The (vertex-)monochromatic index of a graph*

Xueliang Li, Di Wu
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
lxl@nankai.edu.cn; wudiol@mail.nankai.edu.cn

Abstract

A tree T in an edge-colored (vertex-colored) graph H is called a monochromatic (vertex-monochromatic) tree if all the edges (internal vertices) of T have the same color. For $S \subseteq V(H)$, a monochromatic (vertex-monochromatic) S-tree in H is a monochromatic (vertex-monochromatic) tree of H containing the vertices of S. For a connected graph G and a given integer k with $2 \leq k \leq|V(G)|$, the k monochromatic index $\operatorname{mx}_{k}(G)$ (k-monochromatic vertex-index $\operatorname{mvx}_{k}(G)$) of G is the maximum number of colors needed such that for each subset $S \subseteq V(G)$ of k vertices, there exists a monochromatic (vertex-monochromatic) S-tree. For $k=2$, Caro and Yuster showed that $m c(G)=m x_{2}(G)=|E(G)|-|V(G)|+2$ for many graphs, but it is not true in general. In this paper, we show that for $k \geq 3, m x_{k}(G)=$ $|E(G)|-|V(G)|+2$ holds for any connected graph G, completely determining the value. However, for the vertex-version $m v x_{k}(G)$ things will change tremendously. We show that for a given connected graph G, and a positive integer L with $L \leq$ $|V(G)|$, to decide whether $\operatorname{mvx}_{k}(G) \geq L$ is NP-complete for each integer k such that $2 \leq k \leq|V(G)|$. Finally, we obtain some Nordhaus-Gaddum-type results for the k-monochromatic vertex-index.

Keywords: k-monochromatic index, k-monochromatic vertex-index, NP-complete, Nordhaus-Gaddum-type result.

AMS subject classification 2010: 05C15, 05C40, 68Q17, 68Q25, 68R10.

1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We follow the terminology and notation of Bondy and Murty [1]. A path in an edge-colored graph H is a monochromatic path if all the edges of the path are colored with the same color. The

[^0]graph H is called monochromatically connected if for any two vertices of H there exists a monochromatic path connecting them. An edge-coloring of H is a monochromatically connecting coloring (MC-coloring) if it makes H monochromatically connected. How colorful can an MC-coloring be? This question is the natural opposite of the well-studied problem of rainbow connecting coloring $[4,6,10,12,13]$, where in the latter we seek to find an edge-coloring with minimum number of colors so that there is a rainbow path joining any two vertices. For a connected graph G, the monochromatic connection number of G, denoted by $m c(G)$, is the maximum number of colors that are needed in order to make G monochromatically connected. An extremal MC-coloring is an MC-coloring that uses $m c(G)$ colors. These above concepts were introduced by Caro and Yuster in [5]. They obtained some nontrivial lower and upper bounds for $m c(G)$. Later, Cai et al. in [2] obtained two kinds of Erdős-Gallai-type results for $m c(G)$.

In this paper, we generalize the concept of a monochromatic path to a monochromatic tree. In this way, we can give the monochromatic connection number a natural generalization. A tree T in an edge-colored graph H is called a monochromatic tree if all the edges of T have the same color. For an $S \subseteq V(H)$, a monochromatic S-tree in H is a monochromatic tree of H containing the vertices of S. Given an integer k with $2 \leq k \leq|V(H)|$, the graph H is called k-monochromatically connected if for any set S of k vertices of H, there exists a monochromatic S-tree in H. For a connected graph G and a given integer k such that $2 \leq k \leq|V(G)|$, the k-monochromatic index $m x x_{k}(G)$ of G is the maximum number of colors that are needed in order to make $G k$-monochromatically connected. An edge-coloring of G is called a k-monochromatically connecting coloring ($M X_{k}$-coloring) if it makes $G k$-monochromatically connected. An extremal $M X_{k}$-coloring is an $M X_{k^{-}}$ coloring that uses $m x_{k}(G)$ colors. When $k=2$, we have $m x_{2}(G)=m c(G)$. Obviously, we have $m x_{|V(G)|}(G) \leq \ldots \leq m x_{3}(G) \leq m c(G)$.

There is a vertex version of the monochromatic connection number, which was introduced by Cai et al. in [3]. A path in a vertex-colored graph H is a vertex-monochromatic path if its internal vertices are colored with the same color. The graph H is called monochromatically vertex-connected, if for any two vertices of H there exists a vertexmonochromatic path connecting them. For a connected graph G, the monochromatic vertex-connection number of G, denoted by $\operatorname{mvc}(G)$, is the maximum number of colors that are needed in order to make G monochromatically vertex-connected. A vertex-coloring of G is a monochromatically vertex-connecting coloring (MVC-coloring) if it makes G
monochromatically vertex-connected. An extremal MVC-coloring is an MVC-coloring that uses $\operatorname{mvc}(G)$ colors. This k-monochromatic index can also have a natural vertex version. A tree T in a vertex-colored graph H is called a vertex-monochromatic tree if its internal vertices have the same color. For an $S \subseteq V(H)$, a vertex-monochromatic S-tree in H is a vertex-monochromatic tree of H containing the vertices of S. Given an integer k with $2 \leq k \leq|V(H)|$, the graph H is called k-monochromatically vertexconnected if for any set S of k vertices of H, there exists a vertex-monochromatic S-tree in H. For a connected graph G and a given integer k such that $2 \leq k \leq|V(G)|$, the k-monochromatic vertex-index $\operatorname{mvx}_{k}(G)$ of G is the maximum number of colors that are needed in order to make $G k$-monochromatically vertex-connected. A vertex-coloring of G is called a k-monochromatically vertex-connecting coloring ($M V X_{k}$-coloring) if it makes $G k$-monochromatically vertex-connected. An extremal $M V X_{k}$-coloring is an $M V X_{k^{-}}$ coloring that uses $m v x_{k}(G)$ colors. When $k=2$, we have $m v x_{2}(G)=m v c(G)$. Obviously, we have $m v x_{|V(G)|}(G) \leq \ldots \leq m v x_{3}(G) \leq m v c(G)$.

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of the values of a parameter for a graph and its complement. The Nordhaus-Gaddum-type is given because Nordhaus and Gaddum [14] first established the following inequalities for the chromatic numbers of graphs: If G and \bar{G} are complementary graphs on n vertices whose chromatic numbers are $\chi(G)$ and $\chi(\bar{G})$, respectively, then $2 \sqrt{n} \leq$ $\chi(G)+\chi(\bar{G}) \leq n+1$. Since then, many analogous inequalities of other graph parameters are concerned, such as domination number [9], Wiener index and some other chemical indices [15], rainbow connection number [7], and so on.

For $k=2$, Caro and Yuster [5] showed that $m c(G)=m x_{2}(G)=|E(G)|-|V(G)|+2$ for many graphs, but it is not true in general. In this paper, we show that for $k \geq 3$, $m x_{k}(G)=|E(G)|-|V(G)|+2$ holds for any connected graph G, completely determining the value. However, for the vertex-version $m v x_{k}(G)$ things will change tremendously. We show that for a given a connected graph G, and a positive integer L with $L \leq|V(G)|$, to decide whether $m v x_{k}(G) \geq L$ is NP-complete for each integer k such that $2 \leq k \leq|V(G)|$. Finally, we obtain some Nordhaus-Gaddum-type results for the k-monochromatic vertexindex.

2 Determining $m x_{k}(G)$

Let G be a connected graph with n vertices and m edges. In this section, we mainly study $m x_{k}(G)$ for each k with $3 \leq k \leq n$. A straightforward lower bound for $m x_{k}(G)$ is $m-n+2$. Just give the edges of a spanning tree of G with one color, and give each of the remaining edges a distinct new color. A property of an extremal $M X_{k}$-coloring is that the set of edges of each color induces a tree for any k with $3 \leq k \leq n$. In fact, if an $M X_{k}$-coloring contains a monochromatic cycle, we can choose any edge of this cycle and give it a new color while still maintaining an $M X_{k}$-coloring; if the subgraph induced by the edges with a given color is disconnected, then we can give the edges of one component with a new color while still maintaining an $M X_{k}$-coloring for each k with $3 \leq k \leq n$. Then, we use color tree T_{c} to denote the tree consisting of the edges colored with c. The color c is called nontrivial if T_{c} has at least two edges; otherwise c is called trivial. We now introduce the definition of a simple extremal $M X_{k}$-coloring, which is generalized of a simple extremal MC-coloring defined in [5].

Call an extremal $M X_{k}$-coloring simple for a k with $3 \leq k \leq n$, if for any two nontrivial colors c and d, the corresponding T_{c} and T_{d} intersect in at most one vertex. The following lemma shows that a simple extremal $M X_{k}$-coloring always exists.

Lemma 2.1. Every connected graph G on n vertices has a simple extremal $M X_{k}$-coloring for each k with $3 \leq k \leq n$.

Proof. Let f be an extremal $M X_{k}$-coloring with the most number of trivial colors for each k with $3 \leq k \leq n$. Suppose f is not simple. By contradiction, assume that c and d are two nontrivial colors such that T_{c} and T_{d} contain p common vertices with $p \geq 2$. Let $H=T_{c} \cup T_{d}$. Then, H is connected. Moreover, $|V(H)|=\left|V\left(T_{c}\right)\right|+\left|V\left(T_{d}\right)\right|-p$, and $|E(H)|=\left|V\left(T_{c}\right)\right|+\left|V\left(T_{d}\right)\right|-2$. Now color a spanning tree of H with c, and give each of the remaining $p-1$ edges of H distinct new colors. The new coloring is also an $M X_{k}$-coloring for each k with $3 \leq k \leq n$. If $p>2$, then the new coloring uses more colors than f, contradicting that f is extremal. If $p=2$, then the new coloring uses the same number of colors as f but more trivial colors, contracting that f contains the most number of trivial colors.

By using this lemma, we can completely determine $m x_{k}(G)$ for each k with $3 \leq k \leq n$.

Theorem 2.2. Let G be a connected graph with n vertices and m edges, then $m x_{k}(G)=$ $m-n+2$ for each k with $3 \leq k \leq n$.

Proof. Let f be a simple extremal $M X_{3}$-coloring of G. Choose a set S of 3 vertices of G. Then, there exists a monochromatic S-tree in G. Since $|S|=3$, then this monochromatic S-tree is contained in some nontrivial color tree T_{c}. Suppose that the color tree T_{c} is not a spanning tree of G. Choose $v \notin V\left(T_{c}\right)$, and $\{u, w\} \subseteq V\left(T_{c}\right)$. Let $S^{\prime}=\{v, u, w\}$. Then, there exists a monochromatic S^{\prime}-tree in G. Since $\left|S^{\prime}\right|=3$, then this monochromatic S^{\prime} tree is contained in some nontrivial color tree T_{d}. Moreover, since $v \notin V\left(T_{c}\right)$, then $c \neq d$. But now, $\{u, w\} \in V\left(T_{c}\right) \cap V\left(T_{d}\right)$, contracting that f is simple. Then, we have that T_{c} is a spanning tree of G. Hence, $m-n+2 \leq m x_{n}(G) \leq \ldots \leq m x_{3}(G) \leq m-n+2$. The theorem thus follows.

3 Hardness results for computing $\operatorname{mvx}_{k}(G)$

Though we can completely determine the value of $m x_{k}(G)$ for each k with $3 \leq k \leq n$, for the vertex version it is difficult to compute $\operatorname{mvx}_{k}(G)$ for any k with $2 \leq k \leq n$. In this section, we will show that given a connected graph $G=(V, E)$, and a positive integer L with $L \leq|V|$, to decide whether $\operatorname{mvx}_{k}(G) \geq L$ is NP-complete for each k with $2 \leq k \leq|V|$.

We first introduce some definitions. A subset $D \subseteq V(G)$ is a dominating set of G if every vertex not in D has a neighbor in D. If the subgraph induced by D is connected, then D is called a connected dominating set. The dominating number $\gamma(G)$, and the connected dominating number $\gamma_{c}(G)$, are the cardinalities of a minimum dominating set, and a minimum connected dominating set, respectively. A graph G has a connected dominating set if and only if G is connected. The problem of computing $\gamma_{c}(G)$ is equivalent to the problem of finding a spanning tree with the most number of leaves, because a vertex subset is a connected dominating set if and only if its complement is contained in the set of leaves of a spanning tree. Let G be a connected graph on n vertices where $n \geq 3$. Note that the problem of computing $\operatorname{mvx}_{n}(G)$ is also equivalent to the problem of finding a spanning tree with the most number of leaves. In fact, let $T_{\max }$ be a spanning tree of G with the most number of leaves, and $l\left(T_{\max }\right)$ be the number of leaves in $T_{\text {max }}$. Then, $m v x_{n}(G)=l\left(T_{\text {max }}\right)+1=n-\gamma_{c}(G)+1$ for $n \geq 3$. For convenience, suppose that all the
graphs in this section have at least 3 vertices.
Now we introduce a useful lemma. For convenience, call a tree T with vertex-color c if the internal vertices of T are colored with c.

Lemma 3.1. Let G be a connected graph on n vertices with a cut-vertex v_{0}. Then, $\operatorname{mvc}(G)=l\left(T_{0}\right)+1$, where T_{0} is a spanning tree of G with the most number of leaves.

Proof. Let f be an extremal $M V C$-coloring of G. Suppose that $f(v)$ is the color of the vertex v, and $f\left(v_{0}\right)=c$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be the components of $G-v_{0}$ where $p \geq 2$. We construct a spanning tree T_{0} of G with vertex-color c as follows. At first, choose any pair $\left(v_{i}, v_{j}\right) \in\left(V\left(G_{i}\right), V\left(G_{j}\right)\right)(i \neq j)$. Since v_{0} is a cut-vertex, then there must exist a $\left\{v_{i}, v_{j}\right\}$ path P containing v_{0} with vertex-color c. Initially, set $T_{0}=P$. Secondly, choose another pair $\left(v_{s}, v_{t}\right) \in\left(V\left(G_{s}\right), V\left(G_{t}\right)\right)(s \neq t)$ such that v_{s} is not in T_{0}. Similarly, there must exist a $\left\{v_{s}, v_{t}\right\}$-path P^{\prime} containing v_{0} with vertex-color c. Let x be the first vertex of P^{\prime} that is also in T_{0}, and y be the last vertex of P^{\prime} that is also in T_{0}. Then, reset $T_{0}=T_{0} \cup v_{s} P^{\prime} x \cup y P^{\prime} v_{t}$. Thus, T_{0} is still a tree with vertex-color c now. Repeat the above process until all vertices are contained in T_{0}. Finally, we get a spanning tree T_{0} of G with vertex-color c, thus, we have $\operatorname{mvc}(G) \leq l\left(T_{0}\right)+1$ now. However, $\operatorname{mvc}(G) \geq m v x_{n}(G)=l\left(T_{\max }\right)+1$, where $T_{\max }$ is a spanning tree of G with the most number of leaves. Then, we have $l\left(T_{0}\right)=l\left(T_{\max }\right)$. Hence, it follows that $\operatorname{mvc}(G)=l\left(T_{0}\right)+1$.

Corollary 3.2. Let G be a connected graph on n vertices with a cut-vertex. Then, $\operatorname{mvx}_{k}(G)=l\left(T_{\text {max }}\right)+1$ for each k with $2 \leq k \leq n$, where $T_{\text {max }}$ is a spanning tree of G with the most number of leaves.

Now, we show that the following Problem 0 is NP-complete.
Problem 0: k-monochromatic vertex-index
Instance: Connected graph $G=(V, E)$, a positive integer L with $L \leq|V|$.
Question: Deciding whether $\operatorname{mvx}_{k}(G) \geq L$ for each k with $2 \leq k \leq|V|$.
In order to prove the NP-completeness of Problem 0, we first introduce the following problems.

Problem 1: Dominating Set.
Instance: Graph $G=(V, E)$, a positive integer $K \leq|V|$.

Question: Deciding wether there is a dominating set of size K or less.
Problem 2: CDS of a connected graph containing a cut-vertex.
Instance: Connected graph $G=(V, E)$ with a cut-vertex, a positive integer K with $K \leq|V|$.

Question: Deciding wether there is a connected dominating set of size K or less.
The NP-completeness of Problem 1 is a known result in [8]. In the following, we will reduce Problem 1 to Problem 2 polynomially.

Lemma 3.3. Problem $1 \preceq$ Problem 2.

Proof. Given a graph G with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E, we construct a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows:

$$
\begin{aligned}
& V^{\prime}=V \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\{x, y\} \\
& E^{\prime}=E \cup E_{1} \cup E_{2} \\
& E_{1}=\left\{u_{i} v: \text { if } v=v_{i} \text { or } v_{i} v \text { is an edge in } G \text { for } 1 \leq i \leq n\right\} \\
& E_{2}=\left\{x u_{i}: 1 \leq i \leq n\right\} \cup\{x y\}
\end{aligned}
$$

It is easy to check that G^{\prime} is connected with a cut-vertex x. In the following, we will show that G contains a dominating set of size K or less if and only if G^{\prime} contains a connected dominating set of size $K+1$ or less. On one hand, suppose w.l.o.g that G contains a dominating set $D=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}, t \leq K$. Let $D^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\} \cup\{x\}$. Then, it is easy to check that D^{\prime} is a connected dominating set of G^{\prime} and $\left|D^{\prime}\right| \leq K+1$. On the other hand, suppose that G^{\prime} contains a connected dominating set D^{\prime} of size $K+1$ or less. Since x is a cut-vertex of G^{\prime}, then $x \in D^{\prime}$. For $1 \leq i \leq n$, if $u_{i} \in D^{\prime}$ or $v_{i} \in D^{\prime}$, then put v_{i} in D. It is easy to check that D is a dominating set of G and $|D| \leq K$.

Theorem 3.4. Problem 0 is NP-complete.

Proof. Let $G=(V, E)$ be a connected graph with a cut-vertex, and K a positive integer with $K \leq|V|$. Recall that $\gamma_{c}(G) \leq K$ if and only if $\operatorname{mvx}_{k}(G)=l\left(T_{\text {max }}\right)+1=|V|-$ $\gamma_{c}(G)+1 \geq|V|-K+1$ for $2 \leq k \leq|V|$, where $T_{\max }$ is a spanning tree of G with the most leaves by Corollary 3.2. Then, given a connected graph $G=(V, E)$ with a cut-vertex, and a positive integer L with $L \leq|V|$, to decide whether $m v x_{k}(G) \geq L$ is NP-complete for each k with $2 \leq k \leq|V|$ by Lemma 3.3. Moreover, Problem 0 is NP-complete.

Fig. 1: The graph F_{1} with $\gamma_{c}\left(F_{1}\right)=\gamma_{c}\left(\overline{F_{1}}\right)=3$.

Corollary 3.5. Let G be a connected graph on n vertices. Then, computing $m v x_{k}(G)$ is $N P$-hard for each k with $2 \leq k \leq n$.

4 Nordhaus-Gaddum-type results for $m v x_{k}$

Suppose that both G and \bar{G} are connected graphs on n vertices. Now for $n=4$, we have $G=\bar{G}=P_{4}$. It is easy to check that $m v x_{k}\left(P_{4}\right)+m v x_{k}\left(\overline{P_{4}}\right)=6$ for each k with $2 \leq k \leq 4$. For $k=2$, Cai et al. [3] proved that for $n \geq 5, n+3 \leq \operatorname{mvc}(G)+\operatorname{mvc}(\bar{G}) \leq 2 n$, and the bounds are sharp. Then, in the following we suppose that $n \geq 5$ and $3 \leq k \leq n$.

We first consider the lower bound of $\operatorname{mvx}_{k}(G)+m v x_{k}(\bar{G})$ for each k with $3 \leq k \leq n$. Now we introduce some useful lemmas.

Lemma 4.1. [11] If both G and \bar{G} are connected graphs on n vertices, then $\gamma_{c}(G)+$ $\gamma_{c}(\bar{G})=n+1$ if and only if G is the cycle C_{5}. Moreover, if G is not C_{5}, then $\gamma_{c}(G)+$ $\gamma_{c}(\bar{G}) \leq n$ with equality if and only if $\{G, \bar{G}\}=\left\{C_{n}, \overline{C_{n}}\right\}$ for $n \geq 6$, or $\{G, \bar{G}\}=\left\{P_{n}, \overline{P_{n}}\right\}$ for $n \geq 4$, or $\{G, \bar{G}\}=\left\{F_{1}, \overline{F_{1}}\right\}$, where F_{1} is the graph represented in Fig.1.

Lemma 4.2. [3] Let C_{n} be a cycle on n vertices. Then,

$$
\operatorname{mvc}\left(C_{n}\right)= \begin{cases}n & n \leq 5 \\ 3 & n \geq 6\end{cases}
$$

Recall that a vertex-monochromatic S-tree is a vertex-monochromatic tree containing S. For convenience, if the vertex-monochromatic S-tree is a star (with the center v), we use S-star (S_{v}-star) to denote this vertex-monochromatic S-tree. For two subsets $U, W \subseteq V(G)$, we use $U \sim W$ to denote that any vertex in U is adjacent with any vertex in W. If $U=\{x\}$, we use $x \sim W$ instead of $\{x\} \sim W$.

From Lemma 4.1, we have $m v x_{k}\left(C_{n}\right)+m v x_{k}\left(\overline{C_{n}}\right) \geq m v x_{n}\left(C_{n}\right)+m v x_{n}\left(\overline{C_{n}}\right)=2 n-$ $\left(\gamma_{c}\left(C_{n}\right)+\gamma_{c}\left(\overline{C_{n}}\right)\right)+2 \geq n+2$ for $n \geq 6$ and k with $3 \leq k \leq n$. It is easy to check that $\operatorname{mvx}_{k}\left(C_{n}\right)=3$ for $n \geq 6$ and k with $3 \leq k \leq n$ by Lemma 4.2. Then, we have $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right) \geq n-1$ for $n \geq 6$ and k with $3 \leq k \leq n$. Now we introduce the following lemma.

Lemma 4.3. For $n \geq 6$, if n is odd, then $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right)=n$ for k with $3 \leq k \leq \frac{n-1}{2}$, and $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right)=n-1$ for k with $\frac{n+1}{2} \leq k \leq n$; if $n=4$ t, then $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right)=n$ for k with $3 \leq k \leq \frac{n}{2}-1$, and $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right)=n-1$ for k with $\frac{n}{2} \leq k \leq n$; if $n=4 t+2$, then $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right)=n$ for k with $3 \leq k \leq \frac{n}{2}$, and $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right)=n-1$ for k with $\frac{n}{2}+1 \leq k \leq n$.

Proof. Suppose that $V\left(C_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, and the clockwise permutation sequence is $v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}$ in C_{n}. Let f be an extremal $M V X_{k}$-coloring of $\overline{C_{n}}$ for each k with $3 \leq k \leq n$. Suppose first that n is odd. Let $S=\left\{v_{i}: i \equiv 0\right.$ or $\left.1(\bmod 4)\right\}$. Then, $|S|=$ $\frac{n+1}{2}$. It is easy to check that there exists no S-star in $\overline{C_{n}}$. Then, we have $m v x_{k}\left(\overline{C_{n}}\right)<n$ for k with $\frac{n+1}{2} \leq k \leq n$. Hence, $\operatorname{mvx}_{k}\left(\overline{C_{n}}\right)=n-1$ for k with $\frac{n+1}{2} \leq k \leq n$. For k with $3 \leq k \leq \frac{n-1}{2}$, we will show that $m v x_{k}\left(\overline{C_{n}}\right)=n$. In other words, for any set S of k vertices of $\overline{C_{n}}$, there exists an S-star in $\overline{C_{n}}$. We first show that $m v x_{k}\left(\overline{C_{n}}\right)$ for $k=\frac{n-1}{2}$. By contradiction, assume that $m v x_{k}\left(\overline{C_{n}}\right)<n$ for $k=\frac{n-1}{2}$. Suppose that S is a set of k vertices such that there exists no S-star in $\overline{C_{n}}$. Note that the vertex-induced subgraph $C_{n}[S]$ consists of some disjoint paths $\left\{P_{v_{i_{1}} v_{j_{1}}}, P_{v_{i_{2}} v_{j_{2}}}, \ldots, P_{v_{i_{p}} v_{j_{p}}}\right\}$ where $\left\{v_{i_{q}}, v_{j_{q}}\right\}$ denote the ends of $P_{v_{i_{q}} v_{j_{q}}}$ such that the vertex-sequence $v_{i_{q}}$ to $v_{j_{q}}$ along $P_{v_{i_{q}} v_{j_{q}}}$ is in clockwise direction in C_{n} for each q with $1 \leq q \leq p$.

Claim 1: Each $P_{v_{i_{q}} v_{j q}}$ contains at least 2 vertices for each q with $1 \leq q \leq p$.
Proof of Claim 1: By contradiction, assume that $P_{v_{i_{q}} v_{j q}}=v$ for some $v \in V\left(C_{n}\right)$. Since $\left\{P_{v_{i_{1}} v_{j_{1}}}, P_{v_{i_{2}} v_{j_{2}}}, \ldots, P_{v_{i_{p}} v_{j_{p}}}\right\}$ are disjoint paths in C_{n}, then $v \sim S \backslash\{v\}$ in $\overline{C_{n}}$. Hence, there exists an S_{v}-star in $\overline{C_{n}}$, a contradiction.

Consider $\left\{P_{v_{i_{1}} v_{j_{1}}}, P_{v_{i_{2}} v_{j_{2}}}, \ldots, P_{v_{i_{p}} v_{j_{p}}}\right\}$ in C_{n}. Suppose w.l.o.g that the clockwise permutation sequence of these paths is $P_{v_{i_{1}} v_{j_{1}}}, P_{v_{i_{2}} v_{j_{2}}}, \ldots, P_{v_{i_{p}} v_{j_{p}}}, P_{v_{i_{p+1}} v_{j_{p+1}}}=P_{v_{i_{1}} v_{j_{1}}}$ in C_{n}. For any two successive paths $P_{v_{i_{q}} v_{j q}}$ and $P_{v_{i_{q+1}} v_{j_{q+1}}}$ where $1 \leq q \leq p$, we have the following claim.

Claim 2: There are at most 2 vertices between $\left\{v_{j_{q}}, v_{i_{q+1}}\right\}$ in clockwise direction in C_{n} for each q with $1 \leq q \leq p$.

Proof of Claim 2: By contradiction, assume that there are at least 3 vertices $\left\{v_{r-1}, v_{r}, v_{r+1}\right\}$, where the subscript is subject to modulo n, between $\left\{v_{j_{q}}, v_{i_{q+1}}\right\}$ in clockwise direction in C_{n}. Now, we have $v_{r} \sim S$ in $\overline{C_{n}}$. Then, there exists an $S_{v_{r}}$-star in $\overline{C_{n}}$, a contradiction.

If $n=4 t+1$, then $k=2 t$. Now, we have $p \leq\left\lfloor\frac{k}{2}\right\rfloor=t$ by Claim 1. Then, $\left|V\left(C_{n}\right)\right| \leq$ $k+2 p \leq n-1<n$ by Claim 2, a contradiction. If $n=4 t+3$, then $k=2 t+1$. Now, we have $p \leq\left\lfloor\frac{k}{2}\right\rfloor=t$ by Claim 1. Then, $\left|V\left(C_{n}\right)\right| \leq k+2 p \leq n-2<n$ by Claim 2, a contradiction. Hence, if n is odd, then $n=m v x_{\frac{n-1}{2}}\left(\overline{C_{n}}\right) \leq \ldots m v x_{4}\left(\overline{C_{n}}\right) \leq m v x_{3}\left(\overline{C_{n}}\right) \leq n$. The proof for the case $n=4 t$ or $n=4 t+2$ is similar. We omit their details.

Theorem 4.4. Suppose that both G and \bar{G} are connected graphs on n vertices. For $n=5$, $m v x_{k}(G)+m v x_{k}(\bar{G}) \geq 6$ for k with $3 \leq k \leq 5$. For $n=6, \operatorname{mvx}_{k}(G)+m v x_{k}(\bar{G}) \geq 8$ for k with $3 \leq k \leq 6$. For $n \geq 7$, if n is odd, then $\operatorname{mvx}_{k}(G)+\operatorname{mvx}_{k}(\bar{G}) \geq n+3$ for k with $3 \leq k \leq \frac{n-1}{2}$, and $m v x_{k}(G)+m v x_{k}(\bar{G}) \geq n+2$ for k with $\frac{n+1}{2} \leq k \leq n$; if $n=4 t$, then $m v x_{k}(G)+m v x_{k}(\bar{G}) \geq n+3$ for k with $3 \leq k \leq \frac{n}{2}-1$, and $m v x_{k}(G)+m v x_{k}(\bar{G}) \geq n+2$ for k with $\frac{n}{2} \leq k \leq n$; if $n=4 t+2$, then $\operatorname{mvx}_{k}(G)+m v x_{k}(\bar{G}) \geq n+3$ for k with $3 \leq k \leq \frac{n}{2}$, and $\operatorname{mvx}_{k}(G)+\operatorname{mvx}_{k}(\bar{G}) \geq n+2$ for k with $\frac{n}{2}+1 \leq k \leq n$. Moreover, all the above bounds are sharp.

Proof. For $n=5$, if $G=\bar{G}=C_{5}$, then it is easy to check that $2 m v x_{k}\left(C_{5}\right)=6$ for k with $3 \leq k \leq 5$; if $G \neq C_{5}$, then $\operatorname{mvx}_{k}(G)+\operatorname{mvx}_{k}(\bar{G}) \geq 7$ for k with $3 \leq k \leq 5$ by Lemma 4.1. For $n \geq 6$, we have $\operatorname{mvx}_{k}(G)+m v x_{k}(\bar{G}) \geq m v x_{n}(G)+m v x_{n}(\bar{G})=n+2$ for k with $3 \leq k \leq n$ with equality if and only if $\{G, \bar{G}\}=\left\{C_{n}, \overline{C_{n}}\right\}$, or $\{G, \bar{G}\}=\left\{P_{n}, \overline{P_{n}}\right\}$, or $\{G, \bar{G}\}=\left\{F_{1}, \overline{F_{1}}\right\}$, where F_{1} is the graph represented in Fig. 1 by Lemma 4.1. For $n \geq 6$, it is easy to check that $m v x_{k}\left(C_{n}\right)=m v x_{k}\left(P_{n}\right)=3$ for k with $3 \leq k \leq n$ by Lemma 4.2. Then, we have $m v x_{k}\left(P_{n}\right)+m v x_{k}\left(\overline{P_{n}}\right) \geq \operatorname{mvx}_{k}\left(C_{n}\right)+m v x_{k}\left(\overline{C_{n}}\right)$ for k with $3 \leq k \leq n$. Furthermore, for $n=6$, it is easy to check that $\operatorname{mvx}_{k}\left(F_{1}\right)+\operatorname{mvx}_{k}\left(\overline{F_{1}}\right)=8$ for k with $3 \leq k \leq 6$. Thus, the theorem follows for $n \geq 6$ by Lemma 4.3.

Now we consider the upper bound of $m v x_{k}(G)+m v x_{k}(\bar{G})$ for each k with $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n$. For convenience, we use $d_{G}(v)$ and $N_{G}(v)$ to denote the degree and the neighborhood of a vertex v in G, respectively. For any two vertices $u, v \subseteq V(G)$, we use $d_{G}(u, v)$ to denote the distance between u and v in G. Note that a straightforward upper bound of $\operatorname{mvx}_{k}(G)$ is that $\operatorname{mvx}_{k}(G) \leq \operatorname{mvc}(G) \leq n-\operatorname{diam}(G)+2$ where $\operatorname{diam}(G)$ is the diameter of G for each k with $3 \leq k \leq n$. Next we introduce some useful lemmas.

Lemma 4.5. Let $K_{n_{1}, n_{2}}$ be a complete bipartite graph such that $n=n_{1}+n_{2}$, and $n_{1}, n_{2} \geq$ 2. Let $G=K_{n_{1}, n_{2}}-e$, where e is an edge of $K_{n_{1}, n_{2}}$. Then, $m v x_{k}(G)+m v x_{k}(\bar{G})=2 n-2$ for $3 \leq k \leq n$.

Proof. It is easy to check that $\operatorname{diam}(G)=3$, and $\operatorname{diam}(\bar{G})=3$. Then, we have $\operatorname{mvc}(G)+$ $\operatorname{mvc}(\bar{G}) \leq 2 n-2$. It is also easy to check that both G and \bar{G} contain a double star as a spanning tree. Then, we have $m v x_{n}(G)+m v x_{n}(\bar{G}) \geq 2 n-2$. Hence, the lemma follows by the fact that $m v x_{n}(G) \leq \ldots \leq m v x_{3}(G) \leq m v c(G)$.

Lemma 4.6. If $k=\left\lceil\frac{n}{2}\right\rceil$, then $m v x_{k}(G)+m v x_{k}(\bar{G}) \leq 2 n-2$ for $n \geq 5$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Since \bar{G} is connected, then $\Delta(G) \leq n-2$. Suppose first that $m v x_{k}=n$, and f is an extremal $M V X_{k}$-coloring of G. Then, for any set S of k vertices of G, there exists an S-star in G. This also implies that $\Delta(G) \geq k-1$.

Case 1: $\Delta(G) \geq n-k+1$.
Suppose w.l.o.g that $d_{G}\left(v_{1}\right)=\Delta(G)$, and $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{3}, \ldots, v_{\Delta+1}\right\}$. Let $S=$ $\left\{v_{1}, v_{\Delta+2}, \ldots, v_{n-1}, v_{n}\right\}$. Since $|S|=n-\Delta(G) \leq k-1<k$, then there exists an S_{v}-star in G. Moreover, since $v_{1} \nsim\left\{v_{\Delta+2}, \ldots, v_{n-1}, v_{n}\right\}$ in G, then $v \in N_{G}\left(v_{1}\right)$. Suppose w.l.o.g that $v=v_{2}$. Then, we have $d_{\bar{G}}\left(v_{1}, v_{2}\right) \geq 3$. Since $d_{\bar{G}}\left(v_{1}, v_{2}\right) \geq 3$, then $\operatorname{mvx}_{k}(\bar{G}) \leq$ $n-\operatorname{diam}(\bar{G})+2 \leq n-1$. Suppose $\operatorname{mvx}_{k}(\bar{G})=n-1$. Then, $\operatorname{diam}(\bar{G})=3$. Let g be an extremal $M V X_{k}$-coloring of \bar{G}. Note that if \bar{G} is k-monochromatically vertexconnected, it is also monochromatically vertex-connected. Since $m v x_{k}(\bar{G})=n-1$, then there exists a vertex-monochromatic path $P=v_{1} x y v_{2}$ of length 3 in \bar{G} such that $x \in$ $\left\{v_{\Delta+2}, \ldots, v_{n-1}, v_{n}\right\}$, and $y \in N_{G}\left(v_{1}\right) \backslash\left\{v_{2}\right\}$. Suppose w.l.o.g that $P=v_{1} v_{\Delta+2} v_{\Delta+1} v_{2}$. This also implies that $v_{\Delta+1} \nsim\left\{v_{2}, v_{\Delta+2}\right\}$ in G. Let $S^{\prime}=\left\{v_{1}, v_{\Delta+1}, v_{\Delta+2}, \ldots, v_{n}\right\}$ now. Since $\left|S^{\prime}\right|=n-\Delta(G)+1 \leq k$, then there exists an $S_{v^{\prime}}^{\prime}$-star in G. Moreover, since $v_{1} \nsim\left\{v_{\Delta+2}, \ldots, v_{n-1}, v_{n}\right\}$ and $v_{\Delta+1} \nsim\left\{v_{2}, v_{\Delta+2}\right\}$ in G, then $v^{\prime} \in N_{G}\left(v_{1}\right) \backslash\left\{v_{2}, v_{\Delta+1}\right\}$. Now, we have $d_{\bar{G}}\left(v_{1}, v^{\prime}\right)=3$. Since $\operatorname{mvx}_{k}(\bar{G})=n-1$, then $\left\{v_{\Delta+1}, v_{\Delta+2}\right\}$ are the only two vertices with the same color in \bar{G}. But now, since $v^{\prime} \nsim\left\{v_{\Delta+1}, v_{\Delta+2}\right\}$ in \bar{G}, then there exists no vertex-monochromatic path connecting $\left\{v_{1}, v^{\prime}\right\}$ in \bar{G}, a contradiction. Hence, we have that $m v x_{k}(\bar{G}) \leq n-2$, and $m v x_{k}(G)+m v x_{k}(\bar{G}) \leq 2 n-2$.

Case 2: $\Delta(G) \leq n-k$.
Since $k=\left\lceil\frac{n}{2}\right\rceil$, and $\Delta(G) \geq k-1$, then $\left\lceil\frac{n}{2}\right\rceil-1 \leq \Delta(G) \leq n-\left\lceil\frac{n}{2}\right\rceil$.

If n is odd, then $\Delta(G)=\frac{n-1}{2}=k-1$. Suppose w.l.o.g that $d_{G}\left(v_{1}\right)=\Delta(G)$, and $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{3}, \ldots, v_{k}\right\}$. Let $S=\left\{v_{1}, v_{k+1}, \ldots, v_{n}\right\}$. Since $|S|=n-k+1=k$, then there exists an S_{v}-star in G. Moreover, since $v_{1} \nsim\left\{v_{k+1}, \ldots, v_{n-1}, v_{n}\right\}$ in G, then v is not in S. But now, $d_{G}(v) \geq|S|=k>\Delta(G)$, a contradiction.

If n is even, then $\Delta(G)=\frac{n}{2}-1$ or $\frac{n}{2}$. Suppose w.l.o.g that $d_{G}\left(v_{1}\right)=\Delta(G)$, and $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{3}, \ldots, v_{\Delta+1}\right\}$. If $\Delta(G)=\frac{n}{2}-1=k-1$, then let $S=\left\{v_{1}, v_{k+1}, \ldots, v_{n-1}\right\}$. Since $|S|=n-k=k$, then there exists an S_{v}-star in G. Moreover, since $v_{1} \nsim$ $\left\{v_{k+1}, \ldots, v_{n-1}\right\}$ in G, then v is not in S. But now, $d_{G}(v) \geq|S|=k>\Delta(G)$, a contradiction. If $\Delta(G)=\frac{n}{2}=k$, then let $S=\left\{v_{1}, v_{k+2}, \ldots, v_{n}\right\}$. Since $|S|=n-k=k$, then there exists an S_{v}-star in G. Moreover, since $v_{1} \nsim\left\{v_{k+2}, \ldots, v_{n-1}, v_{n}\right\}$ in G, then $v \in N_{G}\left(v_{1}\right)$. Suppose w.l.o.g that $v=v_{2}$. Then, $d_{G}\left(v_{2}\right)=k=\Delta(G)$, and $N_{G}\left(v_{2}\right)=\left\{v_{1}, v_{k+2}, \ldots, v_{n}\right\}$. If $k \geq 4$, then let $S^{\prime}=\left\{v_{1}, v_{2}, v_{k+1}, v_{k+2}\right\}$. Since $\left|S^{\prime}\right| \leq k$, then there exists an $S_{v^{\prime}}^{\prime}$-star in G. But now, since $v_{1} \nsim v_{k+2}$, and $v_{2} \nsim v_{k+1}$ in G, then $v^{\prime} \in N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)=\emptyset$, a contradiction. If $k=3$, then $n=6$. If $\left\{v_{2}, v_{3}, v_{4}\right\} \sim\left\{v_{5}, v_{6}\right\}$ in G, then G contains a complete bipartite spanning subgraph. But now, \bar{G} is not connected, a contradiction. So, suppose w.l.o.g that $v_{4} \nsim v_{5}$ in G. Similarly consider $S^{\prime}=\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{1}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{4}, v_{6}\right\}$, and $\left\{v_{3}, v_{5}, v_{6}\right\}$, respectively. Then, we will have that $v_{3} \sim v_{5}, v_{3} \sim v_{4}, v_{4} \sim v_{6}$, and $v_{5} \sim v_{6}$ in G, respectively. But now, \bar{G} is contained in a cycle C_{6}. Then, $m v x_{3}(\bar{G}) \leq m v x_{3}\left(C_{6}\right)=3$. So, for $n=6$ we have $m v x_{3}(G)+m v x_{3}(\bar{G}) \leq n+3<2 n-2$.

Suppose w.l.o.g that $m v x_{k}(G) \leq n-1$, and $m v x_{k}(\bar{G}) \leq n-1$, respectively. Thus, we also have $m v x_{k}(G)+m v x_{k}(\bar{G}) \leq 2 n-2$.

Theorem 4.7. Suppose that both G and \bar{G} are connected graphs on $n \geq 5$ vertices. Then, for k with $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n$, we have that $m v x_{k}(G)+m v x_{k}(\bar{G}) \leq 2 n-2$, and this bound is sharp.

Proof. For k with $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n$, we have $m v x_{k}(G) \leq m v x_{\left\lceil\frac{n}{2}\right\rceil} \leq 2 n-2$ by Lemma 4.6. From Lemma 4.5, this bound is sharp for k with $\left\lceil\frac{n}{2}\right\rceil \leq k \leq n$.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press, London and Basingstoker, 1976.
[2] Q. Cai, X. Li, D. Wu, Erdös-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. DOI: 10.1007/s10878-015-9938-y, in press.
[3] Q. Cai, X. Li, D. Wu, Some extremal results on the colorful monochromatic vertexconnectivity of a graph, arXiv:1503.08941.
[4] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15(1)(2008), R57.
[5] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311(2011), 1786-1792.
[6] G. Chartrand, G. Johns, K. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
[7] L. Chen, X. Li, H. Lian, Nordhaus-Gaddum-type theorem for rainbow connection number of graphs, Graphs Combin. 29(2013), 1235-1247.
[8] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, New York, 1979.
[9] F. Harary, T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155(1996), 99-105.
[10] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory. 63(3)(2010), 185-191.
[11] R. Laskar, K. Peters, Vertex and edge domination parameters in graphs, Congr. Numer. 48(1985), 291-305.
[12] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs \& Combin. 29(2013), 1-38.
[13] X. Li, Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math. Springer, New York, 2012.
[14] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly. 63(1956), 175-177.
[15] L. Zhang, B. Wu, The Nordhaus-Gaddum-type inequalities of some chemical indices, MATCH Commun. Math. Couput. Chem. 54(2005), 189-194.

[^0]: *Supported by NSFC No. 11371205 and 11531011, " 973 " program No.2013CB834204, and PCSIRT.

