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Abstract

The energy E(G) of a graphG is defined as the sum of the absolute values of the eigenvalues

of its adjacency matrix. If a graph G of order n has the same energy as the complete graph

Kn does, i.e., if E(G) = 2(n − 1), then G is said to be borderenergetic. Similarly, for the

Laplacian energy LE(G) of a graph G, F. Tura proposed the concept of L-borderenergetic

graphs recently. That is, a graph G of order n is L-borderenergetic if it has the same

Laplacian energy as the complete graph Kn does. In this paper, we first show that a kind of

threshold graphs are L-borderenergetic. Then we use tensor product to construct regular L-

borderenergetic graphs. At last, all the connected non-complete and pairwise non-isomorphic

L-borderenergetic graphs of small order n are depicted for n with 4 ≤ n ≤ 9. All these results

are different from those in Tura’s paper.

1 Introduction

All graphs considered in this paper are simple and undirected. Let G be a graph with its

edge set E(G) and vertex set V (G), whose order is denoted by |V (G)|. Denote by d(G) the

average degree of G. The complete graph and the cycle of order n are denoted by Kn and

Cn, respectively. The union of two vertex-disjoint graphs G1 and G2 is denoted by G1 ∪G2.
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Let A(G) be an adjacency matrix of G. The spectrum of G is the non-increasing sequence

Sp(G) = {λ1, λ2, · · · , λn}, which is composed of the eigenvalues of the adjacency matrix

A(G). If D(G) is the diagonal matrix of the vertex degrees of G, L(G) = D(G) − A(G)

is defined to be the Laplacian matrix of G. The spectrum of L(G) is the sequence of its

eigenvalues displayed in non-increasing order, denoted by LSp(G) = {µ1, µ2, · · · , µn}. It is

well known that L(G) is a positive semidefinite and singular matrix. So, for i = 1, 2, · · · , n−1,

µi ≥ 0 and µn = 0. Besides, when each Laplacian eigenvalue is an integer, G is said to be a

Laplacian integral graph. For details on spectral graph theory, see [2].

The energy of a graph G, denoted by E(G), is defined as [6, 7]

E(G) =

n∑

i=1

|λi| .

For additional information on graph energy and its applications in chemistry, we refer to

[7–9,15].

Recently, Gong et al. [5] proposed the concept of borderenergetic graphs, namely graphs

of order n satisfying E(G) = 2(n − 1). Some related results on borderenergetic graphs can

be seen in [4, 13, 19–21]. In fact, analogous topics on energy of graphs have been researched

[1, 10,11,14,16–18].

For the Laplacian energy of a graph G [12], similarly, F. Tura [22] proposed the concept

of L-borderenergetic graphs. That is, a graph G of order n is L-borderenergetic if LE(G) =

LE(Kn), where LE(G) =
∑n

i=1 |µi − d| and µi and d are the Laplacian eigenvalue and

the average degree of G, respectively. Note that LE(Kn) = 2(n − 1). Several classes of L-

borderenergetic graphs [22] are obtained including result that for each integer r ≥ 1, there are

2r+1 graphs, of order n = 4r+4, which are pairwise L-noncospectral and L-borderenergetic

graphs.

It is of interest to find more L-borderenergetic graphs, especially, connected and to estab-

lish their structural differences. Of course, we can use some graph operations to construct

them, such as tensor product of graphs. However, the problem of finding all L-borderenergetic

graphs on n vertices becomes rather difficult when n > 7. Indeed, using a computer, it took

several seconds for the case n ≤ 7. But in other cases, it took dramatically long time, about

1 day for n = 8, and about 3 days for n = 9. Our final results are shown in Table 1.



n 4 5 6 7 8 9

number 2 1 11 5 33 23

Table 1. The numbers of connected non-complete

and pairwise non-isomorphic L-borderenergetic graphs

on n vertices for 4 ≤ n ≤ 9.

In this paper, we first show that a kind of threshold graphs are L-borderenergetic. Then we

use tensor product to construct regular L-borderenergetic graphs. At last, all the connected

non-complete and pairwise non-isomorphic L-borderenergetic graphs of small order n are

depicted for n with 4 ≤ n ≤ 9.

2 Threshold graphs

Including several classes of L-borderenergetic graphs have been constructed by Tura in [22],

here we will find a class of threshold graphs which are also L-borderenergetic.

At first, let’s recall the definitions of threshold graphs and Ferrers-Sylvester diagrams. A

threshold graph is obtained through an iterative process which starts with an isolated vertex,

and at each step, either a new isolated vertex is added, or a vertex adjacent to all previous

vertices (dominating vertex) is added. A Ferrers-Sylvester diagram (see Figure 2) is a grid

representing a degree sequence (d) = (d1, d2, · · · , dn) in which the ith row of the grid contains

di boxes. The conjugate of a degree sequence (d) is the sequence (d∗) = (d∗1, d
∗
2, · · · , d∗k) where

d∗i = |{dj ≥ i}|. Visually speaking, the value for d∗i is the number of boxes in the ith column

of the Ferrers-Sylvester diagram.

Let S1
n be the graph with m edges obtained from an n-order star Sn by adding an edge.

Obviously, S1
n is a unicyclic and threshold graph (see Figure 1).

Figure 1. The graph S1
n.



Figure 2. The Ferrers-Sylvester diagram of S1
n.

Lemma 1. [3] Let G be a connected graph of order n with m edges. In addition, let d∗i be

the ith conjugate degree of G. Then

LE(G) ≤
n∑

i=1

|d∗i − 2m/n|

with equality holding if and only if G is a threshold graph.

Theorem 2. The graph S1
n is L-borderenergetic.

Proof. Since S1
n is a threshold graph, by the condition of the equality holding in Lemma 1,

we have

LE(S1
n) =

n∑

i=1

|d∗i − 2m/n| (1)

As S1
n is a unicyclic graph, we get m = n. From the Ferrers-Sylvester diagram of S1

n (see

Figure 2), it can be seen that

d∗1 = n, d∗2 = 3, d∗3 = d∗4 = · · · = d∗n−1 = 1, d∗n = 0

So by (1), we obtain

LE(S1
n) = (n− 2) + 1 + (n− 3) + 2 = 2(n − 1).

Note that from [22] one can only get that for some even integers, there are L-borderenergetic

graphs. Since the order n of the graph S1
n can be any integer (even or odd), we immediately

get the following result, which is stronger than Tura’s result.

Theorem 3. For any integer n ≥ 4, there is an L-borderenergetic graph.



3 Regular graphs

In this section, we use tensor product to construct some regular L-borderenergetic graphs.

The tensor product of two graphs G1 and G2, denoted by G1⊗G2, has vertex set V (G1)×

V (G2), in which two vertices (u1, u2) and (v1, v2) are adjacent if and only if both the edges

u1v1 ∈ E(G1) and u2v2 ∈ E(G2). Then, it is easy to see that the order of G1 ⊗ G2 is

|V (G1)||V (G2)|. A result in [5] on the energy of tensor product of two graphs is given below.

Lemma 4. [5] If G1 and G2 are any two graphs, then E(G1 ⊗G2) = E(G1)E(G2).

For regular graphs, we have

Theorem 5. If G is a d-regular graph, then LE(G) = E(G).

Proof. Obviously, the average degree of G is d and the Laplacian eigenvalue of G possessing

the form of d− λi, where i = 1, 2, · · · , n. Then, we have

LE(G) =
n∑

i=1

|µi − d| =
n∑

i=1

|d− λi − d| =
n∑

i=1

|λi| = E(G)

Theorem 6. Let G be an L-borderenergetic graph. Suppose that G is obtained from the

tensor product of two L-integral graphs G1 and G2, where G1 and G2 are r1-regular and

r2-regular, respectively. Then both |V (G1)| and |V (G2)| are odd.

Proof. Since G1 and G2 are all regular, by the definition of tensor product, G is also regular.

Then from Theorem 6 we get LE(G) = E(G), LE(G1) = E(G1) and LE(G2) = E(G2). By

Lemma 4, we see that

LE(G) = E(G) = E(G1 ⊗G2) = E(G1)E(G2) = LE(G1)LE(G2) (2)

Since the energy of a graph is never an odd integer, there exist two integers t1 and t2 satisfying

E(Gi) = 2(|V (Gi)| − ti), and then we have LE(Gi) = 2(|V (Gi)| − ti) for i = 1, 2. Thus, by

(2) we can see that

2(|V (G1)||V (G2)| − 1) = 4(|V (G1)| − t1)(|V (G2)| − t2) (3)



By (3), we obtain

|V (G1)||V (G2)| = 2t1|V (G2)|+ 2t2|V (G1)| − 2t1t2 − 1 (4)

From above equation, we note that its right hand is odd and its left hand is the product of

|V (G1)| and |V (G2)|. So, we know that both |V (G1)| and |V (G2)| are odd.

Using Theorem 6, we can construct some regular L-borderenergetic graphs with small

orders. Assume that G1 = K|V (G1)| and |V (G1)| = |V (G2)| > 1. Then, t1 = 1 and t2 =

(|V (G1)| − 1)/2 by (4). From (2) and (3), we obtain LE(G2) = |V (G1)|+ 1.

For |V (G1)| = 3 and |V (G1)| = 7, we can verify that graphs K3⊗K3 and K7⊗{K3 ∪C4}

are both L-borderenergetic.

4 L-borderenergetic graphs of small orders

In this section, we will depict all the connected non-complete and pairwise non-isomorphic

L-borderenergetic graphs of small order n with 4 ≤ n ≤ 9, and give their L-spectra and

average degrees.

4.1. L-borderenergetic graphs of orders n = 4 and 5

There are exactly two such L-borderenergetic graphs for n = 4 and only one for n = 5.

These graphs are shown in Figure 3. The corresponding L-spectra is given as follows.

LSp(G1
4) = {4, 3, 1, 0};

LSp(G2
4) = {4, 4, 2, 0};

LSp(G1
5) = {5, 3, 1, 1, 0};

G1
4 G2

4 G1
5

Figure 3. The L-borderenergetic graphs of n = 4 and 5.

4.2. L-borderenergetic graphs of order n = 6



There are exactly 11 such L-borderenergetic graphs of order n = 6. These graphs are

presented in Figure 4. The L-spectra of them is shown below.

LSp(G1
6) = {6, 4, 4, 2, 2, 0};

LSp(G2
6) = {6, 5, 4, 3, 2, 0};

LSp(G3
6) = {6, 6, 6, 4, 4, 0};

LSp(G4
6) = {6, 5, 5, 3, 3, 0};

LSp(G5
6) = {6, 6, 5, 4, 3, 0};

LSp(G6
6) = {6, 6, 4, 3, 3, 0};

LSp(G7
6) = {6, 3, 1, 1, 1, 0};

LSp(G8
6) = {6, 4, 3, 2, 1, 0};

LSp(G9
6) = {6, 4, 4, 3, 1, 0};

LSp(G10
6 ) = {6, 3, 3, 1, 1, 0};

LSp(G11
6 ) = {6, 5, 3, 3, 1, 0};

4.3. L-borderenergetic graphs of order n = 7

There are exactly 5 such L-borderenergetic graphs of order n = 7. These graphs are

depicted in Figure 5. The following is their L-spectra.

LSp(G1
7) = {7, 3, 1, 1, 1, 1, 0};

LSp(G2
7) = {7, 5, 5, 5, 4, 2, 0};

LSp(G3
7) = {7, 6, 5, 4, 4, 2, 0};

LSp(G4
7) = {7, 6, 5, 4, 4, 2, 0};

LSp(G5
7) = {7, 6, 5, 4, 3, 3, 0};

4.4. L-borderenergetic graphs of order n = 8

There are exactly 33 such L-borderenergetic graphs of order n = 8. These graphs are

shown in Figure 6. The corresponding L-spectra is given as follows.

LSp(G1
8) = {8, 3, 1, 1, 1, 1, 1, 0}; LSp(G2

8) = {8, 7, 4, 4, 4, 4, 1, 0};
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Figure 4. The L-borderenergetic graphs of order n = 6.
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Figure 5. The L-borderenergetic graphs of order n = 7.



LSp(G3
8) = {8, 5, 5, 5, 3, 3, 3, 0}; LSp(G4

8) = {8, 6, 5, 5, 4, 3, 3, 0};

LSp(G5
8) = {8, 8, 7, 6, 5, 5, 5, 0}; LSp(G6

8) = {8, 7, 7, 5, 5, 4, 4, 0};

LSp(G7
8) = {8, 7, 6, 6, 5, 5, 3, 0}; LSp(G8

8) = {7, 6, 5, 5, 4, 3, 2, 0};

LSp(G9
8) = {8, 7, 7, 5, 5, 5, 3, 0}; LSp(G10

8 ) = {8, 7, 7, 5, 5, 5, 3, 0};

LSp(G11
8 ) = {8, 7, 6, 6, 5, 5, 3, 0}; LSp(G12

8 ) = {8, 8, 8, 7, 6, 6, 5, 0};

LSp(G13
8 ) = {8, 6, 5, 5, 5, 5, 2, 0}; LSp(G14

8 ) = {8, 7, 5, 5, 4, 4, 3, 0};

LSp(G15
8 ) = {8, 7, 6, 5, 4, 4, 4, 0}; LSp(G16

8 ) = {8, 8, 6, 5, 5, 4, 4, 0};

LSp(G17
8 ) = {8, 6, 6, 6, 4, 4, 4, 0}; LSp(G18

8 ) = {8, 6, 6, 6, 6, 4, 4, 0};

LSp(G19
8 ) = {8, 8, 8, 8, 6, 6, 6, 0}; LSp(G20

8 ) = {8, 8, 6, 6, 6, 6, 4, 0};

LSp(G21
8 ) = {8, 8, 5, 5, 4, 4, 4, 0}; LSp(G22

8 ) = {6 +
√
2, 6−

√
2, 7, 6, 4, 4, 3, 0};

LSp(G23
8 ) = {8, 7, 6, 6, 5, 4, 4, 0}; LSp(G24

8 ) = {8, 8, 6, 6, 5, 5, 4, 0};

LSp(G25
8 ) = {8, 4, 3, 3, 2, 1, 1, 0}; LSp(G26

8 ) = {5 +
√
3, 5−

√
3, 5, 4, 2, 2, 1, 0};

LSp(G27
8 ) = {8, 4, 4, 3, 3, 1, 1, 0}; LSp(G28

8 ) = {8, 5, 3, 3, 3, 1, 1, 0};

LSp(G30
8 ) = {8, 7, 7, 6, 5, 5, 4, 0}; LSp(G29

8 ) = {6 +
√
2, 6−

√
2, 7, 5, 4, 4, 2, 0};

LSp(G31
8 ) = {8, 5, 4, 4, 3, 3, 1, 0}; LSp(G32

8 ) = {8, 5, 5, 5, 4, 4, 1, 0};

LSp(G33
8 ) = {8, 3, 3, 3, 1, 1, 1, 0};

4.5. L-borderenergetic graphs of order n = 9

There are exactly 23 such L-borderenergetic graphs of order n = 9. These graphs are

presented in Figure 7. The L-spectra of them is shown below.

LSp(G1
9) = {9, 3, 1, 1, 1, 1, 1, 1, 0}; LSp(G2

9) = {6, 6, 6, 5, 5, 3, 3, 2, 0};

LSp(G3
9) = {7, 6, 6, 5, 4, 4, 3, 1, 0}; LSp(G4

9) = {9, 6, 6, 5, 5, 5, 3, 3, 0};

LSp(G5
9) = {7, 6, 6, 5, 4, 3, 3, 2, 0}; LSp(G6

9) = {7, 6, 6, 5, 4, 3, 3, 2, 0};

LSp(G7
9) = {9, 7, 6, 6, 6, 6, 4, 4, 0}; LSp(G8

9) = {9, 8, 7, 5, 5, 5, 5, 4, 0};

LSp(G9
9) = {9, 9, 8, 6, 6, 6, 6, 4, 0}; LSp(G10

9 ) = {9, 8, 7, 5, 5, 5, 5, 4, 0};

LSp(G11
9 ) = {9, 9, 7, 7, 6, 6, 5, 5, 0}; LSp(G12

9 ) = {9, 9, 7, 7, 6, 6, 6, 4, 0};

LSp(G13
9 ) = {9, 8, 8, 7, 6, 6, 6, 4, 0}; LSp(G14

9 ) = {9, 9, 9, 7, 7, 7, 6, 6, 0};

LSp(G16
9 ) = {7, 6, 6, 5, 4, 3, 3, 2, 0}; LSp(G15

9 ) = {6 +
√
2, 6−

√
2, 6, 6, 4, 3, 3, 2, 0};



LSp(G17
9 ) = {8, 6, 5, 5, 4, 3, 3, 2, 0}; LSp(G18

9 ) = {6, 6, 6, 6, 3, 3, 3, 3, 0};

LSp(G19
9 ) = {8, 6, 6, 6, 5, 5, 3, 3, 0}; LSp(G20

9 ) = {7, 6, 5, 5, 5, 3, 3, 2, 0};

LSp(G21
9 ) = {7, 6, 5, 5, 5, 4, 3, 1, 0}; LSp(G22

9 ) = {9, 6, 5, 4, 4, 4, 3, 1, 0};

LSp(G23
9 ) = {9, 7, 4, 4, 4, 4, 3, 1, 0};
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Figure 6. The L-borderenergetic graphs of order n = 8.
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Figure 7. The L-borderenergetic graphs of order n = 9.
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