drawing of Hi and every bad 3-vertices of X
is located inside the cycle of X isomorphic to Ci.

2.3. Spanning vertices and enumeration

For a face f of D× and a vertex v of G, if v is incident with f or v is incident
with an edge e of G such that e contains an incident edge of f in D×, then call
v a spanning vertex of f .

Take a 23+-vertex u1 and f1 ∈ F (u1). Considering stereographic projection,
assume that f1 is an inner-face. Assume that deg(f1) = 3 and no spanning
vertex of f1 is a bad 3-vertex. If f1 is false and denote f1 = [u1v1w] where w
is a crossing formed by u1v2 and v1v3, then u1v3 ∈ E(G) without crossing and
cycle u1wv3u1 bounds a face of D× by Lemma 2.5, see Fig. 12. Denote by H9

the subgraph (keep the drawing), and denote by C9 the cycle u1v1v3u1. If f1 is
true and denote f1 = [u1v1v2] where v1 and v2 are true, then we get a triangle
[u1v1v2]. For convenience, we denote by H10 the triangle [u1v1v2], and denote
by C10 the cycle u1v1v2u1. Note that in H9 and H10, every vj is not a bad
3-vertex.

For i ∈ {9, 10}, denote by Hi the set of subgraphs X of G (under D) which
is isomorphic to Hi and keep the drawing (up to stereographic projection) and
the property of Hi, i.e., no vertex is located inside (or outside, considering
stereographic projection) the cycle of X isomorphic to Ci and no vertex of X is
a bad 3-vertex. For every 23+-vertex u, denote Hi(u) = {X ∈ Hi | u ∈ V (X)
and u is isomorphic to u1 in Hi} where i ∈ {9, 10}.
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f

w

u1 v 1

v 2v 3

1

Fig. 12. H9

Considering stereographic projection, next when we say that X ∈ Hi(u)
(i ∈ {9, 10}), we always assume that X keeps the drawing of Hi and no vertex
is located inside the cycle of X isomorphic to Ci.

For a subgraph X of G, if restrict the drawing D in X, then we get a drawing
of X, and we denote it by D|X .

Lemma 2.21. Let u be a 23+-vertex, X ∈ Hi(u) and Y ∈ Hi′(u) where
1 ≤ i, i′ ≤ 10 and X 6= Y . If fX and fY are inner-faces incident with u in
(D|X)× and (D|Y )×, respectively, then we have fX 6= fY in D×.

Proof. Since u is isomorphic to u1 of H9 or H10 by the definition of H9(u) and
H10(u), if i, i′ ∈ {9, 10}, then the conclusion holds clearly since X 6= Y and
fX and fY are incident with u. Next assume that i ∈ [1, 8]. By observing
the results of Lemmas 2.15, 2.17, 2.18 and 2.19, we can find that X contains
a bad 3-vertex v which is a spanning vertex of fX . Suppose fX = fY in D×.
Then v is also a spanning bad 3-vertex of fY . But H9 and H10 do not contain
bad 3-vertex, thus i′ ∈ [1, 8]. Note that v is also a spanning bad 3-vertex of
fY . By observing the results of Lemmas 2.15, 2.17, 2.18 and 2.19, we have
v ∈ V (Y ). Then v is a bad 3-vertex of X and Y in common. But by Corollary
2.20, X = Y , a contradiction. �

For a 23+-vertex u, denote hi(u) = |Hi(u)| for i ∈ [1, 10], and denote
hi,j(u) = |Hi,j(u)| for i ∈ {3, 6} and j ∈ [1, 3]. By Lemma 2.21, X ∈ Hi(u)
and Y ∈ Hi′(u) have no common inner-face incident with u. Then when we
enumerate the number of inner-faces incident with u, which are contained in
members of Hi(u) for i ∈ [1, 10], we get an estimation of the degree of u as the
following lemma.

Lemma 2.22. Let u be a 23+-vertex. Then

deg(u) ≥ 2h1(u) + 3h2(u) + 2h3,1(u) + 2h3,2(u) + 3h3,3(u) + 2h4(u)

+ 4h5(u) + 2h6,1(u) + 2h6,2(u) + 3h6,3(u) + 2h7(u) + 2h8(u)

+ 2h9(u) + h10(u).(7)



Ah
ea

d 
of

 P
rin

tON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH 19

2.4. Second-step

Recall that an r-face is bad if it is incident with at least (r − 3) 3-vertices,
and a 3-vertex is bad if every its incident face is bad; if a face or a 3-vertex is
not bad, then say it is good. Next we start the second-step discharging.

The discharging rules of the second-step:

Rule S1: Assume that v is a 3-vertex and f is a good face incident with v.
Then we move 1 from f to v.
Rule S2: Assume that v is a 3-vertex and f is a bad 6-face incident with v.
Then we move 2

3 from f to v.

Next (in Rules S3-S10) we assume that v is a bad 3-vertex. Then there is a
unique X ∈ Hi containing v for some i ∈ [1, 8] and we identify X and Hi.

Rule S3: If i = 1, then we move 1
3 from every ui to v where i = 1, 2, 3.

Rule S4: If i = 2, then move 1
3 from u1 to x and from u3 to v, respectively,

and move 2
3 from u2 to v and to x, respectively, see Fig. 13.

Rule S5: If i = 3, then move 1
7 from u3 to v, move 6

7 from u2 to v, and move
1
14 from u2 to u1, see Fig. 14.

u1

v

u2u3

w x

(y)
2/3

2/3

1/3

1/3

Fig. 13. Rule S4.

u1

v

u2u3

w x

(y)
1/7 6/7

1/14

Fig. 14. Rule S5.

Rule S6: If i = 4, then move 1
2 from u2 to v and from u3 to v, respectively,

and move 1
6 from u2 to u1 and from u3 to u1, respectively, see Fig. 15.

u1

v

u2

w
xy

u3

1/2 1/2

1/6 1/6

Fig. 15. Rule S6.

Rule S7: If i = 5, then move 1
3 from u1 to x1, from u2 to y2 and from u3 to

v, respectively.
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Rule S8: If i = 6, then move 1
4 from u1 to v, and move 3

4 from u3 to v, see
Fig. 16.
Rule S9: If i = 7, then move 1 from u3 to v, and move 1

6 from u3 to u1 and
to u2, respectively, see Fig. 17.

v w2

w1

u1

u2

u3 (  )y1

x2

f

1/4

3/4

x1 y2(  )

Fig. 16. Rule S8.

x1 y2

v
w2

w1

u1

u2

u3

(  )y1

x2

f1/6

1/6

1

Fig. 17. Rule S9.

Rule S10: If i = 8, assume deg(x1) ≤ deg(x2) ≤ deg(x3), then move 1
4 from

u1 to v and from u2 to v, respectively, and move 1
2 from u3 to v, see Fig. 18.

x2

v

u1

u2u3

x1x3

1/4

1/4

1/2

w1

w2
w3

f 1

f 2

f 3

Fig. 18. Rule S10 (deg(x1) ≤ deg(x2) ≤ deg(x3)).

Lemma 2.23. If f ∈ F (D×), then ch2(f) ≥ 0.

Proof. Denote d = deg(f). Assume d = 3. Then ch1(f) ≥ 0 by Lemmas 2.2
and 2.3. Since d = 3, f is bad by the definition of bad faces. Thus Rules S1
and S2 do not change the charge of f . Since Rules S3-S10 do not change the
charge of any face, ch2(f) = ch1(f) ≥ 0.

Assume d ≥ 4. In the first-step discharging, the charge of every 4+-face is not
changed, thus ch1(f) = d− 4. Suppose that f is good. Then there are at most
(d−4) 3-vertices incident with f . Thus by Rule S1, ch2(f) ≥ ch1(f)−(d−4) ≥
0. Next assume that f is bad. If d=6, then there are three 3-vertices incident
with f by Lemma 2.12. By Rule S2, ch2(f) = ch1(f)− 3 · 23 = 6 − 4− 2 = 0.
If d 6= 6, then the charge of f is not changed in the second-step discharging.
Thus ch2(f) = ch1(f) = d− 4 ≥ 0. �
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Lemma 2.24. If v ∈ V (D×) and 3 ≤ deg(v) ≤ 22, then ch2(v) ≥ 0.

Proof. If 4 ≤ deg(v) ≤ 22, then by Lemmas 2.4, 2.8, 2.9 and 2.10, ch1(v) ≥ 0.
Since no charge of v is lost in the second-step discharging, ch2(v) = ch1(v) ≥ 0.
If deg(v) = 3, then by the rules of the first-step, ch1(v) = 3− 4 = −1. If v is a
good 3-vertex, then there is at least one good face f incident with v. Then by
Rule S1, f sends 1 to v, thus ch2(v) ≥ ch1(v) + 1 = −1 + 1 = 0.

Next assume that v is a bad 3-vertex. Then there is a unique X ∈ Hi

containing v for some i ∈ [1, 8] and we identify X and Hi.
If i = 1, then by Rule S3, ch2(v) = ch1(v) + 3 · 1

3 = −1 + 1 = 0. If

i = 2, then by Rule S4, ch2(v) = ch1(v) + 1
3 + 2

3 = −1 + 1 = 0. (Note
that x is a bad 3-vertex too. Symmetrically, we have ch2(x) ≥ 0 too.) If
i = 3, then by Rule S5, ch2(v) = ch1(v) + 1

7 + 6
7 = −1 + 1 = 0. If i = 4,

then by Rule S6, ch2(v) = ch1(v) + 2 · 12 = −1 + 1 = 0. If i = 5, then by

Rule S2, f sends 2
3 to v, and by Rule S7, u3 sends 1

3 to v, thus ch2(v) =

ch1(v) + 1
3 + 2

3 = −1 + 1 = 0. (Note that both x1 and y2 are bad 3-vertices
too. And symmetrically, ch2(x1) ≥ 0 and ch2(y2) ≥ 0 too.) If i = 6, then
by Rule S8, ch2(v) = ch1(v) + 1

4 + 3
4 = −1 + 1 = 0. If i = 7, then by

Rule S9, ch2(v) = ch1(v) + 1 = −1 + 1 = 0. If i = 8, then by Rule S10,
ch2(v) = ch1(v) + 2 · 14 + 1

2 = −1 + 1 = 0. �

Consider Hi where 1 ≤ i ≤ 10. Define the net-losing-charge of uj in Hi,
denoted by ∆i(uj), as the value of losing-charge minus getting-charge of uj
(1 ≤ j ≤ 3 when 1 ≤ i ≤ 8; j = 1 when i = 9, 10) restricted in one Hi after the
two discharging steps. For example, in H3, see Fig. 6, assume that deg(x) = 4,
then u1 sends 1

2 to the face [u1wu3] by Subrule F3.5, sends 1 to the face [u1xw]

by Subrule F3.2 and gets 1
14 from u2 by Rule S5, thus ∆3(u1) = 1

2 +1− 1
14 = 10

7 .

Lemma 2.25. For subgraphs (keep the drawings under D) H1, H2, . . . , H10

where v is a bad 3-vertex, we have the following results.

(1) ∆1(uj) = 4
3 for j = 1, 2, 3.

(2) ∆2(uj) = 7
3 for j = 1, 2, 3.

(3) ∆3(uj) ≤ 10
7 for j = 1, 2 and ∆3(u3) = 15

7 .

(4) ∆4(uj) ≤ 7
6 for j = 1, 2, 3.

(5) ∆5(uj) = 10
3 for j = 1, 2, 3.

(6) ∆6(uj) ≤ 3
2 for j = 1, 2 and ∆6(u3) = 9

4 .

(7) ∆7(uj) ≤ 4
3 for j = 1, 2, 3.

(8) ∆8(uj) ≤ 3
2 for j = 1, 2, 3.

(9) ∆9(u1) ≤ 3
2 .

(10) ∆10(u1) = 1
2 .

Proof. Since deg(v) = 3, every uj (j = 1, 2, 3) is a 23+-vertex by Observation
2.1.
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(1) Consider H1, see Fig. 4. By Subrule F3.6, uj sends 1
2 to faces [ujuj+1v]

and [ujuj−1v] for j = 1, 2, 3 (u4 = u1 and u0 = u3), respectively. By Rule S3,
uj sends 1

3 to v for j = 1, 2, 3. Thus ∆1(uj) = 2 · 12 + 1
3 = 4

3 .

(2) Consider H2, see Fig. 5. By Subrule F3.5, u1 sends 1
2 to the face [u1wu3].

By Subrule F3.1, u1 sends 1 to [u1wx]. By Subrule F3.6, u1 sends 1
2 to the face

[u1xu2]. By Rule S4, u1 sends 1
3 to x. Thus ∆2(u1) = 1

2 + 1 + 1
2 + 1

3 = 7
3 . By

Subrule F3.6, u2 sends 1
2 to faces [u2xu1] and [u2vu3], respectively. Since v is

a bad 3-vertex, [xwvu2] is a bad 4-face, thus u2 neither sends any charge to it,
nor gets any charge from it. By Rule S4, u2 sends 2

3 to v and to x, respectively.

Thus ∆2(u2) = 2 · 12 + 2 · 23 = 7
3 . Symmetrically, ∆2(u3) = 7

3 .

(3) Consider H3, see Fig. 6. By Subrule F3.5, u1 sends 1
2 to the face [u1wu3].

By Subrules F3.2-F3.5, u1 sends at most 1 to [u1wx]. By Rule S5, u1 gets 1
14

from u2. Note that u1 does not send any charge to v or x. Thus ∆3(u1) ≤
1
2 + 1 − 1

14 = 10
7 . By Subrule F3.6, u2 sends 1

2 to the face [u2vu3]. Since v is
bad, [u2vwx] is a bad 4-face, thus u2 neither sends any charge to it, nor gets
any charge from it. By Rule S5, u2 sends 6

7 to v, and sends 1
14 to v1. Thus

∆3(u2) = 1
2 + 6

7 + 1
14 = 10

7 . By Subrule F3.5, u3 sends 1
2 to the face [u3wu1].

By Subrule F3.1, u3 sends 1 to [u3wv]. By Subrule F3.6, u3 sends 1
2 to the face

[u3vu2]. By Rule S5, u3 sends 1
7 to v. Thus ∆3(u3) = 1

2 + 1 + 1
2 + 1

7 = 15
7 .

(4) Consider H4, see Fig. 7. By Lemma 2.17, 5 ≤ deg(x),deg(y) ≤ 12.
Then by Subrules F3.3-F3.5, u1 sends at most 3

4 to faces [u1wy] and [u1wx],

respectively. By Rule S6, u1 gets 1
6 from u2 and u3, respectively. Thus

∆4(u1) ≤ 2 · 3
4 − 2 · 1

6 = 7
6 . By Subrule F3.6, uj (j = 2, 3) sends 1

2 to

the face [u2vu3]. By Rule S6, uj sends 1
6 to u1, and sends 1

2 to v. Thus

∆4(uj) ≤ 1
2 + 1

6 + 1
2 = 7

6 .

(5) Consider H5, see Fig. 8. By Subrule F3.5, u1 sends 1
2 to faces [u1w1u3]

and [u1w3u2], respectively. By Subrule F3.1, u1 sends 1 to faces [u1x1w1]
and [u1x1w3], respectively. By Rule S7, u1 sends 1

3 to x1. Thus ∆5(u1) =

2 · 12 + 2 · 1 + 1
3 = 10

3 . Symmetrically, ∆5(u2) = ∆5(u3) = 10
3 .

(6) Consider H6, see Fig. 9. By (2a) of Lemma 2.18, 5 ≤ deg(x1) ≤ 12. Then
by Subrules F3.3-F3.5, u1 sends at most 3

4 to the face [u1w1x1]. By Subrule

F3.5, u1 sends 1
2 to the face [u1w1u3]. By Rule S8, u1 sends 1

4 to v. Thus

∆6(u1) ≤ 3
4 + 1

2 + 1
4 = 3

2 . By (2a) of Lemma 2.18, 5 ≤ deg(x1),deg(x2) ≤ 12.

Then by Subrules F3.3-F3.5, u2 sends at most 3
4 to faces [u2w2x1] and [u2w2x2],

respectively. Thus ∆6(u2) ≤ 2 · 34 = 3
2 . By Subrule F3.5, u3 sends 1

2 to the
face [u1w1u3]. By Subrule F3.1, u3 sends 1 to the face [u3w1v]. By Rule S8,
u1 sends 3

4 to v. Thus ∆6(u3) = 1
2 + 1 + 3

4 = 9
4 .

(7) Consider H7, see Fig. 10. By (2b) of Lemma 2.18, 5 ≤ deg(x1),deg(y1) ≤
12. Then by Subrules F3.3-F3.5, u1 sends at most 3

4 to faces [u1w1y1] and

[u1w1x1], respectively. By Rule S9, u1 gets 1
6 from u3. Thus ∆7(u1) ≤ 2· 34−

1
6 =

4
3 . Similarly, ∆7(u2) ≤ 4

3 . Since v is a bad 3-vertex, [u3y1w1v] and [u3x2w2v]
are bad 4-faces. Then u3 neither sends any charge to them, nor gets any charge
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from them. By Rule S9, u3 sends 1
6 to u1 and u2, respectively, and sends 1 to

v. Thus ∆7(u3) ≤ 2 · 16 + 1 = 4
3 .

(8) Consider H8, see Fig. 11. Assume that deg(x1) ≤ deg(x2) ≤ deg(x3).
If deg(x1) ≥ 8, then deg(x3) ≥ deg(x2) ≥ 8; otherwise, deg(x1) ≤ 7, then by
Observation 2.1, we also have deg(x3) ≥ deg(x2) ≥ 8. Further, by Lemma
2.19, 5 ≤ deg(x1) ≤ 12 and 8 ≤ deg(x2),deg(x3) ≤ 12. Since deg(x1) ≥ 5,
by Subrules F3.3-F3.5, we have that u1 sends at most 3

4 to the face [u1w1x1]

and u2 sends at most 3
4 to the face [u2w2x1]. Since deg(x2) ≥ 8, by Subrule

F3.5, we have that u2 sends at most 1
2 to the face [u2w2x2] and u3 sends at

most 1
2 to the face [u3w3x2]. Similarly, since deg(x3) ≥ 8, by Subrule F3.5, we

have that u3 sends at most 1
2 to the face [u3w3x3] and u1 sends at most 1

2 to

the face [u1w1x3]. By Rule S10, u1 and u2 send 1
4 to v, respectively, and u3

sends 1
2 to v. Thus ∆8(u1) ≤ 3

4 + 1
2 + 1

4 = 3
2 , ∆8(u2) ≤ 3

4 + 1
2 + 1

4 = 3
2 and

∆8(u3) ≤ 1
2 + 1

2 + 1
2 = 3

2 .
(9) Consider H9, see Fig 12. Assume that deg(v1) ≤ deg(v3). If deg(v1) ≥ 8,

then deg(v3) ≥ 8; otherwise deg(v1) ≤ 7, then by Observation 2.1, we also have
deg(v3) ≥ 8. By Subrules F3.1-F3.5, u1 sends at most 1 to the face [u1wv1].
By Subrule F3.5, u1 sends at most 1

2 to the face [u1wv3] since deg(v3) ≥ 8.
Since none of v1, v2 and v3 is a bad 3-vertex, we have that u1 does not send
any charge to v1, v2 or v3. Thus ∆i(u1) ≤ 1

2 + 1 = 3
2 .

(10) Consider H10. By Subrule F3.6, u1 sends 1
2 to f , thus ∆10(u1) = 1

2 . �

Define the total net-losing-charge of a 23+-vertex u as the value of losing-
charge minus getting-charge of u. Recall the definition of spanning vertices. A
spanning vertex of a face f of D× is a vertex of G, which is incident with f ,
or is incident with an edge e of G such that e contains an incident edge of f in
D×. We have the following lemma.

Lemma 2.26. Let u be a 23+-vertex. Then

∆(u) ≤ 4

3
h1(u) +

7

3
h2(u) +

10

7
h3,1(u) +

10

7
h3,2(u) +

15

7
h3,3(u) +

7

6
h4(u)

+
10

3
h5(u) +

3

2
h6,1(u) +

3

2
h6,2(u) +

9

4
h6,3(u) +

4

3
h7(u) +

3

2
h8(u)

+
3

2
h9(u) +

1

2
h10(u).(8)

Proof. Let f be an incident face of u. Assume that f has a spanning bad 3-
vertex v′. Then by Lemmas 2.15, 2.17, 2.18 and 2.19, there is a unique X ∈ Hi

for i ∈ [1, 8], which contains v′ and f under D. Since u is incident with f ,
X contains u. Thus, since deg(u) ≥ 23, uv′ ∈ E(G) by Lemmas 2.15, 2.17,
2.18 and 2.19, and then X ∈ Hi(u). Thus the part of total net-losing-charge
of u formed by X can be checked by (1)-(8) of Lemma 2.25. Assume that no
spanning vertex of f is a bad 3-vertex. If deg(f) ≥ 4, then u does not lose
charge to f in the two steps of discharging, thus we do not consider this case.
If deg(f) = 3, then there is a unique Y ∈ Hi′(u) for i′ ∈ {9, 10} containing f
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under D (note for Y ∈ Hi′(u), u is isomorphic to u1 of Hi′). Thus the part
of total net-losing-charge of u formed by Y can be checked by (9) and (10) of
Lemma 2.25. Hence, by Lemma 2.25, this lemma holds. �

Lemma 2.27. Let u be a 23+-vertex. Then ch2(u) ≥ 0.

Proof. Denote d(u) = deg(u). By inequality (8) (Lemma 2.26), we have

∆(u) ≤ 5

6

[
2h1(u) + 3h2(u) + 2h3,1(u) + 2h3,2(u) + 3h3,3(u) + 2h4(u)

+ 4h5(u) + 2h6,1(u) + 2h6,2(u) + 3h6,3(u) + 2h7(u) + 2h8(u)

+ 2h9(u) + h10(u)
]
.

Further, by inequality (7) (Lemma 2.22) we have ∆(u) ≤ 5
6d(u). Thus ch2(u) =

(d(u)− 4)−∆(u) ≥ (d(u)− 4)− 5
6d(u) = 1

6d(u)− 4. When d(u) ≥ 24, we have
ch2(u) ≥ 0.

Next assume that d(u) = 23. By inequality (8), we have

∆(u) ≤
(5

6
− 7

9

)
· 4h5(u) +

7

9

[
2h1(u) + 3h2(u) + 2h3,1(u) + 2h3,2(u)

+ 3h3,3(u) + 2h4(u) + 4h5(u) + 2h6,1(u) + 2h6,2(u) + 3h6,3(u)

+ 2h7(u) + 2h8(u) + 2h9(u) + h10(u)
]
.

Further, by inequality (7) (Lemma 2.22), we have ∆(u) ≤ 2
9h5(u)+ 7

9d(u). Since
4h5(u) ≤ d(u) = 23, we have h5(u) ≤ 5. Thus ch2(u) = (d(u) − 4) −∆(u) ≥
d(u)− 4− 2

9h5(u)− 7
9d(u) = 2

9d(u)− 2
9h5(u)− 4 ≥ 2

9 · (23− 5)− 4 = 0.
Thus this lemma holds. �

By Lemmas 2.23, 2.24 and 2.27, for every x ∈ V (D×)∪F (D×), ch2(x) ≥ 0.
But ∑

x∈V (D×)∪F (D×)

ch2(x) =
∑

x∈V (D×)∪F (D×)

ch0(x) = −8 < 0,

a contradiction. Therefore, we prove Theorem 1.4.
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[8] D. Hudák and P. Šugerek, Light edges in 1-planar graphs with prescribed minimum

degree, Discuss. Math. Graph Theory 32 (2012), no. 3, 545–556.

[9] S. Jendrol and H.-J. Voss, Light subgraphs of graphs embedded in the plane–A survey,
Discrete Math. 313 (2013), no. 4, 406–421.

[10] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Časpis. Slovensk.
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