On parabolic Kazhdan-Lusztig R-polynomials for the symmetric group

Neil J.Y. Fan ${ }^{1}$, Peter L. Guo ${ }^{2}$, Grace L.D. Zhang ${ }^{3}$
${ }^{1}$ Department of Mathematics
Sichuan University, Chengdu, Sichuan 610064, P.R. China
${ }^{2,3}$ Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
${ }^{1}$ fan@scu.edu.cn, ${ }^{2}$ lguo@nankai.edu.cn, ${ }^{3}$ zhld@mail.nankai.edu.cn

Abstract

Parabolic R-polynomials were introduced by Deodhar as parabolic analogues of ordinary R-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the computation of parabolic R-polynomials for the symmetric group. Let S_{n} be the symmetric group on $\{1,2, \ldots, n\}$, and let $S=\left\{s_{i} \mid 1 \leq i \leq n-1\right\}$ be the generating set of S_{n}, where for $1 \leq i \leq n-1, s_{i}$ is the adjacent transposition. For a subset $J \subseteq S$, let $\left(S_{n}\right)_{J}$ be the parabolic subgroup generated by J, and let $\left(S_{n}\right)^{J}$ be the set of minimal coset representatives for $S_{n} /\left(S_{n}\right)_{J}$. For $u \leq v \in\left(S_{n}\right)^{J}$ in the Bruhat order and $x \in\{q,-1\}$, let $R_{u, v}^{J, x}(q)$ denote the parabolic R-polynomial indexed by u and v. Brenti found a formula for $R_{u, v}^{J, x}(q)$ when $J=S \backslash\left\{s_{i}\right\}$, and obtained an expression for $R_{u, v}^{J, x}(q)$ when $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$. In this paper, we provide a formula for $R_{u, v}^{J, x}(q)$, where $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$ and i appears after $i-1$ in v. It should be noted that the condition that i appears after $i-1$ in v is equivalent to that v is a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$. We also pose a conjecture for $R_{u, v}^{J, x}(q)$, where $J=S \backslash\left\{s_{k}, s_{k+1}, \ldots, s_{i}\right\}$ with $1 \leq k \leq i \leq n-1$ and v is a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$.

Keywords: parabolic Kazhdan-Lusztig R-polynomial, the symmetric group, Bruhat order
AMS Classifications: 20F55, 05E99

1 Introduction

Parabolic R-polynomials for a Coxeter group were introduced by Deodhar [5] as parabolic analogues of ordinary R-polynomials defined by Kazhdan and Lusztig [8]. In this paper, we consider the computation of parabolic R-polynomials for the symmetric group. Let S_{n} be the symmetric group on $\{1,2, \ldots, n\}$, and let $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ be the generating set of S_{n}, where for $1 \leq i \leq n-1, s_{i}$ is the adjacent transposition that interchanges the elements i and $i+1$. For a subset $J \subseteq S$, let $\left(S_{n}\right)_{J}$ be the parabolic subgroup generated by J, and let $\left(S_{n}\right)^{J}$ be the set of minimal coset representatives of $S_{n} /\left(S_{n}\right)_{J}$. Assume that u and v are two permutations in $\left(S_{n}\right)^{J}$ such that $u \leq v$ in the Bruhat order. For $x \in\{q,-1\}$, let $R_{u, v}^{J, x}(q)$ denote the parabolic R-polynomial indexed by u and v. When $J=S \backslash\left\{s_{i}\right\}$, Brenti [2] found a formula for $R_{u, v}^{J, x}(q)$. Recently, Brenti [3] obtained an expression for $R_{u, v}^{J, x}(q)$ for $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$.

In this paper, we consider the case $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$. We introduce a statistic on pairs of permutations in $\left(S_{n}\right)^{J}$ and then we give a formula for $R_{u, v}^{J, x}(q)$, where v is restricted to a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$. Notice that $v \in\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$ is equivalent to that $v \in\left(S_{n}\right)^{J}$
and i appears after $i-1$ in v. It should be noted that there does not seem to exist an explicit formula for the case when $v \in\left(S_{n}\right)^{J}$ and i appears before $i-1$ in v.

We also conjecture a formula for $R_{u, v}^{J, x}(q)$, where $J=S \backslash\left\{s_{k}, s_{k+1}, \ldots, s_{i}\right\}$ with $1 \leq k \leq i \leq$ $n-1$ and $v \in\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$. Notice also that $v \in\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$ can be equivalently described as the condition that $v \in\left(S_{n}\right)^{J}$ and the elements $k+1, k+2, \ldots, i$ appear in increasing order in v. This conjecture contains Brenti's formulas and our result as special cases. When $k=1$ and $i=n-1$, it becomes a conjecture for a formula of the ordinary R-polynomials $R_{u, v}(q)$, where v is a permutation in S_{n} such that $2,3, \ldots, n-1$ appear in increasing order in v.

Let us begin with some terminology and notation. For a Coxeter group W with a generating set S, let $T=\left\{w s w^{-1} \mid w \in W, s \in S\right\}$ be the set of reflections of W. For $w \in W$, the length $\ell(w)$ of w is defined as the smallest k such that w can be written as a product of k generators in S. For $u, v \in W$, we say that $u \leq v$ in the Bruhat order if there exists a sequence $t_{1}, t_{2}, \ldots, t_{r}$ of reflections such that $v=u t_{1} t_{2} \cdots t_{r}$ and $\ell\left(u t_{1} \cdots t_{i}\right)>\ell\left(u t_{1} \cdots t_{i-1}\right)$ for $1 \leq i \leq r$.

For a subset $J \subseteq S$, let W_{J} be the parabolic subgroup generated by J, and let W^{J} be the set of minimal right coset representatives of W / W_{J}, that is,

$$
\begin{equation*}
W^{J}=\{w \in W \mid \ell(s w)>\ell(w), \text { for all } s \in J\} \tag{1.1}
\end{equation*}
$$

We use $D_{R}(w)$ to denote the set of right descents of w, that is,

$$
\begin{equation*}
D_{R}(w)=\{s \in S \mid \ell(w s)<\ell(w)\} . \tag{1.2}
\end{equation*}
$$

For $u, v \in W^{J}$, the parabolic R-polynomial $R_{u, v}^{J, x}(q)$ can be recursively determined by the following property.

Theorem 1.1 (Deodhar [5]) Let (W, S) be a Coxeter system and J be a subset of S. Then, for each $x \in\{q,-1\}$, there is a unique family $\left\{R_{u, v}^{J, x}(q)\right\}_{u, v \in W^{J}}$ of polynomials with integer coefficients such that for all $u, v \in W^{J}$,
(i) if $u \not 又 v$, then $R_{u, v}^{J, x}(q)=0$;
(ii) if $u=v$, then $R_{u, v}^{J, x}(q)=1$;
(iii) if $u<v$, then for any $s \in D_{R}(v)$,

$$
R_{u, v}^{J, x}(q)= \begin{cases}R_{u s, v s}^{J, x}(q), & \text { if } s \in D_{R}(u), \\ q R_{u s, v s}^{J, x}(q)+(q-1) R_{u, v s}^{J, x}(q), & \text { if } s \notin D_{R}(u) \text { and } u s \in W^{J}, \\ (q-1-x) R_{u, v s}^{J, x}(q), & \text { if } s \notin D_{R}(u) \text { and } u s \notin W^{J} .\end{cases}
$$

Notice that when $J=\emptyset$, the parabolic R-polynomial $R_{u, v}^{J, x}(q)$ reduces to an ordinary R polynomial $R_{u, v}(q)$, see, for example, Björner and Brenti [1, Chapter 5] or Humphreys [7, Chapter 7]. The parabolic R-polynomials $R_{u, v}^{J, x}(q)$ for $x=q$ and $x=-1$ satisfy the following relation, so that we only need to consider the computation for the case $x=q$.

Theorem 1.2 (Deodhar [6, Corollary 2.2]) For $u, v \in W^{J}$ with $u \leq v$,

$$
q^{\ell(v)-\ell(u)} R_{u, v}^{J, q}\left(\frac{1}{q}\right)=(-1)^{\ell(v)-\ell(u)} R_{u, v}^{J,-1}(q)
$$

There is no known explicit formula for $R_{u, v}^{J, x}(q)$ for a general Coxeter system (W, S), and even for the symmetric group. When $W=S_{n}$, Brenti [2,3] found formulas for $R_{u, v}^{J, x}(q)$ for certain subsets J, namely, $J=S \backslash\left\{s_{i}\right\}$ or $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$. To describe the formulas for the parabolic R-polynomials obtained by Brenti [2,3], we recall some statistics on pairs of permutations in $\left(S_{n}\right)^{J}$ with $J=S \backslash\left\{s_{i}\right\}$ or $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$.

A permutation $u=u_{1} u_{2} \cdots u_{n}$ in S_{n} is also considered as a bijection on $\{1,2, \ldots, n\}$ such that $u(i)=u_{i}$ for $1 \leq i \leq n$. For $u, v \in S_{n}$, the product $u v$ of u and v is defined as the bijection such that $u v(i)=u(v(i))$ for $1 \leq i \leq n$. For $1 \leq i \leq n-1$, the adjacent transposition s_{i} is the permutation that interchanges the elements i and $i+1$. The length of a permutation $u \in S_{n}$ can be interpreted as the number of inversions of u, that is,

$$
\begin{equation*}
\ell(u)=|\{(i, j) \mid 1 \leq i<j \leq n, u(i)>u(j)\}| . \tag{1.3}
\end{equation*}
$$

By (1.2) and (1.3), the right descent set of a permutation $u \in S_{n}$ is given by

$$
D_{R}(u)=\left\{s_{i} \mid 1 \leq i \leq n-1, u(i)>u(i+1)\right\} .
$$

When $J=S \backslash\left\{s_{i}\right\}$, it follows from (1.1) and (1.3) that a permutation $u \in S_{n}$ belongs to $\left(S_{n}\right)^{J}$ if and only if the elements $1,2, \ldots, i$ as well as the elements $i+1, i+2, \ldots, n$ appear in increasing order in u, or equivalently,

$$
u^{-1}(1)<u^{-1}(2)<\cdots<u^{-1}(i) \quad \text { and } \quad u^{-1}(i+1)<u^{-1}(i+2)<\cdots<u^{-1}(n) .
$$

For $n \geq 1$, we use $[n]$ to denote the set $\{1,2, \ldots, n\}$. For $J=S \backslash\left\{s_{i}\right\}$ and $u, v \in\left(S_{n}\right)^{J}$, let

$$
D(u, v)=v^{-1}([i]) \backslash u^{-1}([i]) .
$$

For $1 \leq j \leq n$, let

$$
a_{j}(u, v)=\left|\left\{r \in u^{-1}([i]) \mid r<j\right\}\right|-\left|\left\{r \in v^{-1}([i]) \mid r<j\right\}\right| .
$$

It is known that $u \leq v$ in the Bruhat order if and only if $a_{j}(u, v) \geq 0$ for all $1 \leq j \leq n$. Brenti [2] obtained the following formula for $R_{u, v}^{J, x}(q)$, where $J=S \backslash\left\{s_{i}\right\}$.

Theorem 1.3 (Brenti [2, Corollary 3.2]) Let $J=S \backslash\left\{s_{i}\right\}$, and let $u, v \in\left(S_{n}\right)^{J}$ with $u \leq v$. Then

$$
R_{u, v}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)} \prod_{j \in D(u, v)}\left(1-q^{a_{j}(u, v)}\right) .
$$

We now turn to the case $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$. In this case, it can be seen from (1.1) and (1.3) that a permutation $u \in S_{n}$ belongs to $\left(S_{n}\right)^{J}$ if and only if

$$
u^{-1}(1)<u^{-1}(2)<\cdots<u^{-1}(i-1) \quad \text { and } \quad u^{-1}(i+1)<u^{-1}(i+2)<\cdots<u^{-1}(n) .
$$

For $u, v \in\left(S_{n}\right)^{J}$, let

$$
\widetilde{D}(u, v)=v^{-1}([i-1]) \backslash u^{-1}([i-1]) .
$$

For $1 \leq j \leq n$, let

$$
\widetilde{a}_{j}(u, v)=\left|\left\{r \in u^{-1}([i-1]) \mid r<j\right\}\right|-\left|\left\{r \in v^{-1}([i-1]) \mid r<j\right\}\right| .
$$

The following formula is due to Brenti [3].

Theorem 1.4 (Brenti [3, Theorem 3.1]) Let $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$, and let $u, v \in\left(S_{n}\right)^{J}$ with $u \leq v$. Then

where $c=\delta_{u^{-1}(i), v^{-1}(i)}$ is the Kronecker delta function.

It should be noted that the sets $\left(S_{n}\right)^{J}$ for $J=S \backslash\left\{s_{i}\right\}$ and $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$ are called tight quotients of S_{n} by Stembridge [10] in the study of the Bruhat order of Coxeter groups. Therefore, combining Theorem 1.3 and Theorem 1.4 leads to an expression for the parabolic R-polynomials for tight quotients of the symmetric group.

2 A formula for $R_{u, v}^{J, q}(q)$ with $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$

In this section, we present a formula for $R_{u, v}^{J, q}(q)$, where $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$ and v is a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$. It is clear that $v \in\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$ is equivalent to that $v \in\left(S_{n}\right)^{J}$ and i appears after $i-1$ in v. We also give a conjectured formula for $R_{u, v}^{J, q}(q)$, where $J=$ $S \backslash\left\{s_{k}, s_{k+1}, \ldots, s_{i}\right\}$ with $1 \leq k \leq i \leq n-1$ and $v \in\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$.

For $u, v \in\left(S_{n}\right)^{J}$ with $u \leq v$, our formula for $R_{u, v}^{J, q}(q)$ relies on a vector of statistics on (u, v), denoted $\left(a_{1}(u, v), a_{2}(u, v), \ldots, a_{n}(u, v)\right)$. Notice that a permutation $u \in S_{n}$ belongs to $\left(S_{n}\right)^{J}$ if and only if the elements $1,2, \ldots, i-2$ as well as the elements $i+1, i+2, \ldots, n$ appear in increasing order in u. To define $a_{j}(u, v)$, we need to consider the positions of the elements $i-1$ and i in u and v. For convenience, let $u^{-1}=p_{1} p_{2} \cdots p_{n}$ and $v^{-1}=q_{1} q_{2} \cdots q_{n}$, that is, t appears in position p_{t} in u, and appears in position q_{t} in v. The following set $A(u, v)$ is defined based on the relations $p_{i-1} \geq q_{i-1}$ and $p_{i} \geq q_{i}$. More precisely, $A(u, v)$ is a subset of $\{i-1, i\}$ such that $i-1 \in A(u, v)$ if and only if $p_{i-1} \geq q_{i-1}$, and $i \in A(u, v)$ if and only if $p_{i} \geq q_{i}$. Set

$$
B(u, v)=\{1,2, \ldots, i-2\} \cup A(u, v) .
$$

For $1 \leq j \leq n$, we define $a_{j}(u, v)$ to be the number of elements of $B(u, v)$ that are contained in $\left\{u_{1}, \ldots, u_{j-1}\right\}$ minus the number of elements of $B(u, v)$ that are contained in $\left\{v_{1}, \ldots, v_{j-1}\right\}$, that is,

$$
\begin{equation*}
a_{j}(u, v)=\left|\left\{r \in u^{-1}(B(u, v)) \mid r<j\right\}\right|-\left|\left\{r \in v^{-1}(B(u, v)) \mid r<j\right\}\right| . \tag{2.1}
\end{equation*}
$$

For example, let $n=9$ and $i=5$, so that $J=S \backslash\left\{s_{3}, s_{4}, s_{5}\right\}$. Let

$$
\begin{equation*}
u=416273859 \text { and } v=671489253 \tag{2.2}
\end{equation*}
$$

be two permutations in $\left(S_{9}\right)^{J}$. Then we have $A(u, v)=\{5\}, B(u, v)=\{1,2,3,5\}$, and

$$
\begin{equation*}
\left(a_{1}(u, v), \ldots, a_{9}(u, v)\right)=(0,0,1,0,1,1,2,1,1) . \tag{2.3}
\end{equation*}
$$

The following theorem gives a formula for $R_{u, v}^{J, q}(q)$.

Theorem 2.5 Let $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$, and let v be a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$. Let

$$
\begin{equation*}
D(u, v)=v^{-1}(B(u, v)) \backslash u^{-1}(B(u, v)) \tag{2.4}
\end{equation*}
$$

Then, for any $u \in\left(S_{n}\right)^{J}$ with $u \leq v$, we have

$$
\left.\begin{array}{rl}
R_{u, v}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)} & \left(1-q+\delta_{u^{-1}(i-1), v^{-1}(i-1)} q^{1+a_{v-1}(i-1)}(u, v)\right.
\end{array}\right) .
$$

Remark. It should be noted that Theorem 2.5 does not imply a formula for $R_{u, v}^{J^{\prime}, q}(q)$ with $J^{\prime}=S \backslash\left\{s_{i-2}, s_{i}\right\}$, since, by definition, the parabolic R-polynomial $R_{u, v}^{J, q}(q)$ depends heavily on the choice of the subset J.

Let us give an example for Theorem 2.5. Assume that u and v are the permutations as given in (2.2). Then we have $D(u, v)=\{3,7,9\}$. In view of (2.3), formula (2.5) gives

$$
R_{u, v}^{J, q}(q)=(1-q)^{3}\left(1-q^{2}\right)\left(1-q+q^{2}\right) .
$$

To prove the above theorem, we need a criterion for the relation of two permutations in $\left(S_{n}\right)^{J}$ with respect to the Bruhat order. Let $u, v \in\left(S_{n}\right)^{J}$, for $h=1,2,3$ and $1 \leq j \leq n$, define

$$
\begin{equation*}
b_{h, j}(u, v)=\left|\left\{r \in u^{-1}([i+h-3]) \mid r<j\right\}\right|-\left|\left\{r \in v^{-1}([i+h-3]) \mid r<j\right\}\right| . \tag{2.6}
\end{equation*}
$$

The following proposition, which follows easily from Corollary 2.2.5 and Theorem 2.6.3 of [1], shows that we can use $b_{h, j}(u, v)$ with $h=1,2,3$ and $1 \leq j \leq n$ to determine whether $u \leq v$ in the Bruhat order.

Proposition 2.6 Let $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$, and let $u, v \in\left(S_{n}\right)^{J}$. Then, $u \leq v$ if and only if $b_{h, j}(u, v) \geq 0$ for $h=1,2,3$ and $1 \leq j \leq n$.

We are now in a position to present a proof of Theorem 2.5.
Proof of Theorem 2.5. Assume that $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$, and u and v are two permutations in $\left(S_{n}\right)^{J}$ such that $u \leq v$. Write $u^{-1}=p_{1} p_{2} \cdots p_{n}$ and $v^{-1}=q_{1} q_{2} \cdots q_{n}$. By the definitions of $\left(a_{1}(u, v), \ldots, a_{n}(u, v)\right)$ and $D(u, v)$, we consider the following four cases:

$$
\begin{array}{lll}
p_{i-1} \geq q_{i-1} & \text { and } & p_{i} \geq q_{i}, \\
p_{i-1} \geq q_{i-1} & \text { and } & p_{i}<q_{i}, \\
p_{i-1}<q_{i-1} & \text { and } & p_{i} \geq q_{i}, \\
p_{i-1}<q_{i-1} & \text { and } & p_{i}<q_{i} . \tag{2.10}
\end{array}
$$

We conduct induction on $\ell(v)$. When $\ell(v)=0$, formula (2.5) is easy to check. Assume that $\ell(v)>0$ and formula (2.5) is true for $\ell(v)-1$. We proceed to prove (2.5) for $\ell(v)$. We shall only provide a proof for the case in (2.8). The other cases can be justified by using similar arguments. By (2.1) and (2.8), we see that for $1 \leq k \leq n$,

$$
\begin{equation*}
a_{k}(u, v)=\left|\left\{r \in u^{-1}([i-1]) \mid r<k\right\}\right|-\left|\left\{r \in v^{-1}([i-1]) \mid r<k\right\}\right| . \tag{2.11}
\end{equation*}
$$

Note that $a_{j}(u, v)=b_{2, j}(u, v)$ for all $1 \leq j \leq n$. Moreover, by (2.4) and (2.8) we find that

$$
\begin{equation*}
D(u, v)=v^{-1}([i-1]) \backslash u^{-1}([i-1]) . \tag{2.12}
\end{equation*}
$$

1	$v(j)>i$ and $v(j+1)=i$
2	$v(j)>i$ and $v(j+1)=i-1$
3	$v(j)>i$ and $v(j+1)<i-1$
4	$v(j)=i$ and $v(j+1)<i-1$
5	$v(j)=i-1$ and $v(j+1)<i-1$

Table 2.1: The choices of $v(j)$ and $v(j+1)$ in v.

Let $s=s_{j} \in D_{R}(v)$ be a right descent of v, that is, $v(j)>v(j+1)$, where $1 \leq j \leq n-1$. Keep in mind that i appears after $i-1$ in v, namely, $q_{i}>q_{i-1}$, and that the elements $1,2, \ldots, i-2$ as well as the elements $i+1, i+2, \ldots, n$ appear in increasing order in v. So we get all possible choices of $v(j)$ and $v(j+1)$ as listed in Table 2.1.

According to whether s is a right descent of u, we have the following two cases.
Case 1: $s \in D_{R}(u)$, that is, $u(j)>u(j+1)$. Since the elements $1,2, \ldots, i-2$ as well as the elements $i+1, i+2, \ldots, n$ appear in increasing order in u, the possible choices of $u(j)$ and $u(j+1)$ are as given in Table 2.2.

1	$u(j)>i$ and $u(j+1)=i$
2	$u(j)>i$ and $u(j+1)=i-1$
3	$u(j)>i$ and $u(j+1)<i-1$
4	$u(j)=i$ and $u(j+1)=i-1$
5	$u(j)=i$ and $u(j+1)<i-1$
6	$u(j)=i-1$ and $u(j+1)<i-1$

Table 2.2: The choices of $u(j)$ and $u(j+1)$ in u in Case 1 .
We only give proofs for the cases when v satisfies Condition 1 in Table 2.1 and u satisfies Conditions 2 and 5 in Table 2.2, and for the cases when v satisfies Condition 5 in Table 2.1 and u satisfies Conditions 1, 2, 3, and 6 in Table 2.2. The remaining cases can be dealt with in the same manner.

Subcase 1. $v(j)>i, v(j+1)=i$ and $u(j)>i, u(j+1)=i-1$. In this case, it is easy to see that $B(u, v)=B(u s, v s)=[i-1]$. By (2.1), we have

$$
a_{j+1}(u, v)=a_{j+1}(u s, v s)-1, \text { and } a_{k}(u, v)=a_{k}(u s, v s) \text { for } k \neq j+1 .
$$

Moreover, by (2.4), we find that

$$
D(u, v)=D(u s, v s) \text { and } j+1 \notin D(u, v) .
$$

Thus by the induction hypothesis,

$$
\begin{aligned}
R_{u, v}^{J, q}(q) & =R_{u s, v s}^{J, q}(q) \\
& =(-1)^{\ell(v s)-\ell(u s)}(1-q)^{2} \prod_{k \in D(u s, v s)}\left(1-q^{a_{k}(u s, v s)}\right)
\end{aligned}
$$

$$
=(-1)^{\ell(v)-\ell(u)}(1-q)^{2} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right)
$$

as desired.
Subcase 2. $v(j)>i, v(j+1)=i$ and $u(j)=i, u(j+1)<i-1$. It is easy to check that $B(u, v)=[i-1], B(u s, v s)=[i]$. By (2.1) and (2.4), we have

$$
a_{j}(u, v)=a_{j}(u s, v s) \text { for } 1 \leq j \leq n
$$

and

$$
D(u, v)=D(u s, v s)
$$

Then by the induction hypothesis,

$$
R_{u, v}^{J, q}(q)=R_{u s, v s}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)}(1-q)^{2} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right)
$$

Subcase 3. $v(j)=i-1, v(j+1)<i-1$ and $u(j)>i, u(j+1)=i$. Since $B(u, v)=B(u s, v s)$, by (2.1), it is easy to check that for $1 \leq k \leq n$,

$$
a_{k}(u s, v s)=a_{k}(u, v)
$$

Moreover, it follows from (2.4) that

$$
D(u s, v s)=D(u, v)
$$

By the induction hypothesis, we deduce that

$$
R_{u, v}^{J, q}(q)=R_{u s, v s}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)}(1-q)^{2} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right)
$$

Subcase 4. $v(j)=i-1, v(j+1)<i-1$ and $u(j)>i, u(j+1)=i-1$. Notice that in this case $u s$ and $v s$ satisfy the relation in (2.10). So we have $B(u, v)=[i-1]=B(u s, v s) \cup\{i-1\}$. By (2.1) and (2.4), it is easily verified that for $1 \leq k \leq n$,

$$
a_{k}(u s, v s)=a_{k}(u, v)
$$

and

$$
\begin{aligned}
D(u s, v s) & =(v s)^{-1}([i-2]) \backslash(u s)^{-1}([i-2]) \\
& =v^{-1}([i-1]) \backslash u^{-1}([i-1]) \\
& =D(u, v)
\end{aligned}
$$

By the induction hypothesis, we get

$$
R_{u, v}^{J, q}(q)=R_{u s, v s}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)}(1-q)^{2} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right)
$$

Subcase 5. $\quad v(j)=i-1, v(j+1)<i-1$ and $u(j)>i, u(j+1)<i-1$. We find that $B(u s, v s)=B(u, v)=[i-1]$. By (2.1) and (2.4), we have

$$
a_{j+1}(u s, v s)=a_{j+1}(u, v)+1 \text { and } a_{k}(u s, v s)=a_{k}(u, v), \text { for } k \neq j+1
$$

and

$$
D(u s, v s)=(D(u, v) \backslash\{j\}) \cup\{j+1\} .
$$

Thus, the induction hypothesis yields that

$$
\begin{aligned}
R_{u, v}^{J, q}(q) & =R_{u s, v s}^{J, q}(q) \\
& =(-1)^{\ell(v s)-\ell(u s)}(1-q)^{2} \prod_{k \in D(u s, v s)}\left(1-q^{a_{k}(u s, v s)}\right) \\
& =(-1)^{\ell(v)-\ell(u)}(1-q)^{2} \frac{1-q^{a_{j+1}(u s, v s)}}{1-q^{a_{j}(u, v)}} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right),
\end{aligned}
$$

which reduces to (2.5), since

$$
a_{j+1}(u s, v s)=a_{j}(u, v)
$$

Subcase 6. $v(j)=i-1, v(j+1)<i-1$ and $u(j)=i-1, u(j+1)<i-1$. For $1 \leq k \leq n$, we have

$$
a_{k}(u s, v s)=a_{k}(u, v)
$$

and

$$
B(u s, v s)=B(u, v) \text { and } D(u s, v s)=D(u, v) .
$$

By the induction hypothesis, we find that

$$
\begin{align*}
R_{u, v}^{J, q}(q) & =R_{u s, v s}^{J, q}(q) \\
& =(-1)^{\ell(v s)-\ell(u s)}\left(1-q+q^{1+a_{j+1}(u s, v s)}\right)(1-q) \prod_{k \in D(u s, v s)}\left(1-q^{a_{k}(u s, v s)}\right) . \tag{2.13}
\end{align*}
$$

Noticing the following relation

$$
a_{j+1}(u s, v s)=a_{j}(u, v),
$$

formula (2.13) can be rewritten as

$$
R_{u, v}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)}\left(1-q+q^{1+a_{j}(u, v)}\right)(1-q) \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right),
$$

as required.
Case 2: $s \notin D_{R}(u)$, that is, $u(j)<u(j+1)$. The possible choices of $u(j)$ and $u(j+1)$ are given in Table 2.3.

We shall provide proofs for three subcases: (i) v satisfies Condition 1 in Table 2.1 and u satisfies Condition 7 in Table 2.3; (ii) v satisfies Condition 3 in Table 2.1 and u satisfies Condition 3 in Table 2.3; (iii) v satisfies Condition 5 in Table 2.1 and u satisfies Condition 3 in Table 2.3. The verifications in other situations are similar or relatively easier.

Subcase (i): $v(j)>i, v(j+1)=i, i=u(j)<u(j+1)$. By Theorem 1.1, we have

$$
\begin{equation*}
R_{u, v}^{J, q}(q)=q R_{u s, v s}^{J, q}(q)+(q-1) R_{u, v s}^{J, q}(q) \tag{2.14}
\end{equation*}
$$

We need to compute $R_{u s, v s}^{J, q}(q)$ and $R_{u, v s}^{J, q}(q)$. We first compute $R_{u, v s}^{J, q}(q)$. Notice that u and $v s$ satisfy the relation in (2.7). Since $A(u, v s)=\{i-1, i\}$ and $B(u, v s)=[i]$, by (2.1), we obtain that for $1 \leq k \leq n$,

$$
a_{k}(u, v s)=\left|\left\{r \in u^{-1}([i]) \mid r<k\right\}\right|-\left|\left\{r \in(v s)^{-1}([i]) \mid r<k\right\}\right|
$$

1	$u(j)<u(j+1)<i-1$
2	$u(j)<u(j+1)=i-1$
3	$u(j)<i-1$ and $u(j+1)=i$
4	$u(j)<i-1$ and $u(j+1)>i$
5	$u(j)=i-1$ and $u(j+1)=i$
6	$u(j)=i-1$ and $u(j+1)>i$
7	$i=u(j)<u(j+1)$
8	$i<u(j)<u(j+1)$

Table 2.3: The choices of $u(j)$ and $u(j+1)$ in u in Case 2.

$$
\begin{aligned}
& =\left|\left\{r \in u^{-1}([i-1]) \mid r<k\right\}\right|-\left|\left\{r \in v^{-1}([i-1]) \mid r<k\right\}\right| \\
& =a_{k}(u, v) .
\end{aligned}
$$

Moreover, by (2.4) we have

$$
\begin{aligned}
D(u, v s) & =(v s)^{-1}([i]) \backslash u^{-1}([i]) \\
& =v^{-1}([i-1]) \backslash u^{-1}([i-1]) \\
& =D(u, v) .
\end{aligned}
$$

By the induction hypothesis, we deduce that

$$
\left.\begin{array}{rl}
R_{u, v s}^{J, q}(q)= & (-1)^{\ell(v s)-\ell(u)}\left(1-q+\delta_{u^{-1}(i-1),(v s)^{-1}(i-1)} q^{1+a_{(v s)^{-1}(i-1)}(u, v s)}\right) \\
& \left(1-q+q^{1+a_{j}(u, v s)}\right) \prod_{k \in D(u, v s)}\left(1-q^{a_{k}(u, v s)}\right) \\
= & (-1)^{\ell(v)-\ell(u)-1}\left(1-q+\delta_{u^{-1}(i-1), v^{-1}(i-1)} q^{1+a_{v-1}(i-1)}(u, v)\right.
\end{array}\right)
$$

To compute $R_{u s, v s}^{J, q}(q)$, we consider two cases according to whether $u s \leq v s$. First, we assume that $u s \leq v s$. Since us and vs satisfy the relation in (2.7), and $A(u s, v s)=\{i-1, i\}, B(u s, v s)=$ $[i]=B(u, v) \cup\{i\}$, by (2.1) we see that

$$
\begin{equation*}
a_{j+1}(u s, v s)=a_{j+1}(u, v)-1 \text { and } a_{k}(u s, v s)=a_{k}(u, v), \quad \text { for } k \neq j+1 . \tag{2.16}
\end{equation*}
$$

Moreover, by (2.4) we get

$$
\begin{align*}
D(u s, v s) & =(v s)^{-1}([i]) \backslash(u s)^{-1}([i]) \\
& =D(u, v) \cup\{j\} . \tag{2.17}
\end{align*}
$$

Combining (2.16) and (2.17) and applying the induction hypothesis, we deduce that

$$
R_{u s, v s}^{J, q}(q)=(-1)^{\ell(v s)-\ell(u s)}\left(1-q+\delta_{(u s)^{-1}(i-1),(v s)^{-1}(i-1)} q^{1+a_{(v s)^{-1}(i-1)}(u s, v s)}\right)
$$

$$
\begin{align*}
& (1-q) \prod_{k \in D(u s, v s)}\left(1-q^{a_{k}(u s, v s)}\right) \\
& =(-1)^{\ell(v)-\ell(u)}\left(1-q+\delta_{\left.u^{-1}(i-1), v^{-1}(i-1) q^{1+a_{v^{-1}(i-1)}(u, v)}\right)}^{(1-q)\left(1-q^{a_{j}(u, v)}\right) \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right) .}\right.
\end{align*}
$$

Substituting (2.15) and (2.18) into (2.14), we obtain that

$$
\begin{aligned}
R_{u, v}^{J, q}(q)= & q R_{u s, v s}^{J, q}(q)+(q-1) R_{u, v s}^{J, q}(q) \\
= & (-1)^{\ell(v)-\ell(u)}\left(q\left(1-q^{a_{j}(u, v)}\right)+\left(1-q+q^{1+a_{j}(u, v)}\right)\right) \\
& (1-q)\left(1-q+\delta_{\left.u^{-1}(i-1), v^{-1}(i-1) q^{1+a_{v^{-1}(i-1)}(u, v)}\right) \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right)}^{=}\right. \\
& (-1)^{\ell(v)-\ell(u)}(1-q)\left(1-q+\delta_{u^{-1}(i-1), v^{-1}(i-1)} q^{1+a_{v^{-1}(i-1)}(u, v)}\right) \\
& \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right)
\end{aligned}
$$

We now consider the case $u s \not \leq v s$. In this case, we claim that

$$
\begin{equation*}
a_{j}(u, v)=0 \tag{2.19}
\end{equation*}
$$

In fact, by (2.6), it can be checked that for $1 \leq k \leq n$,

$$
b_{1, k}(u s, v s)=b_{1, k}(u, v) \text { and } b_{2, k}(u s, v s)=b_{2, k}(u, v)
$$

and

$$
b_{3, j+1}(u s, v s)=b_{3, j+1}(u, v)-2 \text { and } b_{3, k}(u s, v s)=b_{3, k}(u, v), \quad \text { for } k \neq j+1
$$

Since $u s \not \leq v s$, by Proposition 2.6, we see that $b_{3, j+1}(u, v)-2<0$. On the other hand, since $j+1 \in v^{-1}([i])$ but $j+1 \notin u^{-1}([i])$, we have $b_{3, j+1}(u, v)>0$. So we get $b_{3, j+1}(u, v)=1$. Therefore,

$$
a_{j}(u, v)=b_{2, j}(u, v)=b_{3, j+1}(u, v)-1=0
$$

This proves the claim in (2.19).
Combining (2.15) and (2.19), we obtain that

$$
\begin{aligned}
R_{u, v}^{J, q}(q) & =(q-1) R_{u, v s}^{J, q}(q) \\
& =(-1)^{\ell(v)-\ell(u)}(1-q)\left(1-q+\delta_{u^{-1}(i-1), v^{-1}(i-1)} q^{1+a_{v^{-1}(i-1)}(u, v)}\right) \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right)
\end{aligned}
$$

Subcase (ii): $v(j)>i, v(j+1)<i-1, u(j)<i-1$ and $u(j+1)=i$. By Theorem 1.1, we have

$$
\begin{equation*}
R_{u, v}^{J, q}(q)=q R_{u s, v s}^{J, q}(q)+(q-1) R_{u, v s}^{J, q}(q) \tag{2.20}
\end{equation*}
$$

We need to compute $R_{u s, v s}^{J, q}(q)$ and $R_{u, v s}^{J, q}(q)$. We first compute $R_{u, v s}^{J, q}(q)$. Since $B(u, v s)=$ $B(u, v)=[i-1]$, using (2.1), we get

$$
a_{j+1}(u, v s)=a_{j+1}(u, v)-1 \quad \text { and } \quad a_{k}(u, v s)=a_{k}(u, v), \quad \text { for } k \neq j+1
$$

Moreover, by (2.4) we have

$$
D(u, v s)=D(u, v) \backslash\{j+1\} .
$$

By the induction hypothesis, we deduce that

$$
\begin{align*}
R_{u, v s}^{J, q}(q)= & (-1)^{\ell(v s)-\ell(u)}\left(1-q+\delta_{u^{-1}(i-1),(v s)^{-1}(i-1)} q^{1+a_{(v s)^{-1}(i-1)}(u, v s)}\right) \\
& (1-q) \prod_{k \in D(u, v s)}\left(1-q^{a_{k}(u, v s)}\right) \\
= & (-1)^{\ell(v)-\ell(u)-1}\left(1-q+\delta_{u^{-1}(i-1), v^{-1}(i-1)} q^{1+a_{v-1(i-1)}(u, v)}\right)(1-q) \\
& \frac{1}{1-q^{a_{j+1}(u, v)}} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right) . \tag{2.21}
\end{align*}
$$

To compute $R_{u s, v s}^{J, q}(q)$, we consider two cases according to whether $u s \leq v s$. First, we assume that $u s \leq v s$. Since $B(u s, v s)=B(u, v)=[i-1]$, in view of (2.1), it is easy to check that

$$
a_{j+1}(u s, v s)=a_{j+1}(u, v)-2 \text { and } \quad a_{k}(u s, v s)=a_{k}(u, v), \quad \text { for } k \neq j+1
$$

Moreover, it follows from (2.4) that

$$
D(u s, v s)=(D(u, v) \backslash\{j+1\}) \cup\{j\} .
$$

By the induction hypothesis, we obtain that

$$
\begin{align*}
R_{u s, v s}^{J, q}(q)= & (-1)^{\ell(v s)-\ell(u s)}\left(1-q+\delta_{(u s)^{-1}(i-1),(v s)^{-1}(i-1)} q^{1+a_{(v s)^{-1}(i-1)}(u s, v s)}\right) \\
& (1-q) \prod_{k \in D(u s, v s)}\left(1-q^{a_{k}(u s, v s)}\right) \\
= & (-1)^{\ell(v)-\ell(u)}\left(1-q+\delta_{u^{-1}(i-1), v^{-1}(i-1)} q^{1+a_{v^{-1}(i-1)}(u, v)}\right)(1-q) \\
& \frac{1-q^{a_{j}(u s, v s)}}{1-q^{a_{j+1}(u, v)}} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right) . \tag{2.22}
\end{align*}
$$

Substituting (2.21) and (2.22) into (2.20) and noticing the following relation

$$
a_{j}(u s, v s)=a_{j+1}(u, v)-1,
$$

we are led to formula (2.5).
We now consider the case $u s \not \leq v s$. In this case, we claim that

$$
\begin{equation*}
a_{j+1}(u, v)=1 \tag{2.23}
\end{equation*}
$$

By (2.6), it is easily seen that

$$
\begin{array}{ll}
b_{1, j+1}(u s, v s)=b_{1, j+1}(u, v)-2 \text { and } b_{1, k}(u s, v s)=b_{1, k}(u, v), & \text { for } k \neq j+1, \\
b_{2, j+1}(u s, v s)=b_{2, j+1}(u, v)-2 \text { and } b_{2, k}(u s, v s)=b_{2, k}(u, v), & \text { for } k \neq j+1 \\
b_{3, j+1}(u s, v s)=b_{3, j+1}(u, v)-1 \text { and } b_{3, k}(u s, v s)=b_{3, k}(u, v), & \text { for } k \neq j+1 . \tag{2.26}
\end{array}
$$

It is clear that $a_{j+1}(u, v)=b_{2, j+1}(u, v)$. So the claim in (2.23) reduces to

$$
b_{2, j+1}(u, v)=1
$$

Since $j \notin v^{-1}([i-1])$ but $j \in u^{-1}([i-1])$, we have $b_{2, j+1}(u, v)>0$. Suppose to the contrary that $b_{2, j+1}(u, v)>1$. In the notation $u^{-1}=p_{1} p_{2} \cdots p_{n}$ and $v^{-1}=q_{1} q_{2} \cdots q_{n}$, we have the following two cases.

Case (a): $p_{i-1}<j$. By (2.8), we see that $q_{i-1}<j$ and

$$
b_{1, j+1}(u, v)=b_{2, j+1}(u, v)>1 .
$$

On the other hand, since $j \notin v^{-1}([i])$ but $j \in u^{-1}([i])$, we have $b_{3, j+1}(u, v)>0$. Hence we conclude that $b_{h, k}(u s, v s) \geq 0$ for $h=1,2,3$ and $1 \leq k \leq n$. By Proposition 2.6, we get $u s \leq v s$, contradicting the assumption $u s \not \leq v s$.

Case (b): $p_{i-1}>j$. In this case, we find that if $q_{i-1}>j$, then

$$
b_{1, j+1}(u, v)=b_{2, j+1}(u, v)>1,
$$

whereas if $q_{i-1}<j$, then

$$
b_{1, j+1}(u, v)>b_{2, j+1}(u, v)>1 .
$$

Note that in Case (a), we have shown that $b_{3, j+1}(u, v)>0$. So, we obtain that $b_{h, k}(u s, v s) \geq 0$ for $h=1,2,3$ and $1 \leq k \leq n$. Thus we have $u s \leq v s$, contradicting the assumption $u s \not \leq v s$. This proves the claim in (2.23). Substituting (2.23) into (2.21), we arrive at (2.5).

Subcase (iii): $v(j)=i-1, v(j+1)<i-1, u(j)<i-1$ and $u(j+1)=i$. By Theorem 1.1, we have

$$
\begin{equation*}
R_{u, v}^{J, q}(q)=q R_{u s, v s}^{J, q}(q)+(q-1) R_{u, v s}^{J, q}(q) . \tag{2.27}
\end{equation*}
$$

We need to compute $R_{u s, v s}^{J, q}(q)$ and $R_{u, v s}^{J, q}(q)$. Since $B(u, v)=B(u, v s)=[i-1]$, by (2.1), we see that for $1 \leq k \leq n$,

$$
a_{k}(u, v s)=a_{k}(u, v) .
$$

Moreover, by (2.4) we have

$$
D(u, v s)=D(u, v) .
$$

By the induction hypothesis, we obtain that

$$
\begin{align*}
R_{u, v s}^{J, q}(q) & =(-1)^{\ell(v s)-\ell(u)}(1-q)^{2} \prod_{k \in D(u, v s)}\left(1-q^{a_{k}(u, v s)}\right) \\
& =(-1)^{\ell(v)-\ell(u)-1}(1-q)^{2} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right) . \tag{2.28}
\end{align*}
$$

To compute $R_{u s, v s}^{J, q}(q)$, we claim that $u s \leq v s$. By (2.6), we see that

$$
\begin{align*}
& b_{1, j+1}(u s, v s)=b_{1, j+1}(u, v)-2 \text { and } b_{1, k}(u s, v s)=b_{1, k}(u, v), \text { for } k \neq j+1, \tag{2.29}\\
& b_{2, j+1}(u s, v s)=b_{2, j+1}(u, v)-1 \text { and } b_{2, k}(u s, v s)=b_{2, k}(u, v), \text { for } k \neq j+1, \tag{2.30}\\
& b_{3, k}(u s, v s)=b_{3, k}(u, v), \text { for } 1 \leq k \leq n \tag{2.31}
\end{align*}
$$

Since $j+1 \in v^{-1}([i-1])$ but $j+1 \notin u^{-1}([i-1])$, we have $b_{2, j+1}(u, v)>0$, which implies that

$$
\begin{equation*}
b_{2, j+1}(u s, v s)=b_{2, j+1}(u, v)-1 \geq 0 . \tag{2.32}
\end{equation*}
$$

Moreover, since $p_{i-1} \geq q_{i-1}=j$, we have $p_{i-1}>j$. So, we deduce that

$$
b_{1, j+1}(u, v)=b_{2, j+1}(u, v)+1>1,
$$

and hence

$$
\begin{equation*}
b_{1, j+1}(u s, v s)=b_{1, j+1}(u, v)-2 \geq 0 . \tag{2.33}
\end{equation*}
$$

Therefore, for $h=1,2,3$ and $1 \leq j \leq n$,

$$
b_{h, j}(u s, v s) \geq 0,
$$

which together with Proposition 2.6 yields that $u s \leq v s$. This proves the claim.
Since $B(u s, v s)=B(u, v)=[i-1]$, by (2.1) and (2.4), it is easily verified that

$$
a_{j+1}(u s, v s)=a_{j+1}(u, v)-1 \quad \text { and } \quad a_{k}(u s, v s)=a_{k}(u, v), \quad \text { for } k \neq j+1
$$

and

$$
D(u s, v s)=(D(u, v) \backslash\{j+1\}) \cup\{j\} .
$$

By the induction hypothesis, we deduce that

$$
\begin{align*}
R_{u s, v s}^{J, q}(q) & =(-1)^{\ell(v s)-\ell(u s)}(1-q)^{2} \prod_{k \in D(u s, v s)}\left(1-q^{a_{k}(u s, v s)}\right) \\
& =(-1)^{\ell(v)-\ell(u)}(1-q)^{2} \frac{1-q^{a_{j}(u s, v s)}}{1-q^{a_{j+1}(u, v)}} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right) . \tag{2.34}
\end{align*}
$$

Since $a_{j}(u s, v s)=a_{j+1}(u, v)$, formula (2.34) becomes

$$
\begin{equation*}
R_{u s, v s}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)}(1-q)^{2} \prod_{k \in D(u, v)}\left(1-q^{a_{k}(u, v)}\right) \tag{2.35}
\end{equation*}
$$

Substituting (2.28) and (2.35) into (2.27), we are led to (2.5). This completes the proof.
We conclude this paper by giving a conjecture for a formula of $R_{u, v}^{J, q}(q)$, where

$$
J=S \backslash\left\{s_{k}, s_{k+1}, \ldots, s_{i}\right\}
$$

with $1 \leq k \leq i \leq n-1$ and v is a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$. By (1.1) and (1.3), a permutation $u \in S_{n}$ belongs to $\left(S_{n}\right)^{J}$ if and only if the elements $1,2, \ldots, k$ as well as the elements $i+1, i+2, \ldots, n$ appear in increasing order in u. On the other hand, as we have mentioned in Introduction, $v \in\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$ is equivalent to the condition that $v \in\left(S_{n}\right)^{J}$ and $k+1, k+2, \ldots, i$ appear in increasing order in v. Let u, v be two permutations in $\left(S_{n}\right)^{J}$. Write $u^{-1}=p_{1} p_{2} \cdots p_{n}$ and $v^{-1}=q_{1} q_{2} \cdots q_{n}$. Let

$$
A(u, v)=\left\{t \mid k+1 \leq t \leq i, p_{t} \geq q_{t}\right\} .
$$

Set $B(u, v)$ to be the union of $\{1,2, \ldots, k\}$ and $A(u, v)$. Based on the set $B(u, v)$, we define $a_{j}(u, v)$ and $D(u, v)$ in the same way as in (2.1) and (2.4), respectively.

The following conjecture has been verified for $n \leq 8$.
Conjecture 2.7 Let $J=S \backslash\left\{s_{k}, s_{k+1}, \ldots, s_{i}\right\}$, and v is a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$. Then, for any $u \in\left(S_{n}\right)^{J}$ with $u \leq v$, we have

$$
R_{u, v}^{J, q}(q)=(-1)^{\ell(v)-\ell(u)} \prod_{t=k+1}^{i}\left(1-q+\delta_{u^{-1}(t), v^{-1}(t)} q^{1+a_{v-1}(t)(u, v)}\right) \prod_{j \in D(u, v)}\left(1-q^{a_{j}(u, v)}\right) .
$$

Conjecture 2.7 contains Theorems 1.3, 1.4 and 2.5 as special cases. When $i=n-1$ and $k=1$, we have $J=\emptyset$ and $\left(S_{n}\right)^{J}=S_{n}$, and thus Conjecture 2.7 becomes a conjectured formula for ordinary R-polynomials $R_{u, v}(q)$, that is, for $u \in S_{n}$ and $v \in\left(S_{n}\right)^{S \backslash\left\{s_{1}, s_{n-1}\right\}}$ with $u \leq v$,

$$
\begin{equation*}
R_{u, v}(q)=(-1)^{\ell(v)-\ell(u)} \prod_{t=2}^{n-1}\left(1-q+\delta_{u^{-1}(t), v^{-1}(t)} q^{1+a_{v-1}(t)(u, v)}\right) \prod_{j \in D(u, v)}\left(1-q^{a_{j}(u, v)}\right) . \tag{2.36}
\end{equation*}
$$

It should be mentioned that Theorem 4.2 of [9] also gives a combinatorial express for (2.36) based on reduced expressions of u and v. We also remark that for $J=S \backslash\left\{s_{1}, s_{n-1}\right\}$, the quotient $\left(S_{n}\right)^{J}$ is the quasi-minuscule quotient of S_{n}, and the corresponding parabolic R-polynomials $R_{u, v}^{J, q}(q)$ have been computed by Brenti, Mongelli and Sentinelli [4, Corollary 2].

Acknowledgments. We wish to thank the referee for his/her very valuable suggestions. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, Vol. 231, Springer-Verlag, New York, 2005.
[2] F. Brenti, Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions, Pacific J. Math. 207 (2002), 257-286.
[3] F. Brenti, Parabolic Kazhdan-Lusztig R-polynomials for tight quotients of the symmetric group, J. Algebra 347 (2011), 247-261.
[4] F. Brenti, P. Mongelli and P. Sentinelli, Parabolic Kazhdan-Lusztig R-polynomials for quasi-minuscule quotients, J. Algebra 452 (2016), 574-595.
[5] V.V. Deodhar, On some geometric aspects of Bruhat orderings II, The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), 483-506.
[6] V.V. Deodhar, Duality in parabolic setup for questions in Kazhdan-Lusztig theory, J. Algebra 142 (1991), 201-209.
[7] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, No. 29, Cambridge Univ. Press, Cambridge, 1990.
[8] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
[9] M. Marietti, Parabolic Kazhdan-Lusztig and R-polynomials for Boolean elements in the symmetric group, European J. Combin. 31 (2010), 908-924.
[10] J. Stembridge, Tight quotients and double quotients in the Bruhat order, Electron. J. Combin. 11 (2005), R14.

