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Abstract

A path in an edge-colored graph is called rainbow if any two edges of the path
have distinct colors. An edge-colored graph is called rainbow connected if there
exists a rainbow path between every two vertices of the graph. For a connected
graph G, the minimum number of colors that are needed to make G rainbow con-
nected is called the rainbow connection number of G, denoted by rc(G). In this
paper, we investigate the relation between the rainbow connection number and the
independence number of a graph. We show that if GG is a connected graph without
pendant vertices, then rc(G) < 2a(G) — 1. An example is given showing that the
upper bound 2a(G) — 1 is equal to the diameter of G, and so the upper bound is
sharp since the diameter of G is a lower bound of rc(G).
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. The following
notation and terminology are needed in the sequel. Let u,v € V be two distinct vertices
of a graph G = (V, E') with vertex set V' and edge set E. The distance between u and v in
G, denoted by d(u,v), is the length of a shortest path connecting them in G. Let P be a
path of G. We use Pg[u,v] to denote the segment of P with w and v as its end-vertices.
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Let E[U, W] denote the set of edges of G with one end in U and the other end in W,
and let e(U, W) = |E[U, W]|. As usual, G[U] denotes the subgraph of G induced by U.
The following notions were introduced in [11]. A set D C V(@) is called a connected
dominating set of G, if G[D] is connected and every vertex in G'\ D is at a distance 1
from D. A set D C V(G) is called a k-step connected dominating set of G, if G[D] is
connected and every vertex in G\ D is at a distance at most k from D. The k-step open
neighborhood of a set D is N*(D) := {x € V(G)|d(x, D) = k} and k € N. We use ¢(G) to
denote the number of edges in a graph G and |G| to denote the order of G. For undefined
terminology and notation, we refer to [1].

A k-edge-coloring of a graph G is a mapping ¢ : E(G) — {1,2,...,k} the set of colors.
In [6], Chartrand et al. introduced a new concept relating to both the connectivity and
the coloring of a graph. A path P of an edge-colored graph is called rainbow if every
edge of P is colored by a distinct color. We say that an edge-colored graph is rainbow
connected if, for every pair of vertices of the graph, there is a rainbow path connecting
them. For a connected graph G, the rainbow connection number rc(G) is the smallest
number of colors that are needed to make G rainbow connected. An edge-coloring of GG is
called a rainbow coloring if it makes G rainbow connected. From the definition of rainbow
connection number, we can see that for any connected graph G, diam(G) < rc(G) < e(G).
For more background on the rainbow connection, we refer to [13, 14].

In [4], Chakraborty et al. showed that given a graph G, deciding if r¢(G) = 2 is NP-
complete, in particular, computing rc(G) is NP-hard, which were conjectured by Caro et
al. [3]. There they also conjectured that if G is a connected graph with n vertices and
6(G) > 3, then rc(G) < 3n. Schiermeyer [16] confirmed the conjecture and showed that
if G is a connected graph with n vertices and §(G) > 3, then re(G) < 2L In [11],
Krivelevich and Yuster showed that if G is a connected graph of order n with minimum
degree 6(G), then rc(G) < %, the result simplifies the relation between the rainbow
connection number and the minimum degree of a graph. Later in [5], Chandran et al.
showed that if G is a connected graph with minimum degree §(G) > 2 and D is a connected
dominating set of G, then rc(G) <rc(G[D]) + 3; furthermore, they showed that if G is a
connected graph of order n with minimum degree §(G), then rc(G) < 3n/(6(G) + 1) + 3,
and the bound is tight up to addictive factors. Then, Dong and Li in [9, 8] studied the
relation between the rainbow connection number and the minimum degree sum. They
showed that if G is a graph with &k independent vertices, then rc(G) < Uk?gﬁ +6k—3. In
2], Basavaraju et al. investigated the relation between the rainbow connection number
and the radius of a bridgeless graph. They showed that for every bridgeless graph G with
radius rad(G), rc(G) < rad(G)(rad(G)+2), and gave an example showing that the bound
is tight. Then, Li et al. in [12] and Ekstein et al. in [10] showed that if G is a 2-connected
graph of order n (n > 3), then rc(G) < [5], and the upper bound is tight for n > 4,
respectively. Furthermore, Li et al. [12] obtained the following result: for every x > 1, if
G is a k-connected graph of order n, then for every € € (0,1), re(G) < (2<)n + %. The
bound is not tight. They conjectured that for every x > 1, if G is a k-connected graph of
order n, then r¢(G) < 2 + C, where (' is a constant. Schiermeyer [15] obtained a relation
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between the rainbow connection number of a graph G and the chromatic number of the

complement of G, i.e., rc(G) < 2x(G) — 1.

This paper intends to give a relation between the rainbow connection number and the
independence number of a graph. Recall that an independent set of a graph G is a set of
vertices such that any two of these vertices are non-adjacent in GG, and the independence
number o(G) of G is the cardinality of a maximum independent set of G. Our result is
stated as follows.

Theorem 1 If G is a connected graph with 6(G) > 2, then re(G) < 2a(G) — 1, and the
bound s sharp.

We give an example where the bound 2a(G) — 1 is exactly equal to the diameter of
G, and therefore the bound is sharp since the diameter of G is a lower bound of rc(G).

Example : Let Py = vivous - - - 94109 be a path of length 2t — 1, and let G, Gs, - -+, Gy
be t (t > 2) complete graphs with |G1| = 2 and |G;| = s (a positive integer) for i with
2 <1 <t. Forevery i with 1 < i < ¢, we join each vertex of GG; to every vertex of vy;_1 and
vg;. The obtained graph is denoted by G. One can see that G is connected with 6(G) = 3,
and I(G) = {vg, vy, 6, -+ , vy} is a maximum independent set, that is, a(G) = t. We
also know that the distance d(vq,vq;) = 2t — 1. So, we can get that rc(G) > 2t — 1. Now
we use 2t — 1 distinct colors to give G an edge-coloring. Let 1,2,---,2t — 1 be 2t — 1
distinct colors. We use the 2t — 1 colors to color all the edges of Py, with mutually distinct
color. Then, we use color 2i — 1 to color every edge of E[V(G;),{vei—1,v2}]. Finally, we
use color 1 to color every edge of G|V (G;)]; see Figure 1.
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Figure 1: The graph for the Example.

One can show that G is rainbow connected. For each pair (u,v) € G; X Py, either
the edge uvy; together with the path in P, connecting v,; and v forms a rainbow path,
or the edge uvq;_1 together with the path in P, connecting v9; 1 and v forms a rainbow
path. For each pair (u,v) € G; x G; with 1 < i < j < ¢, the edges uvy; and vvg;_4
together with the path in P, connecting vq; and v,;_; form a rainbow path. So, the graph
G is rainbow connected and we can get rc(G) < 2t — 1, and, since diam(G) = 2t — 1,
we can get rc(G) = 2t — 1 = 2a(G) — 1. Note that rad(G) = ¢, 6(G) = 3, and for any
v e V(Q)\ ({v1,v2} UV (Gy)), the degree of v is at least s+ 1.
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2 Proof of Theorem 1

Proof of Theorem 1: If G is a complete graph, then a(G) = 1 and rc(G) = 1, and
the statement of this theorem follows. Now assume that G is an incomplete graph with
(G) > 2.

We will perform the following procedure to obtain a tree T whose vertex set D is
a connected dominating set of G. Let yo € V(G) with d(yo) = 6(G). Since G is an
incomplete graph, N?(yo) # (. We look at the following procedure:

Procedure 1

D={y},T =40, X =0,Y ={yo}, X,Y partition D at any given step.
While N?(D) # 0
take any vertex v € N?(D), let P = vhu be a path of length 2,
where h € N*(D) and u € D. Let D = DUV(P),
T=TUP, X =XU{h}Y =Y U{v}.

At any given step, the set N?(D) does not contain any neighbor of Y, and if u € X,
we call u an X-knot vertex. When the above procedure ends, the algorithm has run | X|
rounds. Thus, we get V(G) = DU N'(D), where D is a connected dominating set. Note
that Y is an independent set and |Y| = |X|+ 1. So, |Y| < a(G) and |D| = |Y| + |X| =
2|Y| — 1. Note that 7" is a spanning tree of G[D] and the pendant vertices of T" are all in
Y.

From [5], we know that rc(G) < re¢(G[D]) +3 < |D| + 2 = 2|Y| + 1. So Procedure
1 directly implies that rc(G) < 2|Y| + 1 < 2a(G) + 1. Whenever we can show that
either Y is not a maximum independent set, or rc(G) < |D|, we are able to get that

re(G) < 2a(G) — 1.

In the following, the sets D, T', Y and X are always the same as those obtained in the
above algorithm. We need the following claims in order to continue this proof.

Claim 1. If there exists a vertex w € N'(D) such that e(w,Y) = 0, then rc(G) <
2a(G) — 1.

Proof. Let I = Y U{w}. Then [ is an independent set and |I| = |[Y| + 1. So, |V
lI| =1 < a(G) — 1. By rc¢(G) < re(G[D]) + 3, we can get that r¢(G) < |D|—1+3
|D| 42 =2|Y| + 1. Hence, r¢(G) < 2(a(G) — 1)+ 1 =2a(G) — 1.

m Al

Note that from the proof of Claim 1, we can conclude that if we can find a larger
independent set than Y, then rc(G) < 2a(G) — 1.

Claim 2. If G[D] =T, {y,y'} CY and w,w’ € N(D) with ww' ¢ E(G), then

(1) Ife(w,Y) =1 ew,Y) =1, e(w,X) = 0 and e(w’, X) = 0, then rc(G) <
20(G) — 1.



(2) If N(wy)ND = N(wy) N D = {y,y'}, then rc(G) < 2a(G) — 1.

Proof. (1) Let y,y € Y, and wy,w'y’ € E(G). Since G[D] = T, there is a unique path
connecting y and 3’ in T', denoted by Pr|y, ¢']. If there do not exist two successive vertices
of X on Pr[y,y], then the following three parts form an independent set larger than Y
the first part is {w, w'}, the second part is the set of vertices of X on Prly,v'], and the
third part is the set of vertices of Y except for the vertices on Prly,y’]. Note that the
vertices in each part are independent, and the vertices of these three parts are independent
mutually. So we get an independent set larger than Y. From the proof of Claim 1, if we
can find an independent set larger than Y, then we can get rc(G) < 2a(G) — 1. If there
are two successive vertices of X on Prly,y'], by the structure of 7" we can conclude that
one of these two vertices is an X-knot vertex; otherwise, from the structure of 7" we can
get that the vertices of X and the vertices of Y appear alternately in T', a contradiction
to the assumption that there are two successive vertices of X on Pr[y,y/]. Then there
is a segment on Pr[y,y’], without loss of generality, say Prly, ] C Prly,v'], such that x
is an X-knot vertex, and there is a vertex o’ of X on Prly, x] adjacent to z, with 2/, x
being the only two successive vertices on Prly, z]. Then the following three parts form an
independent set larger than Y: the first part is {w}, the second part is set of vertices of
X on Prly,x) (Prly,z) = Prly,z] \ {z} ), and the third part is the set of vertices of Y’
except for the vertices on Prly,z). Note that the vertices in each part are independent,
and the vertices of these three parts are independent mutually. So we get an independent
set larger than Y. By the proof of Claim 1, we can get rc(G) < 2a(G) — 1.

(2) Since G[D] = T, there is a unique path connecting y and 3" in 7', denoted by
Prly,y']. If there is no pair of successive vertices of X on Pr[y,y/], similarly as in the
proof of (1), we get rc(G) < 2a(G) — 1. If there are two successive vertices of X on
Prly,y'], similarly as in the proof of (1), the following three parts form an independent
set larger than Y': the first part is {w, w'}, the second part is the set of vertices of X on
Prly,z), and the third part is the set of vertices of Y except for the vertices on Prly, x).
So, rc(G) < 2a(G) — 1. |

Let NY(D) = AU B and AN B = ¢, where w € A if and only if e(w, D) > 2, and
w € B if and only if e(w, D) = 1. By Claim 1, we can assume that every vertex w € B
satisfies e(w,Y) = 1. By Claim 2, we can assume that G[B] is a complete subgraph. In
the following text we distinguish two cases to complete the proof of Theorem 1.

Case 1. ¢(G[D]) > e(T) + 1.

Let ajay € E(G[D]) and ajas ¢ E(T). Then T U ayas contains a cycle, say C and
ajay € E(C). Let G' = T U ajay. Since G’ is a spanning subgraph of G[D], let V =
V(G") = V(G|[D]), for any two vertices u,v of V, the number of paths in G[D] passing

u, v is not less than the number of paths in G’ passing u, v, so r¢(G[D]) < rc¢(G’). Noticing
that rc(G") < e(T) — (|C] = 1) + r¢(C) and re(C) < [%1 when |C| > 4, we can get



(T) - €141, O] is even
re(G) < e(T) =92 || is odd and |C| # 3
(T) -1, C]=3

Hence, rc(G[D]) < re(G') < e(T) —

—_

If e(G[D]) > e(T)+2, then G[D]) has at least two cycles, and from the above inequality
we can get rc(G[D]) < e(T) — 2. Thus, by Lemma 1 we have rc(G) < re(G[D]) + 3 <
e(T)+1=|D| =2|Y| —1 < 2a(G) — 1, and the statement of the theorem is true.

Next we show that if e(G[D]) = e(T) + 1, then rc(G) < 2a(G) — 1.

Suppose that the edge aa’ € E(G[D]) but ad’ & E(T). Let D\ {a'} = D; U Do, where
Dy and D, induce connected components with a € D,. Since Y is an independent set,
vertices a, a’ cannot be in Y at the same time, and so one of them is in X, without loss of
generality, we assume o’ € X. Let By denote the subset of B such that N(B;) N Dy = 0),
and let By denote the subset of B such that N(Bs) N D; = (). Note that B; or By may
be empty. Thus, by Claim 1, By N By = () and B = B; U B,. By Claim 2, we assume that
both subgraphs G[B;]| and G[B,] are complete graphs.

Now we color every edge of G and show that G is rainbow connected. First, we use
rc(G[D]) distinct colors to rainbow color G[D]. Then, let ¢, ¢’ be two fresh colors. For any
vertex w € A, let w',w"” € D with ww',ww” € E(G), set c(ww’) = ¢ and c(ww") =
for any edge e € E[By, D], set c(e) = ¢”; for any edge e € E[Bs, D], set c(e) = ¢/; see
Figure 2.

Figure 2: The graph for Case 1.

For the remaining uncolored edges of F(G), we use a previously used color to color
them. Thus, we have colored all the edges of G. We will show that G is rainbow connected.
For each pair (u,v) € N(D) x D, the edge uu’ together with the path in G’ connecting v’
and v forms a rainbow path, where c(uu') = ¢ and «' € D. For each pair (u,v) € A x A,
the edges uu’ and vv” together with the path in G’ connecting v’ and v” form a rainbow
path, where c(uu’) = ¢ and c(vv”) = ¢’. For each pair (u,v) € A x By, the edges uu’
and vv" together with the path in G’ connecting «’ and v’ form a rainbow path, where
cluu') = . For each pair (u,v) € A X By, the edges uu’ and vv' together with the
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path in G’ connecting u” and v’ form a rainbow path, where c(uu”) = ¢”’. For each pair
(u,v) € By X By, the edges uu’ and vv’ together with the path in G’ connecting v’ and v’
form a rainbow path. Thus, we have showed that G is rainbow connected. In the above
edge-coloring, we used at most rc(G[D]) +2 < ¢(T) + 1 colors. Hence, rc(G) < e(T) + 1,
that is, rc(G) < |D|. Since |D| = 2|Y| —1 < 2a(G) — 1, we get rc(G) < 2a(G) — 1 and
the theorem is true. |

Case 2. ¢(G[D]) = e(T).

Choose a longest path P in the graph G[D] such that the two ends of P are pendant
vertices. We know that the two pendant vertices belong to Y, and |P| > 3. Let P =
Y1212 - - - ZkY2, Where 29,29, -+ 2, € Y U X. We distinguish two subcases to show that
G is rainbow connected.

Subcase 2.1. V(P) & D.

Since P is a longest path and V(P) & D, we have |P| > 4. In T', we choose a pendant
edge not in P, say ysx. Let P’ be a path in T passing through ysz, and V(P) NV (P’) =
{#'}. Without loss of generality, let |P[yy, 2’]| > 3.

We divide A into four disjoint subsets A;, Ay, A3 and Ay, and these four subsets satisfy
the following conditions: vertex w; € A; if and only if wyy; € E(G) and w; is adjacent
to only one vertex of D \ {y1,y2}; vertex wy € Ay if and only if weys € E(G) and wy is
adjacent to only one vertex of D\ {y1,y2}; vertex ws € Az if and only if wzy; € E(G),
wsys € E(G) and e(ws, D) = 2; vertex wy € Ay if and only if w, is adjacent to at least
two vertices w) and wj of D \ {y1, 92}, note that any vertex of Ay may be adjacent to
vertex y; or yo. Assume that the distance between w) and y; in 7" is not more than the
distance between w/} and y; in T'. We divide B into three disjoint subsets B;, By and Bs,
and the three subsets satisfy the following conditions: vertex b; € B if and only if b; is
only adjacent to y; vertex by € By if and only if by is only adjacent to ys; vertex by € Bs
if and only if bs is only adjacent to some vertex of Y\ {y1,y2}.

We use e(T") colors to color all the edges of G[D], and let 1,2, ¢, ¢o be four colors from
the above e(T') colors, and a be a new color. In the following we use a to color each edge
of E[B, D], and use ¢; to color each edge of graph G[B]. Set c(y121) = 1, ¢(z129) = ¢4,
c(zry2) = 2 and c(xy3) = co. For any vertex wy € Ay, set c(wy1) = ¢ and c(wjw)) = 2
where w] € D; for any vertex wy € As, set c(ways) = ¢2 and c(wowh) = 1, where wh € D;
for any vertex ws € As, set c(wsy1) = 2 and c(wsy2) = 1; for any vertex wy € Ay, set
c(wgwy) = a and c(wqw)) = 1. Then, we give the remaining uncolored edges a previously
used color. Thus, we used e(T") + 1 colors finishing the edge-coloring of G; see Figure 3.
From Claim 2 we can assume that both G[As] and G[B] are complete subgraphs.

In the following we show that when By # (), By # () and Bs # (), the graph G is

rainbow connected.

We will show that any vertex of N(D) is rainbow connected to every vertex of D.
Here and in what follows, a vertex is rainbow connected to another vertex means that
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Figure 3: The graph for Subcase 2.1.

there is a rainbow path connecting them. For each pair (u,v) € By x D, the edge uy;
together with the path in T connecting y; and v form a rainbow path between u and v.
For each pair (u,v) € By X D, the edge uy, together with the path in 7' connecting yo
and v form a rainbow path between u and v; for each pair (u,v) € By x D, the edge uz,
together with the path in 7" connecting 2z, and v form a rainbow path between u and v;
for each pair (u,v) € A; X y3, the edge ud together with the path in T' connecting d and
y3 form a rainbow path between u and y3, where d € D and c(ud) = 2; for each pair
(u,v) € Ay X (D \ y3), the edge uy; together with the path in 7' connecting y; and v form
a rainbow path between u and v; for each pair (u,y3) € As X ys, the edge ud together
with the path in T" connecting d and y3 form a rainbow path between u and y3, where
d € D and c(ud) = 1; for each pair (u,v) € Ay x (D \ y3), the edge uys together with
the path in T" connecting y and v form a rainbow path between u and v; for each pair
(u,v) € Az x (D \ y2), the edge uy; together with the path in 7" connecting y; and v form
a rainbow path between u and v, and uys is a rainbow path; for each pair (u,v) € Ay x D,
the edge uy, together with the path in T" connecting y; and v form a rainbow path between

u and v. Thus we show that every vertex of N (D) is rainbow connected to every vertex
of D.

Now, we show that there exists a rainbow path connecting every two vertices of Ay, and
the internal vertex of the rainbow path is not a vertex of B. For each pair (u,v) € A x Ay,
let u/,v" € D with wu/,vv’" € E(G). If u' # o', without loss of generality, we then assume
that the path in T from v’ to y; does not contain the edge ysz. Thus, the edges uy; and
vv’ together with the path in T connecting y; and v’ form a rainbow path between u and
v. If v/ =" and vy, € E(G), then the edges uy; and vy, together with the path P form
a rainbow path between u and v. If ' = ¢’ and uy, € F(G), similarly there is a rainbow
path between them. If +' = v and assume that vy, ¢ E(G) and uys ¢ E(G), then from
Claim 2, we can get uv € E(G). So, for any two vertices of A; there is a rainbow path
connecting them. Similarly, we can show that there is a rainbow path connecting any two
vertices of Ay or Ay, and the internal vertex of the rainbow path is not a vertex of B.

Now we show that for any vertex u € A;, there is a rainbow path connecting it to every
vertex of Ay U A3 U Ay U B. For each pair (u,v) € Ay x (As U Ay), the edges uu’ and v’



together with the path in 7' connecting v’ and v" form a rainbow path, where c(uu') = 2
and c(vv') = 1. For each pair (u,v) € Ay x Az, the path uy;v is rainbow. For each pair
(u,v) € Ay x By, the path uyjv is rainbow. For each pair (u,v) € A; X B, the edges uy;
and vy together with the path P form a rainbow path. For each pair (u,v) € A; X Bs,
the edges uu’ and vv’ together with the path in 7' connecting «’ and ¢’ form a rainbow
path, where c(uu’) = 2 and c(vv') = a.

Next, we show that for any vertex u € A, there is a rainbow path connecting it
to every vertex of A3 U Ay U B. For each pair (u,v) € Ay x Ay, the edges uu' and v’
together with the path in 7' connecting v’ and v’ form a rainbow path, where c(uu') = 1
and c(vv') = a. For each pair (u,v) € Ay X As, the path uysv is rainbow. For each pair
(u,v) € Ay X By, the edges uys and vy, together with the path P form a rainbow path.
For each pair (u,v) € Ay X By, the path uyyv is rainbow. For each pair (u,v) € Ay X Bs,
the edges uu’ and vv’ together with the path in 7' connecting «’ and ¢’ form a rainbow
path, where c(uu’) = 1 and c(vv') = a.

Then, we show that for any vertex u € Ay, there is a rainbow path connecting it to
every vertex of B. For each pair (u,v) € A3z x Ay, the edges uy; and vv’ together with the
path in T' connecting y; and v’ form a rainbow path, where c¢(uy;) = 2 and c(vv') = a.
For each pair (u,v) € Az x By, the path uy;v is rainbow. For each pair (u,v) € A3z X By,
the path uysv is rainbow. For each pair (u,v) € Az x Bs, the edges uy; and vv’ together
with the path in 7" connecting y; and v' form a rainbow path.

Finally, we show that for any vertex u € A4, there is a rainbow path connecting
it to every vertex of B. For each pair (u,v) € Ay x Bi, the edges uu/, vby and byys
together with the path in 7' connecting «’ and y, form a rainbow path, where c(uu’) =1
and by € By. For each pair (u,v) € Ay X By, the edges uu’ and vy, together with the
path in T connecting u' and ys form a rainbow path, where c(uw’) = 1. For each pair
(u,v) € Ay x Bs, the edges uu’ and vv’ together with the path in 7' connecting u' and v’
form a rainbow path, where c(uu’) = 1 and ¢(vv’) = a. So, when By # (), By # () and
Bs # (), the graph G is rainbow connected.

From the proof above, we can see the following facts: for any vertex of A there is a
rainbow path connecting it to every vertex of (G, and the internal vertex of the rainbow
path is not a vertex of B; for any vertex of B, there is a rainbow path connecting it to
every vertex of G, and the rainbow path does not contain any vertex of B; U Bs; for any
vertex of Bs, there is a rainbow path connecting it to every vertex of (G, and the rainbow
path does not contain any vertex of By U Bs.

Hence, in the following we can assume that Bs = () and B, = (). When B; = 0, it is
not difficult to show that G is rainbow connected. When B; # (), we still color the edges
of G in the above way except for setting c(wsw)) = a and c(wsw}) = 2. Thus, we only
need to show that for any vertex of Ay, there is a rainbow path connecting it to every
vertex of G. We will give the proof as follows. For each pair (u,v) € Ay x Ay, the edges
uu’ and vv’ together with the path in 7' connecting «' and v’ form a rainbow path, where



c(uu’) = a and c(vv') = 2. For each pair (u,v) € Ay x As, the edges uu’ and vy, together
with the path in 7" connecting v’ and y; form a rainbow path, where c(uu’) = a. For each
pair (u,v) € Ay X Ag, the edges uu’ and vv’ together with the path in 7" connecting u" and
v' form a rainbow path, where c(uu') = a and ¢(vv') = 1. For each pair (u,v) € Ay X Ay,
the edges uu’ and vv’ together with the path in 7' connecting «’' and ¢’ form a rainbow
path, where c(uu') = a and c(vv') = 2. For each pair (u,v) € Ay X By, the edges uu’
and vy, together with the path in T connecting «’ and y; form a rainbow path, where
c(uu') = 2. So, when By = () or By # (), we have showed that G is rainbow connected. 1

Thus, we have showed that, when V(P) & D, the graph G is rainbow connected.
Subcase 2.2. V(P) = D.

Since V(P) = D and |Y| = |X| + 1, the path P is (Y, X)-alternate and |P| is odd.
Let Ay, Ay, Az, Ay, By, By and Bs be the above mentioned subsets.

If |P| = 3, we can get that Ay = 0, By = 0, and G[A; U By] and G[As U By] are
complete subgraphs. Let P = yyx1y,. We can easily show that G is rainbow connected.
In fact, we use color 1 to color the edge y;x; and use color 2 to color the edge ysx;.
For any vertices w; € A; and wy € Aj, set c(wiy1) = a, c(wiz1) = 1, c¢(wsys) = a and
c(wqz1) = 2. It is obvious that for any vertex of AU B, there is a rainbow path connecting
it to every vertex of P. For each pair (u,v) € A; X As, the path uzjv is rainbow. For
each pair (u,v) € A; X Az, the path uy;v is rainbow. For each pair (u,v) € A; x By, the
path uzqysv is rainbow. For each pair (u,v) € Ay x As, the path uysv is rainbow. For
each pair (u,v) € Ay x By, the path uziy,v is rainbow. For each pair (u,v) € Az x By,
the path uy,v is rainbow. For each pair (u,v) € A3 X By, the path uysv is rainbow. So,
the graph G is rainbow connected.

So, we can assume |P| > 5. Set c(y121) = 1, ¢(2122) = c1, c(ya2x) = 2 and ¢(zp2x_1) =
c2. We color the edges of G in the following way: use a to color each edge of E[B, D],
and use ¢; to color each edge of G[B]. For any vertex wy; € Aj, set c(wy1) = 2 and
c(wiw)) = a, where wi € D; for any vertex wy € As, set c(ways) = 1 and c(wow}h) = a,
where w) € D; for any vertex ws € As, set ¢(wsy;) = 2 and c¢(wsy2) = 1; for any vertex
wy € Ay, assume that the distance between w) and y; in P is not more than the distance
between wj and y; in P, and set c(wsw)) = a and c(wqw})) = 1, where w), w] € D; see
Figure 4.

In the following we distinguish three cases to continue the proof of Theorem 1.
Subcase 2.2.1. By # (), By # () and Bz # ().

It is easy to check that for any vertex of AU B, there is a rainbow path connecting
it to every vertex of P. For each pair (u,v) € A; X Aj, the edges uy; and vv’ together
with the path in 7" connecting y; and v’ form a rainbow path, where c(uy;) = 2 and
c(vv') = a. For each pair (u,v) € Ay X A, the edges uy, and vv’ together with the path
in T' connecting y, and v’ form a rainbow path, where c(uyz) = 1 and ¢(vv') = a. For
each pair (u,v) € Ay X Ay, the edges uw’ and vv' together with the path in T' connecting
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Figure 4: The graph for subcase 2.2.

u' and v' form a rainbow path, where c(uu') =1 and ¢(vv’) = a.

For each pair (u,v) € A; x As, the edges uu' and vy, together with the path in T
connecting u’ and y, form a rainbow path, where c¢(uu’) = a. For each pair (u,v) € A; x As,
the edges uu’ and vy; together with the path in 7' connecting v’ and y; form a rainbow
path, where c¢(uu') = a. For each pair (u,v) € A; X Ay, the edges uy; and vv’ together
with the path in 7" connecting y; and v’ form a rainbow path, where c¢(vv’') = a. For each
pair (u,v) € A; x By, the path uy,v is rainbow. For each pair (u,v) € A; X By, the path
uy1byv is rainbow, where by € By. For each pair (u,v) € A; X B, the edges uy; and vv’
together with the path in 7' connecting y; and v’ form a rainbow path. So, for any vertex
of A; there is a rainbow path connecting it to every vertex of Ay U A3 U Ay U B.

For each pair (u,v) € Ay x Az, the edges uu' and vy; together with the path in T
connecting v’ and y; form a rainbow path, where c¢(uu') = a. For each pair (u,v) € Ay x Ay,
the edges uys and vv' together with the path in 7' connecting y, and v' form a rainbow
path, where c(vv’) = a. For each pair (u,v) € Ay x By, the path uysbov is rainbow,
where by € By. For each pair (u,v) € Ay X By, the path uy,v is rainbow. For each pair
(u,v) € Ay X Bs, the edges uy; and vv’ together with the path in 7" connecting y; and v’
form a rainbow path. So, for any vertex of A, there is a rainbow path connecting it to
every vertex of A3 U Ay U B.

For each pair (u,v) € Az X Ay, the edges uy; and vv’ together with the path in T
connecting y; and v’ form a rainbow path, where ¢(vv') = a. For each pair (u,v) € A3x By,
the path uyjv is rainbow. For each pair (u,v) € Az X By, the path uysv is rainbow. For
each pair (u,v) € Az x Bs, the edges uy; and vv’ together with the path in T' connecting
y1 and v’ form a rainbow path. So, for any vertex of Az there is a rainbow path connecting
it to every vertex of A4 U B.

For each pair (u,v) € Ay X By, the edges uu’, vby and byys together with the path in 7'
connecting y, and «’ form a rainbow path, where c(uu') = 1. For each pair (u,v) € Ayx Bs,
the edges uu’ and vy, together with the path in 7' connecting ' and y, form a rainbow
path, where c(uu’) = 1. For each pair (u,v) € Ay x Bs, the edges uu’ and vv’ together
with the path in T" connecting ' and v’ form a rainbow path, where c¢(uu') = 1. So, for
any vertex of A, there is a rainbow path connecting it to every vertex of B. Thus, the
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graph G is rainbow connected.

From the proof above, we can see the following facts: for any vertex of A there is a
rainbow path connecting it to every vertex of GG, and the internal vertex of the rainbow
path is not a vertex of B; for any vertex of Bs, there is a rainbow path connecting it to
every vertex of GG, and the rainbow path does not contain any vertex of By U By. So, in
the following proof we can assume Bz = ().

Subcase 2.2.2 B; = () and By # ()

We still make use of the above way of coloring except for the edges of E[A;, D]. We now
color the edges of E[A;, D] in the following ways. For any vertex wy, € Ay, if wi2z; € E(G)
then set c(wyy;) = a and c(wyz) = 1; if wizy € E(G), let wy € D\ {y1, 21, y2} with
wiw) € E(G), and let Ply;, w}] be a subpath of P, z € V(P[y;,w}]) with zw} € E(G),
then set c(wiy;) = c(zw)) and c(wywj) = 1. From the edge-coloring, one can easily
check that there is a rainbow path connecting every two vertices of A;. For each pair
(u,v) € Ay x(A3UAy), the edges uu’ and v’ together with the path in 7' connecting u’ and
v' form a rainbow path, where c(uu') = 1 and ¢(vv’) = a. For each pair (u,v) € Ay X As,
the path uyyv is rainbow. For each pair (u,v) € Ay X Bs, the edges uu’ and vy, together
with the path in 7" connecting u" and y, form a rainbow path, where c(uu’) = 1. So, there
is a rainbow path connecting any vertex of A; to every vertex of As U A3U A4 U B. Thus,
the graph G is rainbow connected.

Subcase 2.2.3. B; # () and B, = 0.

We still make use of the above way of coloring except for the edges of E[As, D] and
the edges of E[Ay4, D]. For any vertex wy € Ay, set c(wsw)) = a and c(wsw)) = 2; for any
vertex we € Ag, we will color the edges of E[As, D] in the following way: if wezy € E(G)
then set c(wsays) = a and c(wexs) = 2; if wexe € E(G), let why € D\ {y1, x2,y2} with
wowh € E(G), and let Ply,, w)] be a subpath of P, 2’ € V(P[ys, w}]) with Z/wj € E(G),
then set c(wqys) = c(Z'wj). One can easily check that there are rainbow paths connecting
every two vertices of Ay and Ay, respectively. For each pair (u,v) € Ay X (A; U Ay),
the edges uu’ and vv’ together with the path in 7' connecting «’ and ¢’ form a rainbow
path, where c(uu’) = 2 and c(vv') = a. For each pair (u,v) € Ay x Az, the path uysv is
rainbow. For each pair (u,v) € Ay x By, the edges uu’ and vy, together with the path
in T connecting v’ and y; form a rainbow path, where c(uu’) = 2. So, there is a rainbow
path connecting any vertex of Ay to every vertex of A; U A3 U Ay U B. For each pair
(u,v) € Ay X Ay, the edges uu’ and vv’ together with the path in T' connecting u' and v’
form a rainbow path, where c(uu’) = 2 and c(vv’) = a. For each pair (u,v) € Ay X As,
the edges uu’ and vy; together with the path in 7' connecting ' and y; form a rainbow
path, where c¢(uu') = a. For each pair (u,v) € Ay x By, the edges uu' and vy; together
with the path in 7' connecting v’ and y; form a rainbow path, where c(uu’) = 2. So, for
any vertex of A4 there is a rainbow path connecting it to every vertex of A; U A3 U B.
Thus, the graph G is rainbow connected.

In the above coloring, we used e(7') +1 colors. So, we get rc¢(G) < e(T")+ 1, and hence
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we have rc(G) < 2a(G) — 1. Combining the above Cases 1 and 2, we have completed the
proof of Theorem 1. |

For a graph GG, we can partition it into cliques, which means that the vertex-set of
G is partitioned into a set of disjoint subsets Vi, V5, ..., V), such that each V; induces a
clique of G. We call it a p-clique-partition of G if the number of cliques in a partition
is p. Then, from the definition of the independence number a(G) of G we know that
a(@) < p for any p-clique-partition of G. On the other hand, since the color-classes of
any proper vertex-coloring of the complement G of G form a partition of the vertex-set
of G that corresponds to a clique-partition of G, then a proper vertex-coloring of G with

x(G) colors will correspond to a x(G)-clique-partition of G, and hence a(G) < x(G).
Therefore, we can get the following corollary, which is Theorem 10 of [15].

Corollary 1 (Theorem 10, [15] ) Let G be a connected graph with chromatic number

X(G). Then rc(G) < 2x(G) — 1.
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