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An associative ring with unity is called clean if each of its elements is the sum of an
idempotent and a unit. A clean ring with involution ∗ is called ∗-clean if each of its
elements is the sum of a unit and a projection (∗-invariant idempotent). In a recent
paper, Huang, Li and Yuan provided a complete characterization that when a group
ring FqCpk is ∗-clean, where Fq is a finite field and Cpk is a cyclic group of an odd

prime power order pk. They also provided a necessary condition and a few sufficient
conditions for FqCn to be ∗-clean, where Cn is a cyclic group of order n. In this paper,
we extend the above result of Huang, Li and Yuan from FqCpk to FG and provide a
characterization of ∗-clean group rings FG, where G is a finite abelian group and F is a
field with characteristic not dividing the exponent of G.
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1. Introduction

All rings considered here are associative rings with unity. An element of a ring is
called clean if it is the sum of an idempotent and a unit, and the ring is called clean

∗Corresponding author.

1750152-1

J.
 A

lg
eb

ra
 A

pp
l. 

20
17

.1
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
K

A
I 

U
N

IV
E

R
SI

T
Y

 (
T

A
L

IS
) 

on
 0

1/
05

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0219498817501523


May 22, 2017 8:52 WSPC/S0219-4988 171-JAA 1750152

D. Han, Y. Ren & H. Zhang

if each of its elements is clean. In 1977, Nicholson [8] introduced the clean rings
and related them to exchange rings. After that, many results have been established
about clean rings. A clean ring can be regarded as an additive analog of a unit-
regular ring in which each element is a product of a unit and an idempotent. Some
important examples of clean rings include local rings, semiperfect rings and left
(right) Artinian rings.

A ring R is called a ∗-ring (or ring with involution ∗) if there exists an operation
∗ : R → R such that

(x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x

for all x, y ∈ R. We call an element p of a ∗-ring R a projection if p is a self-
adjoint(or ∗-invariant) idempotent, i.e. p∗ = p = p2, and call a ∗-ring R a ∗-clean
ring if each element of R is the sum of a unit and a projection. Let R be a ring and
G be a group. We denote by RG, the group ring of G over R. It is well-known that
for a commutative ring R, the map ∗ : RG → RG given by (

∑
agg)∗ =

∑
agg

−1 is
an involution which is called the classical (or standard) involution on RG.

In 2010, Vas̆ [10] started an investigation of ∗-clean rings and proposed a ques-
tion of whether there exists a clean ring (with involution ∗) that is not ∗-clean. A
year later, Li and Zhou [5] gave a positive answer to the above question. Recently,
several interesting results regarding ∗-clean group rings have appeared. In [1], Gao,
Chen and Li characterized the ∗-clean group rings RG for a commutative local
ring R and some small groups G. Later, Li, Parmenter and Yuan [6] provided a
complete characterization of when a group algebra FCp is ∗-clean, where F is a
field with char(F) ≥ 0 and Cp is the cyclic group of a prime order p, and also gave
characterizations of all ∗-clean group rings RCn(3 ≤ n ≤ 6) over commutative local
rings R. In a recent paper, Huang, Li and Yuan [3] extended the above mentioned
result from FCp to FqCpk , where Fq is a finite field and Cpk is a cyclic group of an
odd prime power order pk. For the general case, when G = Cn is a cyclic group of
order n, they also provided a necessary condition and a few sufficient conditions for
FqCn to be ∗-clean. Most recently, Huang, Li and Tang [2] considered the noncom-
mutative case and investigated, when QG is ∗-clean, where G are dihedral groups
D2n or generalized quaternion groups Q2n.

In this paper, we extend the above result of Huang, Li and Yuan [3] from FqCpk

to FG and provide a characterization of ∗-clean group rings FG, where G is a finite
abelian group with exponent nr and F is a field with char(F) � nr. Note that, in
this case, let ω be an nrth primitive root of unity, if ω ∈ F, then FG is not ∗-clean.
Let g ∈ G and the order of g is nr. Since char(F) � nr, we have u = 1

nr

∑nr−1
i=0 (ωg)i

is an element in FG. It can be easily verified that u2 = u, but u∗ �= u. Therefore, it
remains to consider ω /∈ F.

First, when char(F) > 0, we have the following characterization.

Theorem 1.1. Let G be a finite abelian group with exponent nr and F be a field
of characteristic p > 0, where p � nr. Let ω be an nrth primitive root of unity and
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ω /∈ F. Then the group ring FG is ∗-clean if and only if there exists t such that
pt ≡ −1 (mod nr).

Second, when char(F) = 0, we give a complete characterization. We also provide
other characterizations in certain cases.

Theorem 1.2. Let G be a finite abelian group with exponent nr and F be a field
of characteristic 0. Let ω be an nrth primitive root of unity and ω /∈ F. Then the
group ring FG is ∗-clean if and only if F(ω + ω−1) � F(ω). In particular, if F ⊆ R,

then FG is ∗-clean, where R denotes the field of real numbers.

Theorem 1.3. Let G be a finite abelian group with exponent nr = pk or 2pk, where
p is an odd prime and k is a positive integer, and F be a field of characteristic 0.
Let ω be an nrth primitive root of unity and ω /∈ F. Then the group ring FG is
∗-clean if and only if 2 | [F(ω) : F].

2. Basic Notions and Terminologies

Throughout this paper, let G be an abelian group written multiplicatively. By the
fundamental theorem of finite abelian groups, we have

G ∼= Cn1 × · · · × Cnr
∼= 〈x1〉 × 〈x2〉 × · · · × 〈xr〉,

where r = r(G) ∈ N is the rank of G, n1, . . . , nr ∈ N are integers with 1 < n1 | . . . |
nr. Moreover, n1, . . . , nr are uniquely determined by G, and nr is the exponent of
G. Let n be the order of G, then n = n1 · · ·nr.

Let F be a field. By the basic Galois theory, F(ω) is a Galois extension of F,
where ω is an nrth primitive root of unity. For an element a =

∑
g∈G agg ∈ F(ω)G,

we define that σ(a) =
∑

g∈G σ(ag)g, where σ ∈ Gal(F(ω)/F). Note that for a, b ∈
F(ω)G, we have σ(ab) = σ(a)σ(b) for any σ ∈ Gal(F(ω)/F).

Let K be a field. Recall that [9, Definition 2.5.12], if a family {e1, . . . , et} of
idempotents in the group ring KG satisfying ei �= 0 for 1 ≤ i ≤ t, eiej = 0 for
1 ≤ i �= j ≤ t, and

∑t
i=1 ei = 1, we call {e1, . . . , et} a complete family of orthogonal

idempotents of KG.

3. Preliminary Lemmas

Lemma 3.1 [5, Theorem 2.2]. A commutative ∗-ring is ∗-clean if and only if it
is clean and every idempotent is a projection.

Lemma 3.2 [4, Chapter XVIII, Theorem 1.2] (Maschke). Let G be a finite
group and K a field whose characteristic does not divide the order of G. Then the
group ring KG is semisimple.

Lemma 3.3 [7, Theorem 3.5]. Let m ≥ 2 be a positive integer, then m has a
primitive root if and only if m = 2, 4, pk or 2pk, where p is an odd prime and k is
a positive integer.
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4. The Idempotents in the Group Ring

In this section, we construct the idempotents in the group ring. Let F be a field
with char(F) � nr, ω be an nrth primitive root of unity and ω /∈ F. For e ∈ FG, we
denote eFG = {ef | f ∈ FG}.
Lemma 4.1. Let {e1, . . . , en} be a complete family of orthogonal idempotents of
FG. Then, we have the following decomposition:

FG ∼= e1F ⊕ e2F ⊕ · · · ⊕ enF.

Moreover, any idempotent u ∈ FG can be expressed in an unique way as u =∑n
i=1 riei, with ri ∈ {0, 1} for 1 ≤ i ≤ n.

Proof. We can view each ei as a linear operator on FG, which operates by mul-
tiplication. Since

∑n
i=1 ei = 1, we have FG ⊆ e1FG + e2FG + · · · + enFG, so

FG = e1FG + e2FG + · · · + enFG. If x ∈ eiFG ∩ ejFG, by e2
i = ei, eiej = 0

for i �= j, we have x = 0. That means FG ∼= e1FG ⊕ e2FG ⊕ · · · ⊕ enFG.

Moreover, since FG is a vector space over F of dimension n, and eiFG con-
tains eiF as a vector subspace over F of dimension 1, we have each term in
the direct sum has dimension 1. Consequently, FG ∼= e1F ⊕ e2F ⊕ · · · ⊕ enF.

Moreover, let u be an idempotent and u =
∑n

i=1 riei, with all ri ∈ F. Since
u2 = (

∑n
i=1 riei)2 =

∑n
i=1 r2

i ei =
∑n

i=1 riei = u, we must have ri ∈ {0, 1} for
1 ≤ i ≤ n.

For any e ∈ F(ω)G, let H = {σ |σ ∈ Gal(F(ω)/F), σ(e) = e}. Then
clearly H is a subgroup of Gal(F(ω)/F). Assume that |Gal(F(ω)/F)/H | = t and
Gal(F(ω)/F)/H = {σ1H, . . . , σtH}, where {σ1, . . . , σt} is a transversal to H . We
define Γ(e) = σ1(e) + · · · + σt(e).

Lemma 4.2. Γ(e) is well-defined and |H |Γ(e) =
∑

σ∈Gal(F(ω)/F) σ(e). Moreover,
for any θ ∈ Gal(F(ω)/F), we have θ(Γ(e)) = Γ(e). Consequently, Γ(e) ∈ FG for
any e ∈ F(ω)G.

Proof. Let {σ′
1, . . . , σ

′
t} be another transversal to H in Gal(F(ω)/F), where σ′

i ∈
σiH for 1 ≤ i ≤ t. Since σ′

i = σihi, where hi ∈ H , for 1 ≤ i ≤ t, we have
σ′

i(e) = σihi(e) = σi(e). That means

σ′
1(e) + · · · + σ′

t(e) = σ1(e) + · · · + σt(e)

therefore Γ(e) does not depend on the choice of the transversal to H . Since
Gal(F(ω)/F) = ∪t

i=1σiH, we have

∑
σ∈Gal(F(ω)/F)

σ(e) =
t∑

i=1

∑
σ∈σiH

σ(e) =
t∑

i=1

|H |σi(e) = |H |Γ(e).

Moreover for any θ ∈ Gal(F(ω)/F), {θσ1, . . . , θσt} is another transversal to H .
Otherwise, if θσi(θσj)−1 ∈ H for some i �= j, 1 ≤ i, j ≤ t, as Gal(F(ω)/F) is abelian,
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so σiσ
−1
j ∈ H , which is a contradiction. Therefore for any θ ∈ Gal(F(ω)/F), we have

θ(Γ(e)) = θσ1(e) + · · · + θσt(e) = σ1(e) + · · · + σt(e) = Γ(e)

by Galois theory, we have Γ(e) ∈ FG.

Lemma 4.3. Let {e1, . . . , en} be a complete family of orthogonal idempotents of
F(ω)G. Then for 1 ≤ i ≤ n, Γ(ei) is an idempotent in FG. Let u be any idempotent
in FG, then we have u =

∑
j∈J Γ(ej) for some subset J of {1, . . . , n}.

Proof. We claim that {e1, e2, . . . , en} = {σ(e1), σ(e2), . . . , σ(en)} for any σ ∈
Gal(F(ω)/F). Since σ(ei) is also an idempotent for 1 ≤ i ≤ n, by Lemma 4.1
we may assume that

σ(e1) = e11 + · · · + e1k1 ,

...

σ(en) = en1 + · · · + enkn ,

where for 1 ≤ i ≤ n and 1 ≤ ji ≤ ki, eiji belongs to {e1, . . . , en}. As
{σ(e1), σ(e2), . . . , σ(en)} also satisfies the orthogonal relation, we must have
{ei1, . . . , eiki}∩{ej1, . . . , ejkj} = ∅. Otherwise, it contradicts the orthogonal relation
of {e1, e2, . . . , en}. Therefore, our claim follows.

Let Li = {σ |σ ∈ Gal(F(ω)/F), σ(ei) = ei}, assume that for 1 ≤ i ≤ n, Γ(ei) =
ei1 + · · · + eiti , where ti = |Gal(F(ω)/F)|/|Li|, for 1 ≤ j ≤ ti, eij belongs to
{e1, . . . , en} and eil �= eik for 1 ≤ l �= k ≤ ti. By the orthogonal relation of
{e1, e2, . . . , en}, Γ(ei) is an idempotent for 1 ≤ i ≤ n. By Lemma 4.2, we have
Γ(ei) ∈ FG. Let u be any idempotent in FG, then by Lemma 4.1, we have u =∑n

i=1 riei, where ri ∈ {0, 1} for 1 ≤ i ≤ n. If ei appears in the summation of u, as
u ∈ FG, we have σ(ei) also appears in the summation of u for any σ ∈ Gal(F(ω)/F).
Consequently, Γ(ei) appears in the summation of u. Hence, u =

∑
j∈J Γ(ej) for some

subset J of {1, . . . , n}.

5. An Important Lemma

In this section, let F be a field of characteristic 0 or p > 0 with p � nr, ω be an nrth
primitive root of unity and ω /∈ F.

In F(ω)G, let

eiji =
1
ni

ni−1∑
ki=0

(ω
nr
ni

jixi)ki ,

where 1 ≤ i ≤ r, 0 ≤ ji ≤ ni − 1. It is easy to check that

(e1j1 · · · erjr )(e1j′1 · · · erj′r) = δ
j′1,...,j′r
j1,...,jr

(e1j1 · · · erjr),
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where

δ
j′1,...,j′r
j1,...,jr

=

{
1 if ji = j′i for all i with 1 ≤ i ≤ r,

0 otherwise

and
∑ni−1

ji=0 eiji = 1 for 1 ≤ i ≤ r. Then, we have
n1−1∑

j1=0

e1j1


 · · ·


nr−1∑

jr=0

erjr


 = 1.

Let
∑

j1,...,jr
=
∑n1−1

j1=0 · · ·∑nr−1
jr=0 . Expanding the above equation, we have∑

j1,...,jr

e1j1 · · · erjr = 1.

Therefore, {e1j1 · · · erjr |0 ≤ ji ≤ ni − 1 for 1 ≤ i ≤ r} is a complete family of
orthogonal idempotents of F(ω)G. For 0 ≤ j ≤ nr − 1, let

Hj = {σ |σ ∈ Gal(F(ω)/F), σ(e10 · · · e(r−1)0erj) = e10 · · · e(r−1)0erj}.
Assume that |Gal(F(ω)/F)/Hj| = tj and

Gal(F(ω)/F)/Hj = {σj1Hj , . . . , σjtj Hj},
where {σj1, . . . , σjtj} is a transversal to Hj . By Lemma 4.3,

uj = Γ(e10 · · · e(r−1)0erj)

is an idempotent in FG. Let Ur = {uj | 0 ≤ j ≤ nr − 1}.
The following lemma is very important in our proof.

Lemma 5.1. FG is ∗-clean if and only if there exists σ ∈ Gal(F(ω)/F) such that
σ(ω) = ω−1.

Proof. First, we assume that FG is ∗-clean. By Lemma 3.1, we have u = u∗ for all
idempotents u ∈ FG, especially u = u∗ for all u ∈ Ur, where Ur is defined above.
Let uj ∈ Ur, where 0 ≤ j ≤ nr − 1, we have

u∗
j = (Γ(e10 · · · e(r−1)0erj))∗

= Γ


 1

n

n1−1∑
k1=0

(x−1
1 )k1 · · ·

nr−1−1∑
kr−1=0

(x−1
r−1)

kr−1

nr−1∑
kr=0

(ωjx−1
r )kr




= Γ


 1

n

n1−1∑
k1=0

(x1)k1 · · ·
nr−1−1∑
kr−1=0

(xr−1)kr−1

nr−1∑
kr=0

(ωj(nr−1)xr)kr


.

Then the coefficient of xr in u∗
j is

1
n

tj∑
i=1

σji(ωj(nr−1)) =
1
n

tj∑
i=1

σji((ωj)nr−1).
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Since uj = u∗
j , comparing the coefficients of xr, we have for 0 ≤ j ≤ nr − 1,

tj∑
i=1

σji((ωj)nr−1) =
tj∑

i=1

σji(ωj). (5.1)

Clearly,

|Hj |
tj∑

i=1

σji((ωj)nr−1) = |Hj |
tj∑

i=1

σji(ωj). (5.2)

By the proof of Lemma 4.2, we have∑
σ∈Gal(F(ω)/F)

σ(ωj)nr−1 =
∑

σ∈Gal(F(ω)/F)

σ(ωj). (5.3)

Assume that |Gal(F(ω)/F)| = [F(ω) : F] = d. Let Gal(F(ω)/F) = {σk|1 ≤ k≤ d}
and σk(ω) = ωlk with 1 ≤ lk ≤ nr − 1 for 1 ≤ k ≤ d. We assume that σ1 = id,
l1 = 1. Then for 0 ≤ j ≤ nr − 1,

∑
σ∈Gal(F(ω)/F)

σ(ωj)nr−1 =
d∑

k=1

σk(ωj)nr−1 =
d∑

k=1

ωjlk(nr−1) =
d∑

k=1

(ωj)nr−lk

and

∑
σ∈Gal(F(ω)/F)

σ(ωj) =
d∑

k=1

σk(ωj) =
d∑

k=1

(ωj)lk .

Therefore, we can change (5.3) to be the following one

d∑
k=1

(ωj)nr−lk =
d∑

k=1

(ωj)lk . (5.4)

Let

g(x) =
d∑

k=1

xnr−lk −
d∑

k=1

xlk

and A = {nr − l1, nr − l2, . . . , nr − ld}, B = {l1, l2, . . . , ld}. Then g(x) is a trivial
polynomial. Otherwise, from (5.4), we obtain that g(x) = 0, for x = ωj for 0 ≤ j ≤
nr−1, that means g(x) has at least nr distinct roots, which contradicts the fact that
g(x) is a polynomial over field F of degree nr −1. Since g(x) is a trivial polynomial,
we must have A = B, so nr − l1 = nr − 1 ∈ B, that means nr − 1 = lv for some
1 ≤ v ≤ d. Consequently, σv(ω) = ω−1, and there exists σ = σv ∈ Gal(F(ω)/F)
such that σ(ω) = σv(ω) = ωlv = ωnr−1 = ω−1.

Conversely, we assume that there exists σ ∈ Gal(F(ω)/F) such that σ(ω) = ω−1.
By Lemma 3.2, FG is semisimple, so it is clean. By Lemma 3.1, all we need to prove
is that every idempotent is a projection. Let {Γ(β1), . . . , Γ(βl)} be the set of all
distinct elements in {Γ(e1j1 · · · erjr ) | 0 ≤ ji ≤ ni − 1 for 1 ≤ i ≤ r}. Let u be any
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idempotent in FG, by Lemma 4.3, u =
∑

j∈J Γ(βj), for some subset J of {1, . . . , l}.
It suffices to prove that Γ(βj) = Γ(βj)∗ for 1 ≤ j ≤ l.

Assume that βj = e1j1 · · · erjr for some 0 ≤ ji ≤ ni − 1 and 1 ≤ i ≤ r. Let
Kj = {σ |σ ∈ Gal(F(ω)/F), σ(βj) = βj}. Also assume that |Gal(F(ω)/F)/Kj| = tj
and Gal(F(ω)/F)/Kj = {θ1Kj, . . . , θtj Kj}, where {θ1, . . . , θtj} is a transversal to
Kj . Note that F ⊆ F(ω) is an abelian extension, so Gal(F(ω)/F) is an abelian group.
Since there exists σ ∈ Gal(F(ω)/F) such that σ(ω) = ω−1, by Lemma 4.2, we have

Γ(βj) = Γ(e1j1 · · · erjr ) =
tj∑

i=1

(θi(e1j1 · · · erjr)) = σ

tj∑
i=1

(θi(e1j1 · · · erjr ))

=
1
n

tj∑
i=1

(
n1−1∑
k1=0

(σθi(ω
nr
n1

j1)x1)k1 · · ·
nr−1∑
kr=0

(σθi(ω
nr
nr

jr )xr)kr

)

=
1
n

tj∑
i=1

(
n1−1∑
k1=0

(θiσ(ω
nr
n1

j1)x1)k1 · · ·
nr−1∑
kr=0

(θiσ(ω
nr
nr

jr )xr)kr

)

=
1
n

tj∑
i=1

(
n1−1∑
k1=0

(θi(ω
nr
n1

(n1−j1))x1)k1 · · ·
nr−1∑
kr=0

(θi(ω
nr
nr

(nr−jr))xr)kr

)

=
1
n

tj∑
i=1

(
n1−1∑
k1=0

(θi(ω
nr
n1

j1n1−nr
n1

j1)x1)k1 · · ·
nr−1∑
kr=0

(θi(ω
nr
nr

jrnr−nr
nr

jr))xr)kr

)

=
1
n

tj∑
i=1

(
n1−1∑
k1=0

(θi(ω
nr
n1

j1(n1−1))x1)k1 · · ·
nr−1∑
kr=0

(θi(ω
nr
nr

jr(nr−1))xr)kr

)

=
1
n

tj∑
i=1

(
n1−1∑
k1=0

(θi(ω
nr
n1

j1)x−1
1 )k1 · · ·

nr−1∑
kr=0

(θi(ω
nr
nr

jr )x−1
r )kr

)

= (Γ(e1j1 · · · erjr ))∗ = (Γ(βj))∗.

Hence FG is ∗-clean. This completes the proof.

6. Char(F) = p > 0

Now, we are going to prove our main results. In this section, let F be a field of
characteristic p > 0 with p � nr, ω be an nrth primitive root of unity and ω /∈ F.
Let Fp denote the finite field of p elements. First, we have the following important
lemma.

Lemma 6.1. The Galois group Gal(F(ω)/F) is isomorphic to a subgroup of
Gal(Fp(ω)/Fp).

Proof. If σ ∈ Gal(F(ω)/F), since σ fixes F, then clearly the restriction σ|Fp(ω) fixes
Fp. Since Fp ⊆ Fp(ω) is a normal extension, we have σ|Fp(ω) ∈ Aut(Fp(ω)). This
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together with the fact that σ|Fp(ω) fixes Fp implies that σ|Fp(ω) ∈ Gal(Fp(ω)/Fp).
Therefore, we have a homomorphism f from Gal(F(ω)/F) to Gal(Fp(ω)/Fp). More-
over, if σ|Fp(ω) is the identity in Gal(Fp(ω)/Fp) which fixes ω, then σ fixes ω too.
Therefore, f is a monomorphism and Gal(F(ω)/F) is isomorphic to a subgroup of
Gal(Fp(ω)/Fp).

Let q = pm, where m is an arbitrary positive integer, and Fq be the finite field
with q elements. It is known that the group of automorphisms of Fq is generated
by the Frobenius map

Φ : Fq → Fq and Φ(x) = xp.

From Lemma 6.1, we know that for any σ ∈ Gal(F(ω)/F), σ is also generated
by the Frobenius map Φ.

Proof of Theorem 1.1. First, we assume that there exists t such that pt ≡ −1
(mod nr). Since the Galois group Gal(F(ω)/F) is generated by the Frobenius map,
there exists σ ∈ Gal(F(ω)/F) such that σ(ω) = ωpt

, which means σ(ω) = ω−1. By
Lemma 5.1, FG is ∗-clean.

Conversely, assume that FG is ∗-clean. Then by Lemma 5.1, there exists σ ∈
Gal(F(ω)/F) such that σ(ω) = ω−1, since σ is generated by the Frobenius map, we
have σ(ω) = ωpt

, which means there exists t such that pt ≡ −1 (mod nr). This
completes the proof.

In [3], Huang, Li and Yuan proved the following theorem.

Theorem 6.2. Let Fq be a finite field of order q, Cn = 〈g〉 be a cyclic group of
order n ≥ 3, and gcd(q, n) = 1. If there exists a positive integer v, such that qv ≡ −1
(mod m) for every positive divisor m of n, then FqCn is ∗-clean.

Now, we can deduce Theorem 6.2 as a corollary from Theorem 1.1. Since Fq is
in characteristic p for some prime p � n, and q = pk for some positive integer k, if
qv ≡ −1 (mod n), then we have pkv ≡ −1 (mod n). Moreover ω /∈ Fq, where ω be
an nth primitive root of unity. Therefore, there exists t = kv such that pt ≡ −1
(mod n), by Theorem 1.1, FqCn is ∗-clean.

7. Char(F) = 0

In this section, let F be a field of characteristic 0, ω be an nrth primitive root of
unity and ω /∈ F. Let Q denote the field of rational numbers. We also have the
following important lemma.

Lemma 7.1. The Galois group Gal(F(ω)/F) is isomorphic to a subgroup of
Gal(Q(ω)/Q).

Proof. If σ ∈ Gal(F(ω)/F), since σ fixes F, then clearly the restriction σ|Q(ω)

fixes Q. Since Q ⊆ Q(ω) is a normal extension, we have σ|Q(ω) ∈ Aut(Q(ω)). This
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together with the fact that σ|Q(ω) fixes Q implies that σ|Q(ω) ∈ Gal(Q(ω)/Q).
Therefore, we have a homomorphism f from Gal(F(ω)/F) to Gal(Q(ω)/Q). More-
over, if σ|Q(ω) is the identity in Gal(Q(ω)/Q) which fixes ω, then σ fixes ω too.
Therefore, f is a monomorphism and Gal(F(ω)/F) is isomorphic to a subgroup of
Gal(Q(ω)/Q).

Lemma 7.2. There exists σ ∈ Gal(F(ω)/F), such that σ(ω) = ω−1 if and only if
F(ω + ω−1) � F(ω).

Proof. First, we assume that F(ω + ω−1) � F(ω). Since ω satisfies the equation
x2 − (ω + ω−1)x + 1 = 0 in F(ω + ω−1)[x], we have [F(ω) : F(ω + ω−1)] = 2. If
σ ∈ Gal(F(ω)/F(ω + ω−1)) and σ(ω) = ωk, then σ(ω + ω−1) = σ(ω) + σ(ω)−1 =
ωk + ω−k = ω + ω−1. That is cos 2π

nr
= cos 2πk

nr
, so

cos
2π

nr
− cos

2πk

nr
= −2 sin

2π(k + 1)
nr

sin
2π(k − 1)

nr
= 0.

It follows that k = −1 (mod nr). So there exists σ ∈ Gal(F(ω)/F(ω + ω−1)) ⊆
Gal(F(ω)/F) such that σ(ω) = ω−1.

Conversely, we assume that σ ∈ Gal(F(ω)/F) such that σ(ω) = ω−1. Then the
subgroup 〈σ〉 of Gal(F(ω)/F) generated by σ fixes F(ω + ω−1). Since 〈σ〉 is not a
trivial subgroup, by the fundamental theorem of Galois, we have F(ω+ω−1) � F(ω).

Proof of Theorem 1.2. By Lemmas 5.1 and 7.2, FG is ∗-clean if and only if
F(ω+ω−1) � F(ω). In particular, if F ⊆ R, then we clearly have F(ω+ω−1) � F(ω).
Therefore, we get the desired result.

Proof of Theorem 1.3. Assume that 2 | [F(ω) : F]. By Lemma 7.1, Gal(F(ω)/F)
is isomorphic to a subgroup of Gal(Q(ω)/Q). Since 2 | [F(ω) : F], there exists
σ ∈ Gal(F(ω)/F) < Gal(Q(ω)/Q) with |σ| = 2. Let σ(ω) = ωm for some m with
1 < m ≤ nr − 1. Moreover by Lemma 3.3, when nr = pk, 2pk, where p is an odd
prime and k is a positive integer, nr has a primitive root, that means if a has order
2 modulo nr, then a ≡ −1 (mod nr). Since σ2 = 1, we have ω = σ(ω)2 = ωm2

. So
m has order 2 modulo nr and m ≡ −1 (mod nr). Therefore σ satisfies σ(ω) = ω−1.
By Lemma 5.1, FG is ∗-clean.

Conversely, assume that FG is ∗-clean. By Lemma 5.1, there exists σ ∈
Gal(F(ω)/F) such that σ(ω) = ω−1. Therefore σ has order 2 in Gal(F(ω)/F). Hence
2 | |Gal(F(ω)/F)| = [F(ω) : F].
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