3-Regular mixed graphs with optimum Hermitian energy*

Xiaolin Chen, Xueliang Li, Yingying Zhang
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, P.R. China
E-mail: chxlnk@163.com; lxl@nankai.edu.cn; zyydlwyx@163.com

Abstract

Let G be a simple undirected graph, and G^{ϕ} be a mixed graph of G with the generalized orientation ϕ and Hermitian-adjacency matrix $H\left(G^{\phi}\right)$. Then G is called the underlying graph of G^{ϕ}. The Hermitian energy of the mixed graph G^{ϕ}, denoted by $\mathcal{E}_{H}\left(G^{\phi}\right)$, is defined as the sum of all the singular values of $H\left(G^{\phi}\right)$. A k-regular mixed graph on n vertices having Hermitian energy $n \sqrt{k}$ is called a k-regular optimum Hermitian energy mixed graph. Liu and Li in [J. Liu, X. Li, Hermitian-adjacency matrices and Hermitian energies of mixed graphs, Linear Algebra Appl. 466(2015), 182-207] proposed the problem of determining all the k-regular connected optimum Hermitian energy mixed graphs. This paper is to give a solution to the problem for the case $k=3$.

Keywords: mixed graph, Hermitian energy, Hermitian-adjacency matrix, regular graph.

AMS Subject Classification 2010: 05C20, 05C50, 05C90.

1 Introduction

Let G be a simple undirected graph with vertex set $V(G)$ and edge set $E(G)$. For an edge subset $S \subseteq E(G)$, a generalized orientation ϕ of G is to give each edge of S an orientation. Then, G^{ϕ} is called a mixed graph of G with the generalized orientation ϕ. If $S=E(G)$, then ϕ is an orientation of G and the mixed graph G^{ϕ} is an oriented graph. If $S=\emptyset$, then G^{ϕ} is an undirected graph. Thus, we find that mixed graphs incorporate both undirected graphs and oriented graphs as extreme cases. In a mixed graph $G^{\phi}=\left(V\left(G^{\phi}\right), E\left(G^{\phi}\right)\right)$, if one element (u, v) in $E\left(G^{\phi}\right)$ is an edge (resp., arc), we denote it by $u \leftrightarrow v$ (resp., $u \rightarrow v$). The graph G is called the underlying graph of G^{ϕ}. A mixed graph is called regular if its underlying graph

[^0]is a regular graph. Similarly, when we say order, size, degree and so on, we mean that these are the parameters of the underlying graph; unless other stated. For undefined terminology and notation, we refer the reader to $[2,5]$.

The Hermitian-adjacency matrix $H\left(G^{\phi}\right)$ of G^{ϕ} with vertex set $V\left(G^{\phi}\right)=\{1,2, \ldots, n\}$ is a square matrix of order n, whose entry $h_{k l}$ is defined as

$$
h_{k l}= \begin{cases}h_{l k}=1, & \text { if } k \leftrightarrow l \\ -h_{l k}=i, & \text { if } k \rightarrow l \\ 0, & \text { otherwise }\end{cases}
$$

where i is the unit imaginary number. The spectrum $S p_{H}\left(G^{\phi}\right)$ of G^{ϕ} is defined as the spectrum of $H\left(G^{\phi}\right)$. Since $H\left(G^{\phi}\right)$ is an Hermitian matrix, i.e., $\left.H\left(G^{\phi}\right)=\left[H\left(G^{\phi}\right)\right]^{*}:=\overline{\left[H\left(G^{\phi}\right)\right.}\right]^{T}$, the eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ of $H\left(G^{\phi}\right)$ are all real. In [11], Liu and Li introduced the Hermitian energy of the mixed graph G^{ϕ}, denoted by $\mathcal{E}_{H}\left(G^{\phi}\right)$, which is defined as the sum of the singular values of $H\left(G^{\phi}\right)$. Since the singular values of $H\left(G^{\phi}\right)$ are the absolute values of its eigenvalues, we have

$$
\mathcal{E}_{H}\left(G^{\phi}\right)=\sum_{j=1}^{n}\left|\lambda_{j}\right| .
$$

For an oriented graph G^{ϕ}, Adiga et al. [1] introduced the concept of skew adjacency matrix of G^{ϕ}, denoted by $S\left(G^{\phi}\right)$, which is defined as $S\left(G^{\phi}\right)=-i H\left(G^{\phi}\right)$. Then, the eigenvalues of $S\left(G^{\phi}\right)$ are $\left\{-i \lambda_{1},-i \lambda_{2}, \ldots,-i \lambda_{n}\right\}$. The skew energy of an oriented graph G^{ϕ} is defined as $\mathcal{E}_{S}\left(G^{\phi}\right)=\sum_{j=1}^{n}\left|-i \lambda_{j}\right|$ by Adiga et al. in [1]. Thus, $\mathcal{E}_{H}\left(G^{\phi}\right)=\mathcal{E}_{S}\left(G^{\phi}\right)$, i.e., the Hermitian energy of an oriented graph is equal to its skew energy. For more details about the skew energy, we refer the reader to a survey [9].

The Hermitian energy can be viewed as a generalization of the graph energy. The concept of the energy of a simple undirected graph was introduced by Gutman in [8], which is related to the total π-electron energy of the molecule represented by that graph. Up to now, the graph energy has been extensively studied. For more details, we refer the reader to a book [10].

In [11], Liu and Li gave a sharp upper bound of the Hermitian energy in terms of the order n and the maximum degree Δ of the mixed graph, i.e.,

$$
\mathcal{E}_{H}\left(G^{\phi}\right) \leq n \sqrt{\Delta} .
$$

Furthermore, they showed that the equality holds if and only if $H^{2}\left(G^{\phi}\right)=\Delta I_{n}$, which implies that G^{ϕ} is Δ-regular. For convenience, a mixed graph of order n and maximum degree Δ which satisfies $\mathcal{E}_{H}\left(G^{\phi}\right)=n \sqrt{\Delta}$ is called an optimum Hermitian energy mixed graph in this paper. Let I_{n} be the identity matrix of order n. For simplicity, we always write I when its order is clear from the context. It is important to determine a family of k-regular mixed graphs with optimum

Hermitian energy for any positive integer k. In [11], Liu and Li gave Q_{k} a suitable generalized orientation such that it has optimum Hermitian energy. Besides, they proposed the following problem:

Problem 1.1 Determine all the k-regular mixed graphs G^{ϕ} on n vertices with $\mathcal{E}_{H}\left(G^{\phi}\right)=n \sqrt{k}$ for each $k, 3 \leq k \leq n$.

Liu and Li [11] showed that a 1-regular connected mixed graph on n vertices has optimum Hermitian energy if and only if it is an edge or arc. At the same time, they also proved that a 2-regular connected mixed graph on n vertices has optimum Hermitian energy if and only if it is one of the three types of mixed 4-cycles. It is worth mentioning that the same problem has been studied by the researchers for the skew energy of oriented graphs. For more review about this problem, readers may refer to $[1,3,6,7,12]$ and the references therein.

If G_{1}^{ϕ} and G_{2}^{ϕ} are two k-regular mixed graphs with optimum Hermitian energy, then so is their disjoint union. Thus, we only consider k-regular connected mixed graphs.

In this paper, our main goal is to characterize all 3-regular connected optimum Hermitian energy mixed graphs. Thus, this gives a solution to Problem 1.1 for the case $k=3$.

2 Preliminaries

In [11], Liu and Li gave a sharp upper bound for the Hermitian energy of a mixed graph and a necessary and sufficient condition for a mixed graph to attain the upper bound.

Lemma 2.1 (11, part of Theorem 3.2). Let G^{ϕ} be a mixed graph on n vertices with maximum degree Δ. Then $\mathcal{E}_{H}\left(G^{\phi}\right) \leqslant n \sqrt{\Delta}$.

Lemma 2.2 (11, part of Corollary 3.3). Let H be the Hermitian-adjacency matrix of a mixed graph G^{ϕ} on n vertices. Then $\mathcal{E}_{H}\left(G^{\phi}\right)=n \sqrt{\Delta}$ if and only if $H^{2}=\Delta I_{n}$ i.e., the inner products $H(u,:) \cdot H(v,:)=0, H(:, u) \cdot H(:, v)=0$ for different vertices u and v of G^{ϕ}, where $H(u,:)$ and $H(:, u)$ represent the row vector and column vector corresponding to vertex u in $H\left(G^{\phi}\right)$, respectively.

Moreover, Liu and Li [11] gave a characterization of the k-regular connected optimum Hermitian energy mixed graphs.

Lemma 2.3 (11, part of Lemma 3.5). Let G^{ϕ} be a k-regular connected mixed graph with order $n(n \geq 3)$. Then $\mathcal{E}_{H}\left(G^{\phi}\right)=n \sqrt{k}$ if and only if for any pair of vertices u and v with distance not more than two in G such that $N(u) \cap N(v) \neq \emptyset$ (here and in what follows, $N(x)$ denotes the neighborhood of a vertex x in G), there are edge-disjoint mixed 4-cycles uxvy of the following three types; see Fig.2.1.

Figure 2.1: Three types of mixed 4-cycles.

By Lemma 2.2, if G^{ϕ} is a connected mixed graph on n vertices with optimum Hermitian energy $n \sqrt{\Delta}$, then G^{ϕ} is Δ-regular. Moreover, since any two distinct rows of H are orthogonal, we deduce the following lemma.

Lemma 2.4 Let H be the Hermitian-adjacency matrix of a k-regular mixed graph G^{ϕ} on n vertices. If $H^{2}=k I_{n}$, then $|N(u) \cap N(v)|$ is even for any pair of vertices u and v with distance no more than two in G.

Next we introduce the definition of switching equivalence. Let G^{ϕ} be a mixed graph with vertex set V. The switching function of G^{ϕ} is a function $\theta: V \rightarrow \mathrm{~T}$, where $\mathrm{T}=\{1,-1\}$. The switching matrix of G^{ϕ} is a diagonal matrix $D(\theta):=\operatorname{diag}\left(\theta\left(v_{k}\right): v_{k} \in V\right)$, where θ is a switching function. Let $G^{\phi_{1}}, G^{\phi_{2}}$ and $G^{\phi_{3}}$ be three mixed graphs with the same underlying graph G and vertex set V. If there exists a switching matrix $D(\theta)$ such that $H\left(G^{\phi_{2}}\right)=D(\theta)^{-1} H\left(G^{\phi_{1}}\right) D(\theta)$, then we say that $G^{\phi_{1}}$ and $G^{\phi_{2}}$ are switching equivalent, denoted by $G^{\phi_{1}} \sim G^{\phi_{2}}$. If two mixed graphs $G^{\phi_{1}}$ and $G^{\phi_{2}}$ are switching equivalent, then $S p_{H}\left(G^{\phi_{1}}\right)=S p_{H}\left(G^{\phi_{2}}\right)$, which implies that $\mathcal{E}_{H}\left(G^{\phi_{1}}\right)=\mathcal{E}_{H}\left(G^{\phi_{2}}\right)$. Besides, the number of arcs (or undirected edges) in $G^{\phi_{1}}$ is equal to that in $G^{\phi_{2}}$. Moreover, if $G^{\phi_{1}} \sim G^{\phi_{2}}$ and $G^{\phi_{2}} \sim G^{\phi_{3}}$, then $G^{\phi_{1}} \sim G^{\phi_{3}}$.

Note that Liu and Li in [11] also introduced the definition of switching equivalence between mixed graphs. However, T was $\{1, i,-i\}$ in their definition. Besides, our definition coincides with the definition of switching equivalence between oriented graphs which is given in [4] when the mixed graphs are oriented graphs.

Let G^{ϕ} be a k-regular optimum Hermitian energy mixed graph. If G^{ϕ} is an oriented graph, then the Hermitian energy of G^{ϕ} is equal to its skew energy. In [6], Gong and Xu characterized the 3 -regular optimum Hermitian energy oriented graphs. Moreover, Chen et al. [3] and Gong et al. [7] independently characterized the 4-regular optimum Hermitian energy oriented graphs. The following lemma is the result about the characterization of 3-regular optimum Hermitian energy oriented graphs in [6].

Lemma 2.5 [6] Let G^{ϕ} be a 3 -regular optimum Hermitian energy oriented graph. Then G^{ϕ} (up to isomorphism) is either D_{1} or D_{2} shown in Fig.2.2.

Figure 2.2: 3-regular optimum Hermitian energy oriented graphs.

3 The 3-regular optimum Hermitian energy mixed graphs

In this section, we characterize all 3-regular connected optimum Hermitian energy mixed graphs (up to the switching equivalence defined above).

Let G^{ϕ} be a 3 -regular optimum Hermitian energy mixed graph. By Lemma 2.4, it follows that the underlying graph G of G^{ϕ} satisfies that $|N(u) \cap N(v)|$ is even for any two distinct vertices u and v of G. Moreover, from Lemma 3.4 and Theorem 3.5 in [6] we have that if a 3-regular undirected graph G satisfies that $|N(u) \cap N(v)|$ is even for any two distinct vertices u and v of G, then G is either the complete graph K_{4} or the hypercube Q_{3}. Hence, it suffices to consider the 3 -regular optimum Hermitian energy mixed graphs with underlying graph K_{4} or Q_{3}.

At first, we consider the case that the underlying graph is the complete graph K_{4}.

Theorem 3.1 Let G^{ϕ} be a 3-regular optimum Hermitian energy mixed graph. If the underlying graph G is K_{4}, then G^{ϕ} is either D_{1} shown in Fig.2.2 or G_{1} shown in Fig.3.3.

Figure 3.3: Optimum Hermitian energy mixed graph with underlying graph K_{4}.

Proof. We divide our discussion into four cases:
Case 1. G^{ϕ} is an oriented graph.
From Lemma 2.5, we obtain that G^{ϕ} is D_{1} shown in Fig.2.2.
Case 2. G^{ϕ} is not an oriented graph and no vertex has two incident edges. Then there exists a vertex, say u_{1}, which has one incident edge $u_{1} \leftrightarrow u_{2}$.

Subcase 2.1. $u_{1} \rightarrow u_{3}$ and $u_{1} \rightarrow u_{4}$.
By Lemma 2.2, we have that $H\left(u_{1},:\right) \cdot H\left(u_{2},:\right)=0$. Then, $\bar{h}_{11} h_{21}+\bar{h}_{12} h_{22}+\bar{h}_{13} h_{23}+\bar{h}_{14} h_{24}=$ $-i h_{23}-i h_{24}=0$. Hence, $h_{23}=i, h_{24}=-i$ or $h_{23}=-i, h_{24}=i$, that is, $u_{2} \rightarrow u_{3}, u_{2} \leftarrow u_{4}$ or $u_{2} \leftarrow u_{3}, u_{2} \rightarrow u_{4}$. Without loss of generality, assume that $u_{2} \rightarrow u_{3}, u_{2} \leftarrow u_{4}$. By Lemma 2.2, it follows that $H\left(u_{1},:\right) \cdot H\left(u_{3},:\right)=0$. Then, $\bar{h}_{11} h_{31}+\bar{h}_{12} h_{32}+\bar{h}_{13} h_{33}+\bar{h}_{14} h_{34}=-i-i h_{34}=0$. Hence, $h_{34}=-1$, a contradiction.

Subcase 2.2. $u_{1} \leftarrow u_{3}$ and $u_{1} \leftarrow u_{4}$.
By Lemma 2.2, $H\left(u_{1},:\right) \cdot H\left(u_{2},:\right)=0$. Then, $\bar{h}_{11} h_{21}+\bar{h}_{12} h_{22}+\bar{h}_{13} h_{23}+\bar{h}_{14} h_{24}=i h_{23}+i h_{24}=$ 0 . Hence, $h_{23}=i, h_{24}=-i$ or $h_{23}=-i, h_{24}=i$, that is, $u_{2} \rightarrow u_{3}, u_{2} \leftarrow u_{4}$ or $u_{2} \leftarrow u_{3}, u_{2} \rightarrow u_{4}$. Without loss of generality, assume that $u_{2} \rightarrow u_{3}, u_{2} \leftarrow u_{4}$. By Lemma 2.2, it follows that $H\left(u_{1},:\right) \cdot H\left(u_{3},:\right)=0$. Then, $\bar{h}_{11} h_{31}+\bar{h}_{12} h_{32}+\bar{h}_{13} h_{33}+\bar{h}_{14} h_{34}=-i+i h_{34}=0$. Hence, $h_{34}=1$, i.e., there is an edge $u_{3} \leftrightarrow u_{4}$ in G^{ϕ}. However, $H\left(u_{1},:\right) \cdot H\left(u_{4},:\right)=\bar{h}_{11} h_{41}+\bar{h}_{12} h_{42}+\bar{h}_{13} h_{43}+$ $\bar{h}_{14} h_{44}=i+i \neq 0$, a contradiction.

Subcase 2.3. $u_{1} \rightarrow u_{3}, u_{1} \leftarrow u_{4}$ or $u_{1} \leftarrow u_{3}, u_{1} \rightarrow u_{4}$.
Without loss of generality, assume that $u_{1} \rightarrow u_{3}$ and $u_{1} \leftarrow u_{4}$. By a similar way, we can prove that this subcase could not happen.

Case 3. No vertex has three incident edges, and there exists a vertex, say u_{1}, has two incident edges $u_{1} \leftrightarrow u_{2}$ and $u_{1} \leftrightarrow u_{3}$.

Then, for the vertex u_{4} there is an arc $u_{1} \rightarrow u_{4}$ or $u_{1} \leftarrow u_{4}$. Suppose we have $u_{1} \rightarrow u_{4}$. By Lemma 2.2, we have that $H\left(u_{1},:\right) \cdot H\left(u_{2},:\right)=0$. Then, $\bar{h}_{11} h_{21}+\bar{h}_{12} h_{22}+\bar{h}_{13} h_{23}+\bar{h}_{14} h_{24}=$ $h_{23}-i h_{24}=0$. Hence, $h_{23}=1, h_{24}=-i$ or $h_{23}=i, h_{24}=1$, that is, $u_{2} \leftrightarrow u_{3}, u_{2} \leftarrow u_{4}$ or $u_{2} \rightarrow u_{3}, u_{2} \leftrightarrow u_{4}$. If $u_{2} \leftrightarrow u_{3}, u_{2} \leftarrow u_{4}$, then $H\left(u_{1},:\right) \cdot H\left(u_{3},:\right)=0$ from Lemma 2.2. This implies that $\bar{h}_{11} h_{31}+\bar{h}_{12} h_{32}+\bar{h}_{13} h_{33}+\bar{h}_{14} h_{34}=1-i h_{34}=0$. Thus, $h_{34}=-i$, i.e., $u_{3} \leftarrow u_{4}$. However, $H\left(u_{1},:\right) \cdot H\left(u_{4},:\right)=\bar{h}_{11} h_{41}+\bar{h}_{12} h_{42}+\bar{h}_{13} h_{43}+\bar{h}_{14} h_{44}=i+i \neq 0$, a contradiction. If $u_{2} \rightarrow u_{3}, u_{2} \leftrightarrow u_{4}$, then $H\left(u_{1},:\right) \cdot H\left(u_{3},:\right)=0$ from Lemma 2.2. This implies that $\bar{h}_{11} h_{31}+\bar{h}_{12} h_{32}+\bar{h}_{13} h_{33}+\bar{h}_{14} h_{34}=-i-i h_{34}=0$. Thus, $h_{34}=-1$, a contradiction.

For the case $u_{1} \leftarrow u_{4}$, we can prove that this could not happen similarly.
Case 4. There exists a vertex, say u_{1}, having three incident edges $u_{1} \leftrightarrow u_{2}, u_{1} \leftrightarrow u_{3}$ and $u_{1} \leftrightarrow u_{4}$.

Since $H\left(u_{1},:\right) \cdot H\left(u_{2},:\right)=0$, we can obtain that $h_{23}=i, h_{24}=-i$ or $h_{23}=-i, h_{24}=i$, that is, $u_{2} \rightarrow u_{3}, u_{2} \leftarrow u_{4}$ or $u_{2} \leftarrow u_{3}, u_{2} \rightarrow u_{4}$. Without loss of generality, assume that $u_{2} \rightarrow u_{3}, u_{2} \leftarrow u_{4}$. Similarly, we have $h_{34}=i$, i.e., $u_{3} \rightarrow u_{4}$ by $H\left(u_{1},:\right) \cdot H\left(u_{3},:\right)=0$. That is, $u_{2} \rightarrow u_{3}, u_{2} \leftarrow u_{4}$ and $u_{3} \rightarrow u_{4}$; see G_{1} shown in Fig.3.3.

The proof is thus complete.
Next, we determine all optimum Hermitian energy mixed graphs with underlying graph Q_{3}.

Theorem 3.2 Let G^{ϕ} be a 3-regular optimum Hermitian energy mixed graph. If the underlying graph G is Q_{3}, then G^{ϕ} (up to switching equivalence) is one of the following graphs: D_{2} or H_{i}, where $i=1,2, \ldots, 6$; see Figs.2.2 and 3.4.

Figure 3.4: Optimum Hermitian energy mixed graphs with underlying graph Q_{3}.

Proof. We divide our discussion into two cases:
Case 1. G^{ϕ} is an oriented graph.
From Lemma 2.5, we obtain that G^{ϕ} is D_{2} shown in Fig.2.2.
Case 2. G^{ϕ} is not an oriented graph. In the following, we replace G^{ϕ} with Q_{3}^{ϕ} for convenience and assume that $V\left(Q_{3}\right)=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$, see Fig.3.5.

Figure 3.5: Q_{3}.
Let a (resp., b) denote the number of arcs (resp., undirected edges) in Q_{3}^{ϕ}, where $a+b=12$. Since Q_{3}^{ϕ} is not an oriented graph, we get that $a \leq 11$. Furthermore, there are exactly six mixed 4-cycles in Q_{3}^{ϕ}. Let $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ and C_{6} denote the mixed 4 -cycle induced by the vertex subset $\left\{v_{1}, v_{2}, v_{4}, v_{3}\right\},\left\{v_{2}, v_{4}, v_{8}, v_{6}\right\},\left\{v_{5}, v_{6}, v_{8}, v_{7}\right\},\left\{v_{1}, v_{3}, v_{7}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{6}, v_{5}\right\}$ and $\left\{v_{3}, v_{4}, v_{8}, v_{7}\right\}$, respectively. By Lemma 2.3, we can deduce that every mixed 4 -cycle in Q_{3}^{ϕ} is one of the three types in Fig.2.1. Thus, we obtain the following claim.

Claim 1: In Q_{3}^{ϕ}, every mixed 4-cycle has either two arcs and two undirected edges or four arcs.

It follows that each mixed 4 -cycle in Q_{3}^{ϕ} has at least two arcs. Then, we have $a \geq \frac{2 \times 6}{2}=6$. Moreover, we can check that $a \neq 10,11$. Consequently, $6 \leq a \leq 9$. Now we divide the discussion about the values of a and b into four subcases:

Subcase 2.1. $a=9, b=3$.
In this subcase, we want to determine three undirected edges in Q_{3}^{ϕ}. Without loss of generality, suppose $v_{1} \leftrightarrow v_{3}$. By Claim 1, both mixed 4-cycles C_{1} and C_{4} have two undirected edges and hence we get the following four cases (up to isomorphism) by considering the other two undirected edges in C_{1} and C_{4}.
(1) The other two undirected edges are $v_{2} \leftrightarrow v_{4}$ in C_{1} and $v_{5} \leftrightarrow v_{7}$ in C_{4}. Then, there are three arcs in the mixed 4-cycles C_{2} and C_{3}, which contradicts Claim 1.
(2) The other two undirected edges are $v_{1} \leftrightarrow v_{2}$ in C_{1} and $v_{5} \leftrightarrow v_{7}$ in C_{4}. Then, there are three arcs in the mixed 4-cycles C_{5} and C_{3}, which contradicts Claim 1.
(3) The other two undirected edges are $v_{1} \leftrightarrow v_{2}$ in C_{1} and $v_{3} \leftrightarrow v_{7}$ in C_{4}. Then, there are three arcs in the mixed 4-cycles C_{5} and C_{6}, which contradicts Claim 1.
(4) The other two undirected edges are $v_{1} \leftrightarrow v_{2}$ in C_{1} and $v_{1} \leftrightarrow v_{5}$ in C_{4}. Then, the mixed 4-cycles C_{1}, C_{4} and C_{5} should be the first type in Fig.2.1; the mixed 4-cycles C_{2}, C_{3} and C_{6} should be the third type in Fig.2.1. Hence, there are two arcs $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ or $v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{3}$ in $C_{1}, v_{5} \rightarrow v_{7}, v_{7} \rightarrow v_{3}$ or $v_{3} \rightarrow v_{7}, v_{7} \rightarrow v_{5}$ in C_{4}, and $v_{2} \rightarrow v_{6}, v_{6} \rightarrow v_{5}$ or $v_{5} \rightarrow v_{6}, v_{6} \rightarrow v_{2}$ in C_{5}. If there are two arcs $v_{3} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{2}$ in a mixed graph, then we reverse every arc which is incident to vertex v_{4} and obtain a new mixed graph denoted by $Q_{3}^{\phi^{\prime}}$. Let $D(\theta)=\operatorname{diag}\left(\theta\left(v_{k}\right) \mid \theta\left(v_{4}\right)=-1\right.$ and $\theta\left(v_{k}\right)=1$ for $v_{k} \in V\left(Q_{3}\right) \backslash\left\{v_{4}\right\}$) (i.e., $D(\theta)=$ $\operatorname{diag}(1,1,1,-1,1,1,1,1))$. Then, it follows that $H\left(Q_{3}^{\phi^{\prime}}\right)=D(\theta)^{-1} H\left(Q_{3}^{\phi}\right) D(\theta)$. Hence, $Q_{3}^{\phi^{\prime}}$ and Q_{3}^{ϕ} are switching equivalent by the definition of switching equivalence. Without loss of generality, assume that $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$. By a similar discussion, we assume that $v_{2} \rightarrow v_{6}, v_{6} \rightarrow v_{5}$ and $v_{5} \rightarrow v_{7}, v_{7} \rightarrow v_{3}$. Afterwards, we have either $v_{4} \rightarrow v_{8}, v_{6} \rightarrow v_{8}$ or $v_{8} \rightarrow v_{6}, v_{8} \rightarrow v_{4}$ in C_{2}. Analogously, by switching equivalence we assume that $v_{4} \rightarrow v_{8}, v_{6} \rightarrow v_{8}$ and then $v_{7} \rightarrow v_{8}$. Therefore, we get the graph (up to switching equivalence) H_{1} in Fig.3.4.

Subcase 2.2. $a=8, b=4$.
Now we want to determine four undirected edges in Q_{3}^{ϕ}. Based on the discussion of Subcase 2.1, we just need to find one more undirected edge.

If the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{2} \leftrightarrow v_{4}$ and $v_{5} \leftrightarrow v_{7}$, then there are two undirected edges in C_{1} and C_{4}. Thus, the fourth undirected edge cannot be $v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{4}, v_{1} \leftrightarrow v_{5}$ or $v_{3} \leftrightarrow v_{7}$. If the fourth undirected edge is $v_{2} \leftrightarrow v_{6}, v_{5} \leftrightarrow v_{6}, v_{4} \leftrightarrow v_{8}$ or $v_{7} \leftrightarrow v_{8}$, then the resulting graphs are isomorphic. Without loss of generality, suppose
$v_{2} \leftrightarrow v_{6}$. Nevertheless, there are three arcs in C_{5}, which contradicts Claim 1. If the fourth undirected edge is $v_{6} \leftrightarrow v_{8}$, then the mixed 4 -cycles C_{5} and C_{6} should be the third type in Fig.2.1 and the others should be the second type in Fig.2.1. Thus, we get H_{2} (up to isomorphism) in Fig.3.4.

If the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{5} \leftrightarrow v_{7}$, then there are two undirected edges in C_{1} and C_{4}. Thus, the fourth undirected edge cannot be $v_{2} \leftrightarrow v_{4}, v_{3} \leftrightarrow v_{4}, v_{1} \leftrightarrow v_{5}$ or $v_{3} \leftrightarrow v_{7}$. If the fourth undirected edge is $v_{2} \leftrightarrow v_{6}$, then there are three arcs in C_{2}, which contradicts Claim 1. By a similar way, we deduce that the fourth undirected edge cannot be $v_{6} \leftrightarrow v_{8}, v_{4} \leftrightarrow v_{8}$ or $v_{7} \leftrightarrow v_{8}$. If the fourth undirected edge is $v_{5} \leftrightarrow v_{6}$, then the mixed 4 -cycles C_{1} and C_{3} should be the first type in Fig.2.1; the mixed 4 -cycles C_{4} and C_{5} should be the second type in Fig.2.1; the mixed 4-cycles C_{2} and C_{6} should be the third type in Fig.2.1. Hence, there are two arcs $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ or $v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{3}$ in C_{1}, and $v_{7} \rightarrow v_{8}, v_{8} \rightarrow v_{6}$ or $v_{6} \rightarrow v_{8}, v_{8} \rightarrow v_{7}$ in C_{3}. If there are two arcs $v_{3} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{2}$ in a mixed graph, then we reverse every arc which is incident to vertex v_{4} and obtain a new mixed graph. By the definition of switching equivalence, we can find the switching matrix $D(\theta)=\operatorname{diag}(1,1,1,-1,1,1,1,1)$ to prove that the two mixed graphs are switching equivalent. Without loss of generality, assume that $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$. By a similar discussion, we assume that $v_{7} \rightarrow v_{8}, v_{8} \rightarrow v_{6}$. Afterwards, we have either $v_{4} \rightarrow v_{8}$ or $v_{8} \rightarrow v_{4}$. If there is an arc $v_{4} \rightarrow v_{8}$, then we get the other arcs $v_{6} \rightarrow v_{2}, v_{1} \rightarrow v_{5}, v_{7} \rightarrow v_{3}$. Thus, we obtain H_{3} depicted in Fig.3.4. If there is an arc $v_{8} \rightarrow v_{4}$, then we get the other arcs $v_{2} \rightarrow v_{6}, v_{5} \rightarrow v_{1}, v_{3} \rightarrow v_{7}$ and the resulting mixed graph is isomorphic to H_{3}.

If the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{3} \leftrightarrow v_{7}$, then there are two undirected edges in C_{1} and C_{4}. Thus, the fourth undirected edge cannot be $v_{2} \leftrightarrow v_{4}, v_{3} \leftrightarrow v_{4}, v_{1} \leftrightarrow v_{5}$ or $v_{5} \leftrightarrow v_{7}$. If the fourth undirected edge is $v_{2} \leftrightarrow v_{6}$, then there are three arcs in C_{2}, which contradicts Claim 1. By a similar way, we deduce that the fourth undirected edge cannot be $v_{5} \leftrightarrow v_{6}, v_{6} \leftrightarrow v_{8}, v_{4} \leftrightarrow v_{8}$ or $v_{7} \leftrightarrow v_{8}$. Thus, this case could not happen.

If the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{1} \leftrightarrow v_{5}$, then there are two undirected edges in C_{1}, C_{4} and C_{5}. Thus, the fourth undirected edge cannot be $v_{2} \leftrightarrow v_{4}, v_{3} \leftrightarrow v_{4}, v_{3} \leftrightarrow v_{7}, v_{5} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}$ or $v_{5} \leftrightarrow v_{6}$. If the fourth undirected edge is $v_{4} \leftrightarrow v_{8}$, then there are three arcs in C_{2}, which contradicts Claim 1. By a similar way, we deduce that the fourth undirected edge cannot be $v_{6} \leftrightarrow v_{8}$ or $v_{7} \leftrightarrow v_{8}$. Thus, this case could not happen.

Subcase 2.3. $a=7, b=5$.
Similarly, in order to determine five undirected edges in Q_{3}^{ϕ}, we just need to find two more undirected edges based on the discussion of Subcase 2.1.

If the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{2} \leftrightarrow v_{4}$ and $v_{5} \leftrightarrow v_{7}$, then there are two undirected edges in C_{1} and C_{4}. Thus, the other two undirected edges cannot
be $v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{4}, v_{1} \leftrightarrow v_{5}$ or $v_{3} \leftrightarrow v_{7}$. If one of the other two undirected edges is $v_{6} \leftrightarrow v_{8}$, then there are two undirected edges in C_{2} and C_{3}. By Claim 1, the last undirected edge cannot be $v_{2} \leftrightarrow v_{6}, v_{4} \leftrightarrow v_{8}, v_{5} \leftrightarrow v_{6}$ or $v_{7} \leftrightarrow v_{8}$. Then, there do not exist five undirected edges and hence this case could not happen. If there is an arc between v_{6} and v_{8}, then the other two undirected edges (up to isomorphism) can be $v_{2} \leftrightarrow v_{6}$ and $v_{4} \leftrightarrow v_{8}, v_{2} \leftrightarrow v_{6}$ and $v_{5} \leftrightarrow v_{6}$, or $v_{2} \leftrightarrow v_{6}$ and $v_{7} \leftrightarrow v_{8}$. If the other two undirected edges are $v_{2} \leftrightarrow v_{6}$ and $v_{4} \leftrightarrow v_{8}$, then there are three undirected edges in C_{2}, which contradicts Claim 1. By a similar way, we deduce that the other two undirected edges cannot be $v_{2} \leftrightarrow v_{6}$ and $v_{7} \leftrightarrow v_{8}$. Therefore, the five undirected edges in Q_{3}^{ϕ} can be $v_{1} \leftrightarrow v_{3}, v_{2} \leftrightarrow v_{4}, v_{5} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}$ and $v_{5} \leftrightarrow v_{6}$.

By a similar discussion, if the three undirected edges which we have determined are $v_{1} \leftrightarrow$ $v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{5} \leftrightarrow v_{7}$, then we deduce that the five undirected edges in Q_{3}^{ϕ} can be $v_{1} \leftrightarrow$ $v_{3}, v_{1} \leftrightarrow v_{2}, v_{5} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}$ and $v_{6} \leftrightarrow v_{8}$; if the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{3} \leftrightarrow v_{7}$, then we deduce that the five undirected edges in Q_{3}^{ϕ} can be either $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}, v_{4} \leftrightarrow v_{8}$ or $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{7}, v_{5} \leftrightarrow$ $v_{6}, v_{7} \leftrightarrow v_{8}$; if the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{1} \leftrightarrow v_{5}$, then this case could not happen. Regardless of the labels of vertices, the cases of the five undirected edges which we have determined are the same.

Without loss of generality, suppose that the five undirected edges are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow$ $v_{7}, v_{5} \leftrightarrow v_{6}$ and $v_{7} \leftrightarrow v_{8}$. Then, the mixed 4 -cycles C_{1}, C_{4} and C_{6} should be the first type in Fig.2.1; the mixed 4-cycles C_{5} and C_{3} should be the second type in Fig.2.1; the mixed 4-cycle C_{2} should be the third type in Fig.2.1. Hence, there are two arcs either $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ or $v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{3}$ in C_{1}. If there are two arcs $v_{3} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{2}$ in C_{1}, then we have an arc $v_{4} \rightarrow v_{8}$ in C_{6}. Otherwise, there is an arc $v_{8} \rightarrow v_{4}$. If there are three $\operatorname{arcs} v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ and $v_{4} \rightarrow v_{8}$ in a mixed graph, then we reverse every arc which is incident to vertex v_{4} and obtain a new mixed graph. Using the switching matrix $D(\theta)=\operatorname{diag}(1,1,1,-1,1,1,1,1)$, we can prove that the two mixed graphs are switching equivalent. Without loss of generality, assume that $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ and $v_{4} \rightarrow v_{8}$. Afterwards, we have arcs either $v_{7} \rightarrow v_{5}, v_{5} \rightarrow v_{1}$ or $v_{1} \rightarrow v_{5}, v_{5} \rightarrow v_{7}$ in C_{4}. If there are two arcs $v_{7} \rightarrow v_{5}$ and $v_{5} \rightarrow v_{1}$ in C_{4}, then the other arcs are $v_{2} \rightarrow v_{6}$ and $v_{6} \rightarrow v_{8}$. Thus, we obtain H_{4} shown in Fig.3.4. If there are two $\operatorname{arcs} v_{1} \rightarrow v_{5}$ and $v_{5} \rightarrow v_{7}$ in C_{4}, then the other arcs are $v_{8} \rightarrow v_{6}, v_{6} \rightarrow v_{2}$ and the resulting mixed graph is isomorphic to H_{4}.

Subcase 2.4. $a=6, b=6$.
In order to determine six undirected edges in Q_{3}^{ϕ}, we just need to find three more undirected edges based on the discussion of Subcase 2.1.

If the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{2} \leftrightarrow v_{4}$ and $v_{5} \leftrightarrow v_{7}$, then there are two undirected edges in C_{1} and C_{4}. Thus, the other three undirected edges cannot be $v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{4}, v_{1} \leftrightarrow v_{5}$ or $v_{3} \leftrightarrow v_{7}$. If one of the other three undirected edges is $v_{2} \leftrightarrow v_{6}$, then there must have an undirected edge $v_{5} \leftrightarrow v_{6}$ in C_{5} by Claim 1. However, the last
undirected edge cannot be $v_{6} \leftrightarrow v_{8}, v_{4} \leftrightarrow v_{8}$ or $v_{7} \leftrightarrow v_{8}$ by Claim 1 . Then, there do not exist six undirected edges. Similarly, we can show that one of the other three undirected edges cannot be $v_{5} \leftrightarrow v_{6}, v_{4} \leftrightarrow v_{8}$ or $v_{7} \leftrightarrow v_{8}$. Hence, this case could not happen.

By a similar discussion, if the three undirected edges which we have determined are $v_{1} \leftrightarrow$ $v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{5} \leftrightarrow v_{7}$, then we deduce that the six undirected edges in Q_{3}^{ϕ} can be $v_{1} \leftrightarrow$ $v_{3}, v_{1} \leftrightarrow v_{2}, v_{5} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}, v_{4} \leftrightarrow v_{8}$ and $v_{7} \leftrightarrow v_{8}$; if the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{3} \leftrightarrow v_{7}$, then we deduce that the six undirected edges in Q_{3}^{ϕ} can be either $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}, v_{6} \leftrightarrow v_{8}, v_{7} \leftrightarrow v_{8}$ or $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow$ $v_{2}, v_{3} \leftrightarrow v_{7}, v_{5} \leftrightarrow v_{6}, v_{6} \leftrightarrow v_{8}, v_{4} \leftrightarrow v_{8}$; if the three undirected edges which we have determined are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}$ and $v_{1} \leftrightarrow v_{5}$, then we deduce that the six undirected edges in Q_{3}^{ϕ} can be $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{1} \leftrightarrow v_{5}, v_{6} \leftrightarrow v_{8}, v_{4} \leftrightarrow v_{8}$ and $v_{7} \leftrightarrow v_{8}$. Regardless of the labels of vertices, the case that $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{5} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}, v_{4} \leftrightarrow v_{8}, v_{7} \leftrightarrow v_{8}$ is the same as the case that $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{7}, v_{5} \leftrightarrow v_{6}, v_{6} \leftrightarrow v_{8}, v_{4} \leftrightarrow v_{8}$. Thus, we get the following three cases.
(1) The six undirected edges are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{7}, v_{2} \leftrightarrow v_{6}, v_{6} \leftrightarrow v_{8}$ and $v_{7} \leftrightarrow v_{8}$. Then, every mixed 4 -cycle in Q_{3}^{d} should be the first type in Fig.2.1. Hence, there are two arcs either $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ or $v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{3}$ in C_{1}. If there are two arcs $v_{3} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{2}$ in C_{1}, then we get an arc $v_{4} \rightarrow v_{8}$ in C_{6} and $v_{8} \rightarrow v_{4}$ in C_{2}, a contradiction. Analogously, the case that there are two arcs $v_{2} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{3}$ in C_{1} could not happen.
(2) The six undirected edges are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{3} \leftrightarrow v_{7}, v_{5} \leftrightarrow v_{6}, v_{6} \leftrightarrow v_{8}$ and $v_{4} \leftrightarrow v_{8}$. Then, the mixed 4 -cycles C_{1}, C_{2}, C_{3} and C_{4} should be the first type in Fig.2.1; the mixed 4 -cycles C_{5} and C_{6} should be the second type in Fig.2.1. Hence, there are two arcs either $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ or $v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{3}$ in C_{1}. If there are two arcs $v_{3} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{2}$ in C_{1}, then we get the other arcs $v_{2} \rightarrow v_{6}, v_{5} \rightarrow v_{1}, v_{7} \rightarrow v_{5}$ and $v_{8} \rightarrow v_{7}$. Thus, we obtain H_{5} shown in Fig.3.4. If there are two arcs $v_{2} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{3}$ in C_{1}, then we get the other arcs $v_{6} \rightarrow v_{2}, v_{1} \rightarrow v_{5}, v_{5} \rightarrow v_{7}, v_{7} \rightarrow v_{8}$ and the resulting mixed graph is isomorphic to H_{5}.
(3) The six undirected edges are $v_{1} \leftrightarrow v_{3}, v_{1} \leftrightarrow v_{2}, v_{1} \leftrightarrow v_{5}, v_{6} \leftrightarrow v_{8}, v_{4} \leftrightarrow v_{8}$ and $v_{7} \leftrightarrow v_{8}$. Then, every mixed 4 -cycle in Q_{3}^{ϕ} should be the first type in Fig.2.1. Hence, there are two arcs either $v_{3} \rightarrow v_{4}, v_{4} \rightarrow v_{2}$ or $v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{3}$ in C_{1}. If there are two arcs $v_{3} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{2}$ in C_{1}, then we get the other arcs $v_{2} \rightarrow v_{6}, v_{6} \rightarrow v_{5}, v_{5} \rightarrow v_{7}$ and $v_{7} \rightarrow v_{3}$. Thus, we obtain H_{6} shown in Fig.3.4. If there are two arcs $v_{2} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{3}$ in C_{1}, then we get the other arcs $v_{6} \rightarrow v_{2}, v_{5} \rightarrow v_{6}, v_{7} \rightarrow v_{5}, v_{3} \rightarrow v_{7}$ and the resulting mixed graph is isomorphic to H_{6}.

Up to now, the proof is complete.
Finally, we summarize all results above as the following theorem, which solve Problem 1.1 for the case $k=3$.

Theorem 3.3 Let G^{ϕ} be a 3-regular mixed graph. Then G^{ϕ} has optimum Hermitian energy if and only if G^{ϕ} (up to switching equivalence) is one of the following graphs: D_{1}, D_{2}, G_{1} or H_{i}, where $i=1,2, \ldots, 6$; see Figs. 2.2, 3.3 and 3.4.

Acknowledgement: The authors would like to thank the reviewers and editor for their useful comments and suggestions, which are helpful for modifying the paper.

References

[1] C. Adiga, R. Balakrishnan, Wasin So, The skew energy of a digraph, Linear Algebra Appl. 432(2010), 1825-1835.
[2] J. Bondy, U. Murty, Graph Theory, Springer, New York, 2008.
[3] X. Chen, X. Li, H. Lian, 4-Regular oriented graphs with optimum skew energy, Linear Algebra Appl. 439(10)(2013), 2948-2960.
[4] D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, Electron. J. Combin. 20(2013), \#P19.
[5] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts, vol. 75, Cambridge University Press, Cambridge, 2010.
[6] S. Gong, G. Xu, 3-Regular digraphs with optimum skew energy, Linear Algebra Appl. 436(2012), 465-471.
[7] S. Gong, G. Xu, W. Zhong, 4-regular oriented graphs with optimum skew energies, European J. Combin. 36(2014), 77-85.
[8] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103(1978), 1-22.
[9] X. Li, H. Lian, Skew energy of oriented graphs, Chapter 8 in "I. Gutman, X. Li (Eds.), Energies of Graphs- Theory and Applications", Mathematical Chemistry Monograph No.17, 2016, pp.191-236.
[10] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[11] J. Liu, X. Li, Hermitian-adjacency matrices and Hermitian energies of mixed graphs, Linear Algebra Appl. 466(2015), 182-207.
[12] G. Tian, On the skew energy of orientations of hypercubes, Linear Algebra Appl. 435(2011), 2140-2149.

[^0]: *Supported by NSFC No. 11371205 and 11531011, the 973 program of China No.2013CB834204, and PCSIRT.

