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Abstract

The energy E(G) of a graph G is defined as the sum of the absolute values of the eigenvalues
of its adjacency matrix. If a graph G of order n has the same energy as the complete graph Kn,
i.e., if E(G) = 2(n − 1), then G is said to be borderenergetic. We obtain three asymptotically
tight bounds on the edge number of borderenergetic graphs. Then, by using disconnected regular
graphs we construct connected non-complete borderenergetic graphs.
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1 Introduction

All graphs considered in this paper are simple and undirected. Let G be such a graph with

m edges, and V (G) = {v1, v2, . . . , vn} its vertex set with |V (G)| = n. The complement of G

is denoted by G. The complete graph and the cycle of order n are denoted by Kn and Cn,

respectively.

Let A(G) be an adjacency matrix of G and let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of

A(G). These eigenvalues form the spectrum G, which is denoted by Sp(G). A graph is said to

be integral if all its eigenvalues are integers.

For details on spectral graph theory, see [2].

The energy of the graph G, denoted by E(G), is defined as [5, 6]

E(G) =
n∑

i=1

|λi| .
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For additional information on graph energy and its applications in chemistry, we refer to [6, 9,

10,18].

Graphs of order n, whose energy exceeds the energy of the complete graph Kn, i.e., graphs

for which E(G) > E(Kn) = 2(n−1), have been named hyperenergetic; otherwise, graphs of order

n with E(G) ≤ E(Kn) = 2(n − 1) are called non-hyperenergetic. These graphs were studied in

some detail; see e.g. [1, 11, 22]. For further review, see [7]. Graphs with energy less than or

equal to the order n were also particularly investigated. Graphs of order n with energy less than

n, n − 1, are called hypoenergetic and strong hypoenergetic, respectively, and were studied; see

e.g. [8,15,17]; whereas graphs of order n with energy equal to n were also studied; see e.g. [16].

Recently, Gong et al. [4] proposed the concept of borderenergetic graphs, namely graphs of

order n satisfying E(G) = 2(n− 1).

In a trivial manner, the complete graph is borderenergetic. We are, of course, interested in

borderenergetic species different from Kn. Such graphs exist for all n ≥ 7 [4]. Their numbers

were determined for n = 7, 8, 9 [4] and n = 10, 11 [19, 21]. In [12], a family of non-regular and

non-integral borderenergetic threshold graphs was discovered.

It is interesting to find more borderenergetic graphs, especially, connected and to establish

their structural differences. So far, very little is known about such structural properties.

The paper is organized as follows. In Section 2, we obtain three asymptotically tight bounds

on the number of edges of borderenergetic graphs. In Section 3, using disconnected regular

graphs we construct connected non-complete borderenergetic graphs.

2 Bounds on the number of edges

Examples show [4, 19, 21] that the number of edges of borderenergetic graphs of fixed order

n vary significantly. In this section, we offer some results that shed some more light on this

phenomenon.

We first state the definition of the r-degree of a vertex and a previously known bound for

graph energy, valid for general graphs. For an integer r ≥ 0, the r-degree dr(vi) of a vertex vi ∈ G

is defined as the number of walks of length r starting at vi. Clearly, one has d0(vi) = 1, d1(vi) = di

and dr+1(vi) =
∑

w∈N(vi)
dr(w), where N(vi) is the set of all neighbors of the vertex vi. The

following upper bound for graph energy on the r-degree is obtained in [13].
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Lemma 1. [13] Let G be a connected graph with n (n ≥ 2) vertices and m edges. Then

E(G) ≤

√√√√
∑

vi∈V (G) d
2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

+

√√√√(n− 1)

(
2m−

∑
vi∈V (G) d

2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

)
.

Equality holds if and only if G ∼= Kn or G is a strongly regular graph with two nontrivial

eigenvalues both with absolute value
√

(2m− (2m/n)2)/(n − 1).

From it, we can derive the following result.

Theorem 2. Let G be a borderenergetic graph. Then

m ≥




1

2

∑
vi∈V (G) d

2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

+
1

2(n − 1)


2(n − 1)−

√√√√
∑

vi∈V (G) d
2
r+1(vi)∑

vi∈V (G) d
2
r(vi)




2


. (1)

If G is (n− 3)-regular, then the bound in (1) is asymptotically tight.

Proof. By Lemma 1 and E(G) = 2(n− 1), we have


2(n − 1)−

√√√√
∑

vi∈V (G) d
2
r+1(vi)∑

vi∈V (G) d
2
r(vi)




2

≤ (n− 1)

(
2m−

∑
vi∈V (G) d

2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

)
.

So,

1

2

∑
vi∈V (G) d

2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

+
1

2(n − 1)


2(n − 1)−

√√√√
∑

vi∈V (G) d
2
r+1(vi)∑

vi∈V (G) d
2
r(vi)




2

≤ m.

As m is a positive integer, Ineq.(1) holds. Moreover, we find that the bound in (1) is asymptot-

ically tight when G is (n− 3)-regular (when m = n(n− 3)/2). Then, when G is (n− 3)-regular,

by dr+1(vi) =
∑

w∈N(vi)
dr(vi), for each vertex vi, we have

dr(vi) = (n− 3)r, dr+1(vi) = (n− 3)r+1

and ∑
vi∈V (G) d

2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

=
(n − 3)2(r+1)

(n− 3)2r
= (n− 3)2 .

Hence,

m ≥

⌈
(n− 3)2

2
+

(n+ 1)2

2(n − 1)

⌉
.

Thus,

lim
n→∞

[
n(n− 3)

2

]
−1 ⌈ (n+ 1)2

2(n − 1)
+

(n− 3)2

2

⌉
= 1 .
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For simplicity, in the following we replace the notation d2(vi) and d3(vi) by ti and σi for

vi ∈ V (G), respectively. Then from Theorem 2, we have the corollaries below directly.

Corollary 3. Let G be a borderenergetic graph of order n. Then

m ≥




[
2(n − 1)−

√
1
n

∑n
i=1 d

2
i

]2

2(n − 1)
+

∑n
i=1 d

2
i

2n



. (2)

If G is (n− 3)-regular, then the bound in (2) is asymptotically tight.

Corollary 4. Let G be a borderenergetic graph. Then

m ≥




1

2

n∑

i=1

t2i

/ n∑

i=1

d2i +
1

2(n− 1)


2(n− 1)−

√√√√
n∑

i=1

t2i

/ n∑

i=1

d2i




2


. (3)

If G is (n− 3)-regular, then the bound in (3) is asymptotically tight.

Corollary 5. Let G be a borderenergetic graph. Then

m ≥




1

2

n∑

i=1

σ2
i

/ n∑

i=1

t2i +
1

2(n− 1)


2(n− 1)−

√√√√
n∑

i=1

σ2
i

/ n∑

i=1

t2i




2


. (4)

If G is (n− 3)-regular, then the bound in (4) is asymptotically tight.

From Lemma 1, it is easy to verify that equalities in (1), (2) and (3) hold in the case of

G ∼= Kn. From the data given in Table 1, it can be seen that these bounds are reasonably good.

Let

m∗ =




(
2(n − 1)−

√
1
n

∑n
i=1 d

2
i

)2

2(n − 1)
+

∑n
i=1 d

2
i

2n




m̃ =




1

2

n∑

i=1

t2i

/ n∑

i=1

d2i +
1

2(n − 1)


2(n − 1)−

√√√√
n∑

i=1

t2i

/ n∑

i=1

d2i




2



m̂ =




1

2

n∑

i=1

σ2
i

/ n∑

i=1

t2i +
1

2(n − 1)


2(n − 1)−

√√√√
n∑

i=1

σ2
i

/ n∑

i=1

t2i




2


.

A few borderenergetic graphs are listed in Table 1 and depicted in Fig. 1. These have been

chosen among those determined in [4,19,21], so as to be connected and have the smallest number

of edges.
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Gi n m m∗ m̃ m̂ m−m∗ m− m̃ m− m̂

G0 7 17 17 17 17 0 0 0

G1 8 18 17 17 17 1 1 1

G0
2 9 18 17 17 17 1 1 1

G1
2 9 18 17 17 17 1 1 1

G0
3 10 23 22 22 22 1 1 1

G1
3 10 23 22 22 22 1 1 1

G2
3 10 23 22 22 22 1 1 1

G3
3 10 23 22 22 22 1 1 1

G0
4 11 25 24 24 24 1 1 1

G1
4 11 25 23 23 23 2 2 2

G2
4 11 25 24 24 24 1 1 1

Table 1. The parameters m, m∗, m̃, m−m∗, m− m̃ and m− m̂ of

the borderenergetic graphs depicted in Fig. 1.

0
1

Fig. 1. The connected non-complete borderenergetic graphs listed in Table 1.
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3 Constructing regular borderenergetic graphs

A class of non-complete connected (n − 3)-regular borderenergetic graphs have been found by

Gong et al. in [4].

Theorem 6. [4] Let p, q, and r be non-negative integers, and let p+ q = 2. Then

pC4 ∪ qC6 ∪ rC3 is borderenergetic.

Corollary 7. [4] For each integer n, n ≥ 7, there exists a connected non-complete borderener-

getic graph of order n.

We now show how to construct connected non-complete (n − 1 − k)-regular (k > 2) bor-

derenergetic graphs by using some k-regular graphs of small order.

Lemma 8. [3]. Let G be a k-regular graph of order n with spectrum Sp(G) = {k, λ2, . . . , λn}.

Then Sp(G) = {n− 1− k,−1− λ2, . . . ,−1− λn}.

Theorem 9. Let G be a k-regular integral graph of order n with t non-negative eigenvalues. If

E(G) = 2(n − t+ k), then E(G) = 2(n − 1).

Proof. Let N = t− 1. By the above condition, we have

E(G) = 2(n− t+ k) = 2n+ 2k − 2N − 2 . (5)

From Lemma 8 and λ1 = k, the energy of the complement of G is

E(G) = n− 1− k +

n∑

j=2

|1 + λj| = n− 1− k +


N +

t∑

j=2

λj


+

n∑

j=t+1

(−λj − 1)

= n− 1− k +N + (n − 1−N)(−1) +




t∑

j=2

|λj |+
n∑

j=t+1

|λj|+ k − k




= n− 1− k +N + (n − 1−N)(−1) +
[
E(G) − k

]
= 2(n− 1)

where E(G) is replaced by Eq. (5).

By Theorem 9, an (n − 1 − k)-regular borderenergetic graph G can be constructed from a

k-regular graph G. The graph G needs not be connected (see Examples 10 and 11).

Example 10. G0 is a connected 3-regular graph with 10 vertices whereas G0 is a connected

6-regular borderenergetic graph, see Fig. 2. Note that

Sp(G0) = {3,−3,−2,−1,−1, 0, 0, 1, 1, 2} and E(G0) = 14 = 2(10 − 6 + 3)

6



whereas

Sp(G0) = {6, 2, 1, 0, 0,−1,−1,−2,−2,−3} and E(G0) = 2(10 − 1) = 18 .

Fig. 2. The graphs from Example 10.

Example 11. G1 is a disconnected 2-regular graph with 8 vertices whereas G1 is a connected

5-regular borderenergetic graph, see Fig. 3. Note that

Sp(G1) = {2,−2,−2, 0, 0, 0, 0, 2} and E(G1) = 8 = 2(8 − 6 + 2)

whereas

Sp(G1) = {5, 1, 1,−1,−1,−1,−1,−3} and E(G1) = 2(8− 1) = 14 .

G
1

G
1

Fig. 3. The graphs from Example 11.

It is easy to find examples of disconnected borderenergetic graphs. A more interesting task

is to construct connected non-complete borderenergetic graphs by starting from graphs of small

order. Such a construction is achieved by means of the following theorem:

Theorem 12. Let k be an even integer. Let G = pG1 ∪ qKk+1 be a disconnected k-regular

graph consisting of p copies of G1 and q copies of Kk+1, where G1 be a connected k-regular

integral graph with k + 2 vertices, having t1 non-negative eigenvalues, and satisfying E(G1) =

2k + 4 − 2t1 +
2k
p
, p|2k , p ≥ 1 , q ≥ 1. Then G is a connected non-complete borderenergetic

graph.
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Proof. Since G = pG1 ∪ qKk+1 is k-regular, G is
[
p(k + 2) + q(k + 1) − (k + 1)

]
-regular. Let

k = λ1 ≥ λ2 ≥ · · · ≥ λk+2 be the eigenvalues of G1 and recall that Sp(Kk+1) = {k,−1(k)}. By

Lemma 8, the eigenvalues of G are p(k + 2) + q(k + 1) − (k + 1) with multiplicity 1, −k − 1

with multiplicity p + q − 1, 0 with multiplicity kq, −λ2 − 1 with multiplicity p, −λ3 − 1 with

multiplicity p, . . ., and −λk+2 − 1 with multiplicity p. Thus,

E(G) = p(k + 2) + q(k + 1)− (k + 1) + (k + 1)(p + q − 1)

+

(
t1∑

i=1

|λi|+ t1

)
p+

(
k+2∑

i=t1+1

|λi| − k − 2 + t1)

)
p− (|λ1|+ 1)p

= p(k + 2) + q(k + 1)− (k + 1) + (k + 1)(p + q − 1)

+
[
E(G1) + (2t1 − k − 2)

]
p− (k + 1)p = 2(p(k + 2) + q(k + 1)− 1) .

As G is disconnected, G is connected.

It is obvious that p = 2 satisfies the condition p|2k. The case of k = 2 has been discussed

in [4]. In what follows, we separately consider the cases of k = 4 and k = 6, under the condition

p = 2.

When k = 4, the 4-regular connected graph G0
1 with 6 vertices is depicted in Fig.4, for which

Sp(G0
1) = {−2,−2, 0, 0, 0, 4} and E(G0

1) = 8 = 4 + 2− 2 + 4.

Fig. 4. The 4-regular graph G0
1

Corollary 13. For integer n (n > 12) satisfying 5|(n−12), there exists a connected non-complete

(n− 5)-regular borderenergetic graphs of order n.

Proof. Let G1 = G0
1 and q = n−12

5 . By Theorem 12, the graph 2G0
1 ∪ qK5 is connected, non-

complete, (n− 5)-regular, and borderenergetic.

When k = 6, the 6-regular connected graph G1
1 with 8 vertices is depicted in Fig.5, for which

Sp(G1
1) = {−2,−2,−2, 0, 0, 0, 0, 6} and E(G1

1) = 12 = 6 + 2− 2 + 6.
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Fig. 5. The 6-regular graph G1
1

Corollary 14. For integer n (n > 16) satisfying 7|(n−16), there exists a connected non-complete

(n− 7)-regular bordernergetic graphs of order n.

Proof. Let G1 = G1
1 and q = n−12

7 . By Theorem 12, the graph 2G1
1 ∪ qK7 is connected, non-

complete, (n− 7)-regular, and borderenergetic.

At this point we note that for k = 3 or k = 5, the above described construction of connected

borderenergetic graphs is not possible.

4 Concluding remarks

In one way we have constructed many families of borderenergetic graphs. In another way, we

may think about finding some structural properties of non-borderenergetic graphs. This can

exclude a lot of graph classes. For examples, we can easily get that any connected non-complete

borderenergetic graph G is not a tree, a cycle, or a complete bipartite graph Kn1,n2
, etc.

Acknowledgement. The authors would like to thank the reviewers for useful comments and

suggestions.
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