On parabolic Kazhdan-Lusztig *R*-polynomials for the symmetric group

Neil J.Y. Fan¹, Peter L. Guo², Grace L.D. Zhang³

¹Department of Mathematics Sichuan University, Chengdu, Sichuan 610064, P.R. China

> ^{2,3}Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China

¹fan@scu.edu.cn, ²lguo@nankai.edu.cn, ³zhld@mail.nankai.edu.cn

Abstract

Parabolic *R*-polynomials were introduced by Deodhar as parabolic analogues of ordinary *R*-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the computation of parabolic *R*-polynomials for the symmetric group. Let S_n be the symmetric group on $\{1, 2, \ldots, n\}$, and let $S = \{s_i \mid 1 \le i \le n-1\}$ be the generating set of S_n , where for $1 \le i \le n-1$, s_i is the adjacent transposition. For a subset $J \subseteq S$, let $(S_n)_J$ be the parabolic subgroup generated by J, and let $(S_n)^J$ be the set of minimal coset representatives for $S_n/(S_n)_J$. For $u \le v \in (S_n)^J$ in the Bruhat order and $x \in \{q, -1\}$, let $R_{u,v}^{J,x}(q)$ denote the parabolic *R*-polynomial indexed by u and v. Brenti found a formula for $R_{u,v}^{J,x}(q)$ when $J = S \setminus \{s_i\}$, and obtained an expression for $R_{u,v}^{J,x}(q)$ when $J = S \setminus \{s_{i-1}, s_i\}$. In this paper, we provide a formula for $R_{u,v}^{J,x}(q)$, where $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$ and i appears after i-1 in v. It should be noted that the condition that i appears after i-1 in v is equivalent to that v is a permutation in $(S_n)^{S \setminus \{s_{i-2}, s_i\}}$. We also pose a conjecture for $R_{u,v}^{J,x}(q)$, where $J = S \setminus \{s_k, s_{k+1}, \ldots, s_i\}$ with $1 \le k \le i \le n-1$ and v is a permutation in $(S_n)^{S \setminus \{s_k, s_k\}}$.

Keywords: parabolic Kazhdan-Lusztig R-polynomial, the symmetric group, Bruhat order

AMS Classifications: 20F55, 05E99

1 Introduction

Parabolic *R*-polynomials for a Coxeter group were introduced by Deodhar [5] as parabolic analogues of ordinary *R*-polynomials defined by Kazhdan and Lusztig [8]. In this paper, we consider the computation of parabolic *R*-polynomials for the symmetric group. Let S_n be the symmetric group on $\{1, 2, ..., n\}$, and let $S = \{s_1, s_2, ..., s_{n-1}\}$ be the generating set of S_n , where for $1 \leq i \leq n-1$, s_i is the adjacent transposition that interchanges the elements iand i+1. For a subset $J \subseteq S$, let $(S_n)_J$ be the parabolic subgroup generated by J, and let $(S_n)^J$ be the set of minimal coset representatives of $S_n/(S_n)_J$. Assume that u and v are two permutations in $(S_n)^J$ such that $u \leq v$ in the Bruhat order. For $x \in \{q, -1\}$, let $R_{u,v}^{J,x}(q)$ denote the parabolic *R*-polynomial indexed by u and v. When $J = S \setminus \{s_i\}$, Brenti [2] found a formula for $R_{u,v}^{J,x}(q)$. Recently, Brenti [3] obtained an expression for $R_{u,v}^{J,x}(q)$ for $J = S \setminus \{s_{i-1}, s_i\}$.

In this paper, we consider the case $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$. We introduce a statistic on pairs of permutations in $(S_n)^J$ and then we give a formula for $R_{u,v}^{J,x}(q)$, where v is restricted to a permutation in $(S_n)^{S \setminus \{s_{i-2}, s_i\}}$. Notice that $v \in (S_n)^{S \setminus \{s_{i-2}, s_i\}}$ is equivalent to that $v \in (S_n)^J$

and *i* appears after i - 1 in *v*. It should be noted that there does not seem to exist an explicit formula for the case when $v \in (S_n)^J$ and *i* appears before i - 1 in *v*.

We also conjecture a formula for $R_{u,v}^{J,x}(q)$, where $J = S \setminus \{s_k, s_{k+1}, \ldots, s_i\}$ with $1 \le k \le i \le n-1$ and $v \in (S_n)^{S \setminus \{s_k, s_i\}}$. Notice also that $v \in (S_n)^{S \setminus \{s_k, s_i\}}$ can be equivalently described as the condition that $v \in (S_n)^J$ and the elements $k + 1, k + 2, \ldots, i$ appear in increasing order in v. This conjecture contains Brenti's formulas and our result as special cases. When k = 1 and i = n - 1, it becomes a conjecture for a formula of the ordinary *R*-polynomials $R_{u,v}(q)$, where v is a permutation in S_n such that $2, 3, \ldots, n - 1$ appear in increasing order in v.

Let us begin with some terminology and notation. For a Coxeter group W with a generating set S, let $T = \{wsw^{-1} | w \in W, s \in S\}$ be the set of reflections of W. For $w \in W$, the length $\ell(w)$ of w is defined as the smallest k such that w can be written as a product of k generators in S. For $u, v \in W$, we say that $u \leq v$ in the Bruhat order if there exists a sequence t_1, t_2, \ldots, t_r of reflections such that $v = ut_1t_2\cdots t_r$ and $\ell(ut_1\cdots t_i) > \ell(ut_1\cdots t_{i-1})$ for $1 \leq i \leq r$.

For a subset $J \subseteq S$, let W_J be the parabolic subgroup generated by J, and let W^J be the set of minimal right coset representatives of W/W_J , that is,

$$W^{J} = \{ w \in W \, | \, \ell(sw) > \ell(w), \text{ for all } s \in J \}.$$
(1.1)

We use $D_R(w)$ to denote the set of right descents of w, that is,

$$D_R(w) = \{ s \in S \,|\, \ell(ws) < \ell(w) \}.$$
(1.2)

For $u, v \in W^J$, the parabolic *R*-polynomial $R_{u,v}^{J,x}(q)$ can be recursively determined by the following property.

Theorem 1.1 (Deodhar [5]) Let (W, S) be a Coxeter system and J be a subset of S. Then, for each $x \in \{q, -1\}$, there is a unique family $\{R_{u,v}^{J,x}(q)\}_{u,v \in W^J}$ of polynomials with integer coefficients such that for all $u, v \in W^J$,

- (i) if $u \not\leq v$, then $R_{u,v}^{J,x}(q) = 0$;
- (ii) if u = v, then $R_{u,v}^{J,x}(q) = 1$;
- (iii) if u < v, then for any $s \in D_R(v)$,

$$R_{u,v}^{J,x}(q) = \begin{cases} R_{us,vs}^{J,x}(q), & \text{if } s \in D_R(u), \\ qR_{us,vs}^{J,x}(q) + (q-1)R_{u,vs}^{J,x}(q), & \text{if } s \notin D_R(u) \text{ and } us \in W^J, \\ (q-1-x)R_{u,vs}^{J,x}(q), & \text{if } s \notin D_R(u) \text{ and } us \notin W^J. \end{cases}$$

Notice that when $J = \emptyset$, the parabolic *R*-polynomial $R_{u,v}^{J,x}(q)$ reduces to an ordinary *R*-polynomial $R_{u,v}(q)$, see, for example, Björner and Brenti [1, Chapter 5] or Humphreys [7, Chapter 7]. The parabolic *R*-polynomials $R_{u,v}^{J,x}(q)$ for x = q and x = -1 satisfy the following relation, so that we only need to consider the computation for the case x = q.

Theorem 1.2 (Deodhar [6, Corollary 2.2]) For $u, v \in W^J$ with $u \leq v$,

$$q^{\ell(v)-\ell(u)} R_{u,v}^{J,q}\left(\frac{1}{q}\right) = (-1)^{\ell(v)-\ell(u)} R_{u,v}^{J,-1}(q).$$

There is no known explicit formula for $R_{u,v}^{J,x}(q)$ for a general Coxeter system (W, S), and even for the symmetric group. When $W = S_n$, Brenti [2,3] found formulas for $R_{u,v}^{J,x}(q)$ for certain subsets J, namely, $J = S \setminus \{s_i\}$ or $J = S \setminus \{s_{i-1}, s_i\}$. To describe the formulas for the parabolic R-polynomials obtained by Brenti [2,3], we recall some statistics on pairs of permutations in $(S_n)^J$ with $J = S \setminus \{s_i\}$ or $J = S \setminus \{s_{i-1}, s_i\}$.

A permutation $u = u_1 u_2 \cdots u_n$ in S_n is also considered as a bijection on $\{1, 2, \ldots, n\}$ such that $u(i) = u_i$ for $1 \le i \le n$. For $u, v \in S_n$, the product uv of u and v is defined as the bijection such that uv(i) = u(v(i)) for $1 \le i \le n$. For $1 \le i \le n - 1$, the adjacent transposition s_i is the permutation that interchanges the elements i and i + 1. The length of a permutation $u \in S_n$ can be interpreted as the number of inversions of u, that is,

$$\ell(u) = |\{(i,j) \mid 1 \le i < j \le n, \ u(i) > u(j)\}|.$$
(1.3)

By (1.2) and (1.3), the right descent set of a permutation $u \in S_n$ is given by

$$D_R(u) = \{s_i \mid 1 \le i \le n-1, \ u(i) > u(i+1)\}.$$

When $J = S \setminus \{s_i\}$, it follows from (1.1) and (1.3) that a permutation $u \in S_n$ belongs to $(S_n)^J$ if and only if the elements $1, 2, \ldots, i$ as well as the elements $i + 1, i + 2, \ldots, n$ appear in increasing order in u, or equivalently,

$$u^{-1}(1) < u^{-1}(2) < \dots < u^{-1}(i)$$
 and $u^{-1}(i+1) < u^{-1}(i+2) < \dots < u^{-1}(n)$.

For $n \ge 1$, we use [n] to denote the set $\{1, 2, \ldots, n\}$. For $J = S \setminus \{s_i\}$ and $u, v \in (S_n)^J$, let

$$D(u, v) = v^{-1}([i]) \setminus u^{-1}([i])$$

For $1 \leq j \leq n$, let

$$a_j(u,v) = |\{r \in u^{-1}([i]) \mid r < j\}| - |\{r \in v^{-1}([i]) \mid r < j\}|$$

It is known that $u \leq v$ in the Bruhat order if and only if $a_j(u, v) \geq 0$ for all $1 \leq j \leq n$. Brenti [2] obtained the following formula for $R_{u,v}^{J,x}(q)$, where $J = S \setminus \{s_i\}$.

Theorem 1.3 (Brenti [2, Corollary 3.2]) Let $J = S \setminus \{s_i\}$, and let $u, v \in (S_n)^J$ with $u \leq v$. Then

$$R_{u,v}^{J,q}(q) = (-1)^{\ell(v) - \ell(u)} \prod_{j \in D(u,v)} \left(1 - q^{a_j(u,v)} \right).$$

We now turn to the case $J = S \setminus \{s_{i-1}, s_i\}$. In this case, it can be seen from (1.1) and (1.3) that a permutation $u \in S_n$ belongs to $(S_n)^J$ if and only if

$$u^{-1}(1) < u^{-1}(2) < \dots < u^{-1}(i-1)$$
 and $u^{-1}(i+1) < u^{-1}(i+2) < \dots < u^{-1}(n)$.

For $u, v \in (S_n)^J$, let

$$\widetilde{D}(u,v) = v^{-1}([i-1]) \setminus u^{-1}([i-1])$$

For $1 \leq j \leq n$, let

$$\widetilde{a}_j(u,v) = |\{r \in u^{-1}([i-1]) \mid r < j\}| - |\{r \in v^{-1}([i-1]) \mid r < j\}|.$$

The following formula is due to Brenti [3].

Theorem 1.4 (Brenti [3, Theorem 3.1]) Let $J = S \setminus \{s_{i-1}, s_i\}$, and let $u, v \in (S_n)^J$ with $u \leq v$. Then

$$R_{u,v}^{J,q}(q) = \begin{cases} (-1)^{\ell(v)-\ell(u)} \left(1-q+cq^{1+a_{v-1(i)}(u,v)}\right) \prod_{j \in D(u,v)} \left(1-q^{a_j(u,v)}\right), & \text{if } u^{-1}(i) \ge v^{-1}(i), \\ (-1)^{\ell(v)-\ell(u)} \left(1-q+cq^{1+\widetilde{a}_{v-1(i)}(u,v)}\right) \prod_{j \in \widetilde{D}(u,v)} \left(1-q^{\widetilde{a}_j(u,v)}\right), & \text{if } u^{-1}(i) \le v^{-1}(i), \end{cases}$$

where $c = \delta_{u^{-1}(i), v^{-1}(i)}$ is the Kronecker delta function.

It should be noted that the sets $(S_n)^J$ for $J = S \setminus \{s_i\}$ and $J = S \setminus \{s_{i-1}, s_i\}$ are called tight quotients of S_n by Stembridge [10] in the study of the Bruhat order of Coxeter groups. Therefore, combining Theorem 1.3 and Theorem 1.4 leads to an expression for the parabolic R-polynomials for tight quotients of the symmetric group.

2 A formula for $R_{u,v}^{J,q}(q)$ with $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$

In this section, we present a formula for $R_{u,v}^{J,q}(q)$, where $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$ and v is a permutation in $(S_n)^{S \setminus \{s_{i-2}, s_i\}}$. It is clear that $v \in (S_n)^{S \setminus \{s_{i-2}, s_i\}}$ is equivalent to that $v \in (S_n)^J$ and i appears after i-1 in v. We also give a conjectured formula for $R_{u,v}^{J,q}(q)$, where $J = S \setminus \{s_k, s_{k+1}, \ldots, s_i\}$ with $1 \le k \le i \le n-1$ and $v \in (S_n)^{S \setminus \{s_k, s_i\}}$.

For $u, v \in (S_n)^J$ with $u \leq v$, our formula for $R_{u,v}^{J,q}(q)$ relies on a vector of statistics on (u, v), denoted $(a_1(u, v), a_2(u, v), \ldots, a_n(u, v))$. Notice that a permutation $u \in S_n$ belongs to $(S_n)^J$ if and only if the elements $1, 2, \ldots, i-2$ as well as the elements $i+1, i+2, \ldots, n$ appear in increasing order in u. To define $a_j(u, v)$, we need to consider the positions of the elements i-1and i in u and v. For convenience, let $u^{-1} = p_1 p_2 \cdots p_n$ and $v^{-1} = q_1 q_2 \cdots q_n$, that is, t appears in position p_t in u, and appears in position q_t in v. The following set A(u, v) is defined based on the relations $p_{i-1} \ge q_{i-1}$ and $p_i \ge q_i$. More precisely, A(u, v) is a subset of $\{i-1, i\}$ such that $i-1 \in A(u, v)$ if and only if $p_{i-1} \ge q_{i-1}$, and $i \in A(u, v)$ if and only if $p_i \ge q_i$. Set

$$B(u, v) = \{1, 2, \dots, i - 2\} \cup A(u, v).$$

For $1 \leq j \leq n$, we define $a_j(u, v)$ to be the number of elements of B(u, v) that are contained in $\{u_1, \ldots, u_{j-1}\}$ minus the number of elements of B(u, v) that are contained in $\{v_1, \ldots, v_{j-1}\}$, that is,

$$a_j(u,v) = |\{r \in u^{-1}(B(u,v)) \mid r < j\}| - |\{r \in v^{-1}(B(u,v)) \mid r < j\}|.$$
(2.1)

For example, let n = 9 and i = 5, so that $J = S \setminus \{s_3, s_4, s_5\}$. Let

$$u = 416273859$$
 and $v = 671489253$ (2.2)

be two permutations in $(S_9)^J$. Then we have $A(u, v) = \{5\}, B(u, v) = \{1, 2, 3, 5\}$, and

$$(a_1(u,v),\ldots,a_9(u,v)) = (0,0,1,0,1,1,2,1,1).$$
(2.3)

The following theorem gives a formula for $R_{u,v}^{J,q}(q)$.

Theorem 2.5 Let $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$, and let v be a permutation in $(S_n)^{S \setminus \{s_{i-2}, s_i\}}$. Let

$$D(u,v) = v^{-1}(B(u,v)) \setminus u^{-1}(B(u,v)).$$
(2.4)

Then, for any $u \in (S_n)^J$ with $u \leq v$, we have

$$R_{u,v}^{J,q}(q) = (-1)^{\ell(v)-\ell(u)} \left(1 - q + \delta_{u^{-1}(i-1),v^{-1}(i-1)}q^{1+a_{v^{-1}(i-1)}(u,v)}\right) \left(1 - q^{a_{j}(u,v)}\right) \right)$$
(2.5)

Remark. It should be noted that Theorem 2.5 does not imply a formula for $R_{u,v}^{J',q}(q)$ with $J' = S \setminus \{s_{i-2}, s_i\}$, since, by definition, the parabolic *R*-polynomial $R_{u,v}^{J,q}(q)$ depends heavily on the choice of the subset J.

Let us give an example for Theorem 2.5. Assume that u and v are the permutations as given in (2.2). Then we have $D(u, v) = \{3, 7, 9\}$. In view of (2.3), formula (2.5) gives

$$R_{u,v}^{J,q}(q) = (1-q)^3 (1-q^2)(1-q+q^2).$$

To prove the above theorem, we need a criterion for the relation of two permutations in $(S_n)^J$ with respect to the Bruhat order. Let $u, v \in (S_n)^J$, for h = 1, 2, 3 and $1 \le j \le n$, define

$$b_{h,j}(u,v) = \left| \left\{ r \in u^{-1}([i+h-3]) \mid r < j \right\} \right| - \left| \left\{ r \in v^{-1}([i+h-3]) \mid r < j \right\} \right|.$$
(2.6)

The following proposition, which follows easily from Corollary 2.2.5 and Theorem 2.6.3 of [1], shows that we can use $b_{h,j}(u,v)$ with h = 1, 2, 3 and $1 \le j \le n$ to determine whether $u \le v$ in the Bruhat order.

Proposition 2.6 Let $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$, and let $u, v \in (S_n)^J$. Then, $u \le v$ if and only if $b_{h,j}(u,v) \ge 0$ for h = 1, 2, 3 and $1 \le j \le n$.

We are now in a position to present a proof of Theorem 2.5.

Proof of Theorem 2.5. Assume that $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$, and u and v are two permutations in $(S_n)^J$ such that $u \leq v$. Write $u^{-1} = p_1 p_2 \cdots p_n$ and $v^{-1} = q_1 q_2 \cdots q_n$. By the definitions of $(a_1(u, v), \ldots, a_n(u, v))$ and D(u, v), we consider the following four cases:

$$p_{i-1} \ge q_{i-1} \quad \text{and} \quad p_i \ge q_i, \tag{2.7}$$

$$p_{i-1} \ge q_{i-1} \quad \text{and} \quad p_i < q_i, \tag{2.8}$$

$$p_{i-1} < q_{i-1} \quad \text{and} \quad p_i \ge q_i, \tag{2.9}$$

$$p_{i-1} < q_{i-1}$$
 and $p_i < q_i$. (2.10)

We conduct induction on $\ell(v)$. When $\ell(v) = 0$, formula (2.5) is easy to check. Assume that $\ell(v) > 0$ and formula (2.5) is true for $\ell(v) - 1$. We proceed to prove (2.5) for $\ell(v)$. We shall only provide a proof for the case in (2.8). The other cases can be justified by using similar arguments. By (2.1) and (2.8), we see that for $1 \le k \le n$,

$$a_k(u,v) = |\{r \in u^{-1}([i-1]) \mid r < k\}| - |\{r \in v^{-1}([i-1]) \mid r < k\}|.$$
(2.11)

Note that $a_j(u,v) = b_{2,j}(u,v)$ for all $1 \le j \le n$. Moreover, by (2.4) and (2.8) we find that

$$D(u,v) = v^{-1}([i-1]) \setminus u^{-1}([i-1]).$$
(2.12)

1	v(j) > i and $v(j+1) = i$
2	v(j) > i and $v(j+1) = i - 1$
3	v(j) > i and $v(j+1) < i-1$
4	v(j) = i and $v(j+1) < i-1$
5	v(j) = i - 1 and $v(j + 1) < i - 1$

Table 2.1: The choices of v(j) and v(j+1) in v.

Let $s = s_j \in D_R(v)$ be a right descent of v, that is, v(j) > v(j+1), where $1 \le j \le n-1$. Keep in mind that i appears after i-1 in v, namely, $q_i > q_{i-1}$, and that the elements $1, 2, \ldots, i-2$ as well as the elements $i+1, i+2, \ldots, n$ appear in increasing order in v. So we get all possible choices of v(j) and v(j+1) as listed in Table 2.1.

According to whether s is a right descent of u, we have the following two cases.

Case 1: $s \in D_R(u)$, that is, u(j) > u(j+1). Since the elements $1, 2, \ldots, i-2$ as well as the elements $i + 1, i + 2, \ldots, n$ appear in increasing order in u, the possible choices of u(j) and u(j+1) are as given in Table 2.2.

1	u(j) > i and $u(j+1) = i$
2	u(j) > i and $u(j+1) = i - 1$
3	u(j) > i and $u(j+1) < i-1$
4	u(j) = i and $u(j+1) = i - 1$
5	u(j) = i and $u(j+1) < i-1$
6	u(j) = i - 1 and $u(j + 1) < i - 1$

Table 2.2: The choices of u(j) and u(j+1) in u in Case 1.

We only give proofs for the cases when v satisfies Condition 1 in Table 2.1 and u satisfies Conditions 2 and 5 in Table 2.2, and for the cases when v satisfies Condition 5 in Table 2.1 and u satisfies Conditions 1, 2, 3, and 6 in Table 2.2. The remaining cases can be dealt with in the same manner.

Subcase 1. v(j) > i, v(j+1) = i and u(j) > i, u(j+1) = i - 1. In this case, it is easy to see that B(u, v) = B(us, vs) = [i - 1]. By (2.1), we have

$$a_{j+1}(u,v) = a_{j+1}(us,vs) - 1$$
, and $a_k(u,v) = a_k(us,vs)$ for $k \neq j+1$.

Moreover, by (2.4), we find that

$$D(u, v) = D(us, vs)$$
 and $j + 1 \notin D(u, v)$.

Thus by the induction hypothesis,

$$R_{u,v}^{J,q}(q) = R_{us,vs}^{J,q}(q)$$

= $(-1)^{\ell(vs)-\ell(us)}(1-q)^2 \prod_{k \in D(us,vs)} \left(1-q^{a_k(us,vs)}\right)$

$$= (-1)^{\ell(v)-\ell(u)} (1-q)^2 \prod_{k \in D(u,v)} \left(1-q^{a_k(u,v)}\right),$$

as desired.

Subcase 2. v(j) > i, v(j+1) = i and u(j) = i, u(j+1) < i-1. It is easy to check that B(u, v) = [i-1], B(us, vs) = [i]. By (2.1) and (2.4), we have

$$a_j(u,v) = a_j(us,vs)$$
 for $1 \le j \le n$

and

$$D(u,v) = D(us,vs).$$

Then by the induction hypothesis,

$$R_{u,v}^{J,q}(q) = R_{us,vs}^{J,q}(q) = (-1)^{\ell(v)-\ell(u)}(1-q)^2 \prod_{k \in D(u,v)} \left(1-q^{a_k(u,v)}\right).$$

Subcase 3. v(j) = i - 1, v(j + 1) < i - 1 and u(j) > i, u(j + 1) = i. Since B(u, v) = B(us, vs), by (2.1), it is easy to check that for $1 \le k \le n$,

$$a_k(us, vs) = a_k(u, v).$$

Moreover, it follows from (2.4) that

$$D(us, vs) = D(u, v).$$

By the induction hypothesis, we deduce that

$$R_{u,v}^{J,q}(q) = R_{us,vs}^{J,q}(q) = (-1)^{\ell(v) - \ell(u)} (1-q)^2 \prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)}\right).$$

Subcase 4. v(j) = i - 1, v(j+1) < i - 1 and u(j) > i, u(j+1) = i - 1. Notice that in this case us and vs satisfy the relation in (2.10). So we have $B(u, v) = [i - 1] = B(us, vs) \cup \{i - 1\}$. By (2.1) and (2.4), it is easily verified that for $1 \le k \le n$,

$$a_k(us, vs) = a_k(u, v),$$

and

$$D(us, vs) = (vs)^{-1}([i-2]) \setminus (us)^{-1}([i-2])$$
$$= v^{-1}([i-1]) \setminus u^{-1}([i-1])$$
$$= D(u, v).$$

By the induction hypothesis, we get

$$R_{u,v}^{J,q}(q) = R_{us,vs}^{J,q}(q) = (-1)^{\ell(v) - \ell(u)} (1-q)^2 \prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)}\right).$$

Subcase 5. v(j) = i - 1, v(j + 1) < i - 1 and u(j) > i, u(j + 1) < i - 1. We find that B(us, vs) = B(u, v) = [i - 1]. By (2.1) and (2.4), we have

$$a_{j+1}(us, vs) = a_{j+1}(u, v) + 1$$
 and $a_k(us, vs) = a_k(u, v)$, for $k \neq j+1$,

and

$$D(us, vs) = (D(u, v) \setminus \{j\}) \cup \{j+1\}.$$

Thus, the induction hypothesis yields that

$$\begin{aligned} R_{u,v}^{J,q}(q) &= R_{us,vs}^{J,q}(q) \\ &= (-1)^{\ell(vs) - \ell(us)} (1-q)^2 \prod_{k \in D(us,vs)} \left(1 - q^{a_k(us,vs)}\right) \\ &= (-1)^{\ell(v) - \ell(u)} (1-q)^2 \frac{1 - q^{a_{j+1}(us,vs)}}{1 - q^{a_j(u,v)}} \prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)}\right) \end{aligned}$$

which reduces to (2.5), since

$$a_{j+1}(us, vs) = a_j(u, v).$$

Subcase 6. v(j) = i - 1, v(j + 1) < i - 1 and u(j) = i - 1, u(j + 1) < i - 1. For $1 \le k \le n$, we have

$$a_k(us, vs) = a_k(u, v)$$

and

$$B(us, vs) = B(u, v)$$
 and $D(us, vs) = D(u, v)$

By the induction hypothesis, we find that

$$R_{u,v}^{J,q}(q) = R_{us,vs}^{J,q}(q)$$

= $(-1)^{\ell(vs)-\ell(us)} \left(1 - q + q^{1+a_{j+1}(us,vs)}\right) (1-q) \prod_{k \in D(us,vs)} \left(1 - q^{a_k(us,vs)}\right).$ (2.13)

Noticing the following relation

$$a_{j+1}(us, vs) = a_j(u, v),$$

formula (2.13) can be rewritten as

$$R_{u,v}^{J,q}(q) = (-1)^{\ell(v)-\ell(u)} \left(1-q+q^{1+a_j(u,v)}\right) (1-q) \prod_{k\in D(u,v)} \left(1-q^{a_k(u,v)}\right),$$

as required.

Case 2: $s \notin D_R(u)$, that is, u(j) < u(j+1). The possible choices of u(j) and u(j+1) are given in Table 2.3.

We shall provide proofs for three subcases: (i) v satisfies Condition 1 in Table 2.1 and u satisfies Condition 7 in Table 2.3; (ii) v satisfies Condition 3 in Table 2.1 and u satisfies Condition 3 in Table 2.3; (iii) v satisfies Condition 5 in Table 2.1 and u satisfies Condition 3 in Table 2.3; Table 2.3; (iii) v satisfies Condition 5 in Table 2.1 and u satisfies Condition 3 in Table 2.3.

Subcase (i): v(j) > i, v(j+1) = i, i = u(j) < u(j+1). By Theorem 1.1, we have

$$R_{u,v}^{J,q}(q) = q R_{us,vs}^{J,q}(q) + (q-1) R_{u,vs}^{J,q}(q).$$
(2.14)

We need to compute $R_{us,vs}^{J,q}(q)$ and $R_{u,vs}^{J,q}(q)$. We first compute $R_{u,vs}^{J,q}(q)$. Notice that u and vs satisfy the relation in (2.7). Since $A(u,vs) = \{i-1,i\}$ and B(u,vs) = [i], by (2.1), we obtain that for $1 \le k \le n$,

$$a_k(u, vs) = \left| \{ r \in u^{-1}([i]) \mid r < k \} \right| - \left| \{ r \in (vs)^{-1}([i]) \mid r < k \} \right|$$

1	u(j) < u(j+1) < i-1
2	u(j) < u(j+1) = i - 1
3	u(j) < i - 1 and $u(j + 1) = i$
4	u(j) < i - 1 and $u(j + 1) > i$
5	u(j) = i - 1 and $u(j + 1) = i$
6	u(j) = i - 1 and $u(j + 1) > i$
7	i = u(j) < u(j+1)
8	i < u(j) < u(j+1)

Table 2.3: The choices of u(j) and u(j+1) in u in Case 2.

$$= \left| \{ r \in u^{-1}([i-1]) \, | \, r < k \} \right| - \left| \{ r \in v^{-1}([i-1]) \, | \, r < k \} \right|$$
$$= a_k(u, v).$$

Moreover, by (2.4) we have

$$D(u, vs) = (vs)^{-1}([i]) \setminus u^{-1}([i])$$

= $v^{-1}([i-1]) \setminus u^{-1}([i-1])$
= $D(u, v).$

By the induction hypothesis, we deduce that

$$R_{u,vs}^{J,q}(q) = (-1)^{\ell(vs)-\ell(u)} \left(1 - q + \delta_{u^{-1}(i-1),(vs)^{-1}(i-1)} q^{1+a_{(vs)^{-1}(i-1)}(u,vs)}\right)$$
$$\left(1 - q + q^{1+a_j(u,vs)}\right) \prod_{k \in D(u,vs)} \left(1 - q^{a_k(u,vs)}\right)$$
$$= (-1)^{\ell(v)-\ell(u)-1} \left(1 - q + \delta_{u^{-1}(i-1),v^{-1}(i-1)} q^{1+a_{v^{-1}(i-1)}(u,v)}\right)$$
$$\left(1 - q + q^{1+a_j(u,v)}\right) \prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)}\right).$$
(2.15)

To compute $R_{us,vs}^{J,q}(q)$, we consider two cases according to whether $us \leq vs$. First, we assume that $us \leq vs$. Since us and vs satisfy the relation in (2.7), and $A(us,vs) = \{i-1,i\}, B(us,vs) = [i] = B(u,v) \cup \{i\}$, by (2.1) we see that

$$a_{j+1}(us, vs) = a_{j+1}(u, v) - 1$$
 and $a_k(us, vs) = a_k(u, v)$, for $k \neq j + 1$. (2.16)

Moreover, by (2.4) we get

$$D(us, vs) = (vs)^{-1}([i]) \setminus (us)^{-1}([i])$$

= $D(u, v) \cup \{j\}.$ (2.17)

Combining (2.16) and (2.17) and applying the induction hypothesis, we deduce that

$$R_{us,vs}^{J,q}(q) = (-1)^{\ell(vs) - \ell(us)} \left(1 - q + \delta_{(us)^{-1}(i-1),(vs)^{-1}(i-1)} q^{1 + a_{(vs)^{-1}(i-1)}(us,vs)} \right)$$

$$(1-q)\prod_{k\in D(us,vs)} \left(1-q^{a_k(us,vs)}\right)$$

= $(-1)^{\ell(v)-\ell(u)} \left(1-q+\delta_{u^{-1}(i-1),v^{-1}(i-1)}q^{1+a_{v^{-1}(i-1)}(u,v)}\right)$
 $(1-q) \left(1-q^{a_j(u,v)}\right)\prod_{k\in D(u,v)} \left(1-q^{a_k(u,v)}\right).$ (2.18)

Substituting (2.15) and (2.18) into (2.14), we obtain that

$$\begin{split} R_{u,v}^{J,q}(q) &= q R_{us,vs}^{J,q}(q) + (q-1) R_{u,vs}^{J,q}(q) \\ &= (-1)^{\ell(v) - \ell(u)} \left(q \left(1 - q^{a_j(u,v)} \right) + \left(1 - q + q^{1+a_j(u,v)} \right) \right) \\ &\left(1 - q \right) \left(1 - q + \delta_{u^{-1}(i-1),v^{-1}(i-1)} q^{1+a_{v^{-1}(i-1)}(u,v)} \right) \prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)} \right) \\ &= (-1)^{\ell(v) - \ell(u)} (1 - q) \left(1 - q + \delta_{u^{-1}(i-1),v^{-1}(i-1)} q^{1+a_{v^{-1}(i-1)}(u,v)} \right) \\ &\prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)} \right). \end{split}$$

We now consider the case $us \not\leq vs$. In this case, we claim that

$$a_j(u,v) = 0.$$
 (2.19)

In fact, by (2.6), it can be checked that for $1 \le k \le n$,

$$b_{1,k}(us, vs) = b_{1,k}(u, v)$$
 and $b_{2,k}(us, vs) = b_{2,k}(u, v)$,

and

$$b_{3,j+1}(us,vs) = b_{3,j+1}(u,v) - 2$$
 and $b_{3,k}(us,vs) = b_{3,k}(u,v)$, for $k \neq j+1$.

Since $us \not\leq vs$, by Proposition 2.6, we see that $b_{3,j+1}(u,v) - 2 < 0$. On the other hand, since $j + 1 \in v^{-1}([i])$ but $j + 1 \notin u^{-1}([i])$, we have $b_{3,j+1}(u,v) > 0$. So we get $b_{3,j+1}(u,v) = 1$. Therefore,

$$a_j(u, v) = b_{2,j}(u, v) = b_{3,j+1}(u, v) - 1 = 0$$

This proves the claim in (2.19).

Combining (2.15) and (2.19), we obtain that

$$R_{u,v}^{J,q}(q) = (q-1)R_{u,vs}^{J,q}(q)$$

= $(-1)^{\ell(v)-\ell(u)}(1-q)\left(1-q+\delta_{u^{-1}(i-1),v^{-1}(i-1)}q^{1+a_{v^{-1}(i-1)}(u,v)}\right)\prod_{k\in D(u,v)}\left(1-q^{a_k(u,v)}\right).$

Subcase (ii): v(j) > i, v(j+1) < i-1, u(j) < i-1 and u(j+1) = i. By Theorem 1.1, we have

$$R_{u,v}^{J,q}(q) = q R_{us,vs}^{J,q}(q) + (q-1) R_{u,vs}^{J,q}(q).$$
(2.20)

We need to compute $R_{us,vs}^{J,q}(q)$ and $R_{u,vs}^{J,q}(q)$. We first compute $R_{u,vs}^{J,q}(q)$. Since B(u,vs) = B(u,v) = [i-1], using (2.1), we get

$$a_{j+1}(u, vs) = a_{j+1}(u, v) - 1$$
 and $a_k(u, vs) = a_k(u, v)$, for $k \neq j + 1$.

Moreover, by (2.4) we have

$$D(u, vs) = D(u, v) \setminus \{j+1\},\$$

By the induction hypothesis, we deduce that

$$R_{u,vs}^{J,q}(q) = (-1)^{\ell(vs)-\ell(u)} \left(1 - q + \delta_{u^{-1}(i-1),(vs)^{-1}(i-1)} q^{1+a_{(vs)^{-1}(i-1)}(u,vs)}\right)$$

$$(1-q) \prod_{k\in D(u,vs)} \left(1 - q^{a_k(u,vs)}\right)$$

$$= (-1)^{\ell(v)-\ell(u)-1} \left(1 - q + \delta_{u^{-1}(i-1),v^{-1}(i-1)} q^{1+a_{v^{-1}(i-1)}(u,v)}\right) (1-q)$$

$$\frac{1}{1-q^{a_{j+1}(u,v)}} \prod_{k\in D(u,v)} \left(1 - q^{a_k(u,v)}\right).$$
(2.21)

To compute $R_{us,vs}^{J,q}(q)$, we consider two cases according to whether $us \leq vs$. First, we assume that $us \leq vs$. Since B(us,vs) = B(u,v) = [i-1], in view of (2.1), it is easy to check that

 $a_{j+1}(us, vs) = a_{j+1}(u, v) - 2$ and $a_k(us, vs) = a_k(u, v)$, for $k \neq j + 1$.

Moreover, it follows from (2.4) that

$$D(us, vs) = (D(u, v) \setminus \{j+1\}) \cup \{j\}$$

By the induction hypothesis, we obtain that

$$R_{us,vs}^{J,q}(q) = (-1)^{\ell(vs)-\ell(us)} \left(1 - q + \delta_{(us)^{-1}(i-1),(vs)^{-1}(i-1)}q^{1+a_{(vs)^{-1}(i-1)}(us,vs)}\right)$$

$$(1-q)\prod_{k\in D(us,vs)} \left(1 - q^{a_k(us,vs)}\right)$$

$$= (-1)^{\ell(v)-\ell(u)} \left(1 - q + \delta_{u^{-1}(i-1),v^{-1}(i-1)}q^{1+a_{v^{-1}(i-1)}(u,v)}\right)(1-q)$$

$$\frac{1-q^{a_j(us,vs)}}{1-q^{a_{j+1}(u,v)}}\prod_{k\in D(u,v)} \left(1 - q^{a_k(u,v)}\right).$$
(2.22)

Substituting (2.21) and (2.22) into (2.20) and noticing the following relation

$$a_j(us, vs) = a_{j+1}(u, v) - 1,$$

we are led to formula (2.5).

We now consider the case $us \not\leq vs$. In this case, we claim that

$$a_{j+1}(u,v) = 1. (2.23)$$

By (2.6), it is easily seen that

 $b_{1,j+1}(us,vs) = b_{1,j+1}(u,v) - 2$ and $b_{1,k}(us,vs) = b_{1,k}(u,v)$, for $k \neq j+1$, (2.24)

$$b_{2,j+1}(us,vs) = b_{2,j+1}(u,v) - 2$$
 and $b_{2,k}(us,vs) = b_{2,k}(u,v)$, for $k \neq j+1$, (2.25)

$$b_{3,j+1}(us,vs) = b_{3,j+1}(u,v) - 1$$
 and $b_{3,k}(us,vs) = b_{3,k}(u,v)$, for $k \neq j+1$. (2.26)

It is clear that $a_{j+1}(u, v) = b_{2,j+1}(u, v)$. So the claim in (2.23) reduces to

$$b_{2,j+1}(u,v) = 1.$$

Since $j \notin v^{-1}([i-1])$ but $j \in u^{-1}([i-1])$, we have $b_{2,j+1}(u,v) > 0$. Suppose to the contrary that $b_{2,j+1}(u,v) > 1$. In the notation $u^{-1} = p_1 p_2 \cdots p_n$ and $v^{-1} = q_1 q_2 \cdots q_n$, we have the following two cases.

Case (a): $p_{i-1} < j$. By (2.8), we see that $q_{i-1} < j$ and

$$b_{1,j+1}(u,v) = b_{2,j+1}(u,v) > 1$$

On the other hand, since $j \notin v^{-1}([i])$ but $j \in u^{-1}([i])$, we have $b_{3,j+1}(u,v) > 0$. Hence we conclude that $b_{h,k}(us,vs) \geq 0$ for h = 1, 2, 3 and $1 \leq k \leq n$. By Proposition 2.6, we get $us \leq vs$, contradicting the assumption $us \notin vs$.

Case (b): $p_{i-1} > j$. In this case, we find that if $q_{i-1} > j$, then

$$b_{1,j+1}(u,v) = b_{2,j+1}(u,v) > 1,$$

whereas if $q_{i-1} < j$, then

$$b_{1,i+1}(u,v) > b_{2,i+1}(u,v) > 1.$$

Note that in Case (a), we have shown that $b_{3,j+1}(u,v) > 0$. So, we obtain that $b_{h,k}(us,vs) \ge 0$ for h = 1, 2, 3 and $1 \le k \le n$. Thus we have $us \le vs$, contradicting the assumption $us \ne vs$. This proves the claim in (2.23). Substituting (2.23) into (2.21), we arrive at (2.5).

Subcase (iii): v(j) = i - 1, v(j + 1) < i - 1, u(j) < i - 1 and u(j + 1) = i. By Theorem 1.1, we have

$$R_{u,v}^{J,q}(q) = q R_{us,vs}^{J,q}(q) + (q-1) R_{u,vs}^{J,q}(q).$$
(2.27)

We need to compute $R_{us,vs}^{J,q}(q)$ and $R_{u,vs}^{J,q}(q)$. Since B(u,v) = B(u,vs) = [i-1], by (2.1), we see that for $1 \le k \le n$,

$$a_k(u, vs) = a_k(u, v).$$

Moreover, by (2.4) we have

$$D(u, vs) = D(u, v).$$

By the induction hypothesis, we obtain that

$$R_{u,vs}^{J,q}(q) = (-1)^{\ell(vs)-\ell(u)}(1-q)^2 \prod_{k \in D(u,vs)} \left(1-q^{a_k(u,vs)}\right)$$
$$= (-1)^{\ell(v)-\ell(u)-1}(1-q)^2 \prod_{k \in D(u,v)} \left(1-q^{a_k(u,v)}\right).$$
(2.28)

To compute $R_{us,vs}^{J,q}(q)$, we claim that $us \leq vs$. By (2.6), we see that

$$b_{1,j+1}(us,vs) = b_{1,j+1}(u,v) - 2$$
 and $b_{1,k}(us,vs) = b_{1,k}(u,v)$, for $k \neq j+1$, (2.29)

$$b_{2,j+1}(us,vs) = b_{2,j+1}(u,v) - 1$$
 and $b_{2,k}(us,vs) = b_{2,k}(u,v)$, for $k \neq j+1$, (2.30)

$$b_{3,k}(us, vs) = b_{3,k}(u, v), \text{ for } 1 \le k \le n.$$
 (2.31)

Since $j + 1 \in v^{-1}([i-1])$ but $j + 1 \notin u^{-1}([i-1])$, we have $b_{2,j+1}(u,v) > 0$, which implies that

$$b_{2,j+1}(us, vs) = b_{2,j+1}(u, v) - 1 \ge 0.$$
 (2.32)

Moreover, since $p_{i-1} \ge q_{i-1} = j$, we have $p_{i-1} > j$. So, we deduce that

$$b_{1,j+1}(u,v) = b_{2,j+1}(u,v) + 1 > 1,$$

and hence

$$b_{1,j+1}(us,vs) = b_{1,j+1}(u,v) - 2 \ge 0.$$
 (2.33)

Therefore, for h = 1, 2, 3 and $1 \le j \le n$,

 $b_{h,j}(us, vs) \ge 0,$

which together with Proposition 2.6 yields that $us \leq vs$. This proves the claim.

Since
$$B(us, vs) = B(u, v) = [i - 1]$$
, by (2.1) and (2.4), it is easily verified that
 $a_{j+1}(us, vs) = a_{j+1}(u, v) - 1$ and $a_k(us, vs) = a_k(u, v)$, for $k \neq j + 1$

and

$$D(us, vs) = (D(u, v) \setminus \{j+1\}) \cup \{j\}.$$

By the induction hypothesis, we deduce that

$$R_{us,vs}^{J,q}(q) = (-1)^{\ell(vs) - \ell(us)} (1-q)^2 \prod_{k \in D(us,vs)} \left(1 - q^{a_k(us,vs)}\right)$$
$$= (-1)^{\ell(v) - \ell(u)} (1-q)^2 \frac{1 - q^{a_j(us,vs)}}{1 - q^{a_{j+1}(u,v)}} \prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)}\right).$$
(2.34)

Since $a_i(us, vs) = a_{i+1}(u, v)$, formula (2.34) becomes

$$R_{us,vs}^{J,q}(q) = (-1)^{\ell(v) - \ell(u)} (1-q)^2 \prod_{k \in D(u,v)} \left(1 - q^{a_k(u,v)} \right)$$
(2.35)

Substituting (2.28) and (2.35) into (2.27), we are led to (2.5). This completes the proof.

We conclude this paper by giving a conjecture for a formula of $R_{u,v}^{J,q}(q)$, where

$$J = S \setminus \{s_k, s_{k+1}, \dots, s_i\}$$

with $1 \leq k \leq i \leq n-1$ and v is a permutation in $(S_n)^{S \setminus \{s_k, s_i\}}$. By (1.1) and (1.3), a permutation $u \in S_n$ belongs to $(S_n)^J$ if and only if the elements $1, 2, \ldots, k$ as well as the elements $i + 1, i + 2, \ldots, n$ appear in increasing order in u. On the other hand, as we have mentioned in Introduction, $v \in (S_n)^{S \setminus \{s_k, s_i\}}$ is equivalent to the condition that $v \in (S_n)^J$ and $k+1, k+2, \ldots, i$ appear in increasing order in v. Let u, v be two permutations in $(S_n)^J$. Write $u^{-1} = p_1 p_2 \cdots p_n$ and $v^{-1} = q_1 q_2 \cdots q_n$. Let

$$A(u, v) = \{t \mid k+1 \le t \le i, \ p_t \ge q_t\}.$$

Set B(u, v) to be the union of $\{1, 2, ..., k\}$ and A(u, v). Based on the set B(u, v), we define $a_j(u, v)$ and D(u, v) in the same way as in (2.1) and (2.4), respectively.

The following conjecture has been verified for $n \leq 8$.

Conjecture 2.7 Let $J = S \setminus \{s_k, s_{k+1}, \ldots, s_i\}$, and v is a permutation in $(S_n)^{S \setminus \{s_k, s_i\}}$. Then, for any $u \in (S_n)^J$ with $u \leq v$, we have

$$R_{u,v}^{J,q}(q) = (-1)^{\ell(v)-\ell(u)} \prod_{t=k+1}^{i} \left(1 - q + \delta_{u^{-1}(t),v^{-1}(t)} q^{1+a_{v^{-1}(t)}(u,v)}\right) \prod_{j \in D(u,v)} \left(1 - q^{a_j(u,v)}\right).$$

Conjecture 2.7 contains Theorems 1.3, 1.4 and 2.5 as special cases. When i = n - 1 and k = 1, we have $J = \emptyset$ and $(S_n)^J = S_n$, and thus Conjecture 2.7 becomes a conjectured formula for ordinary *R*-polynomials $R_{u,v}(q)$, that is, for $u \in S_n$ and $v \in (S_n)^{S \setminus \{s_1, s_{n-1}\}}$ with $u \leq v$,

$$R_{u,v}(q) = (-1)^{\ell(v)-\ell(u)} \prod_{t=2}^{n-1} \left(1 - q + \delta_{u^{-1}(t),v^{-1}(t)} q^{1+a_{v^{-1}(t)}(u,v)} \right) \prod_{j \in D(u,v)} \left(1 - q^{a_j(u,v)} \right). \quad (2.36)$$

It should be mentioned that Theorem 4.2 of [9] also gives a combinatorial express for (2.36) based on reduced expressions of u and v. We also remark that for $J = S \setminus \{s_1, s_{n-1}\}$, the quotient $(S_n)^J$ is the quasi-minuscule quotient of S_n , and the corresponding parabolic *R*-polynomials $R_{u,v}^{J,q}(q)$ have been computed by Brenti, Mongelli and Sentinelli [4, Corollary 2].

Acknowledgments. We wish to thank the referee for his/her very valuable suggestions. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

- A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, Vol. 231, Springer-Verlag, New York, 2005.
- [2] F. Brenti, Kazhdan-Lusztig and *R*-polynomials, Young's lattice, and Dyck partitions, Pacific J. Math. 207 (2002), 257–286.
- [3] F. Brenti, Parabolic Kazhdan-Lusztig *R*-polynomials for tight quotients of the symmetric group, J. Algebra 347 (2011), 247–261.
- [4] F. Brenti, P. Mongelli and P. Sentinelli, Parabolic Kazhdan-Lusztig *R*-polynomials for quasi-minuscule quotients, J. Algebra 452 (2016), 574–595.
- [5] V.V. Deodhar, On some geometric aspects of Bruhat orderings II, The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), 483–506.
- [6] V.V. Deodhar, Duality in parabolic setup for questions in Kazhdan-Lusztig theory, J. Algebra 142 (1991), 201–209.
- [7] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, No. 29, Cambridge Univ. Press, Cambridge, 1990.
- [8] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.
- [9] M. Marietti, Parabolic Kazhdan-Lusztig and *R*-polynomials for Boolean elements in the symmetric group, European J. Combin. 31 (2010), 908–924.
- [10] J. Stembridge, Tight quotients and double quotients in the Bruhat order, Electron. J. Combin. 11 (2005), R14.