Inverse problem on the Steiner Wiener index*

Xueliang Li ${ }^{1}$, Yaping Mao ${ }^{2}$, Ivan Gutman ${ }^{3}$
${ }^{1}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
${ }^{2}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China
${ }^{3}$ Faculty of Science P. O. Box 60, 34000 Kragujevac, Serbia, and
State University of Novi Pazar, Novi Pazar, Serbia
E-mails: lxl@nankai.edu.cn; maoyaping@ymail.com; gutman@kg.ac.rs

Abstract

The Wiener index $W(G)$ of a connected graph G, introduced by Wiener in 1947, is defined as $W(G)=\sum_{u, v \in V(G)} d_{G}(u, v)$ where $d_{G}(u, v)$ is the distance (length a shortest path) between the vertices u and v in G. For $S \subseteq V(G)$, the Steiner distance $d(S)$ of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index $S W_{k}(G)$ of G is defined as $S W_{k}(G)=\sum_{\substack{S \subseteq V(G) \\|S|=k}} d(S)$. We investigate the following problem: Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order $n \geq k$ such that $S W_{k}(G)=w\left(\right.$ or $\left.S W_{k}(T)=w\right)$? In this paper, we give some solutions to this problem.

Keywords: Distance; Steiner distance; Wiener index; Steiner Wiener index.
AMS subject classification 2010: 05C05; 05C12; 05C35.

[^0]
1 Introduction

All graphs in this paper are assumed to be undirected, finite and simple. We refer to [3] for graph theoretical notation and terminology not specified here. Distance is one of basic concepts of graph theory [4]. If G is a connected graph and $u, v \in V(G)$, then the distance $d(u, v)=d_{G}(u, v)$ between u and v is the length of a shortest path connecting u and v. For more details on this subject, see [13].

The Wiener index $W(G)$ of a connected graph G is defined by

$$
W(G)=\sum_{u, v \in V(G)} d_{G}(u, v) .
$$

Mathematicians have studied this graph invariant since the 1970s in [11]; for details see the surveys [10,33], the recent papers [2,7,14,15,17,20] and the references cited therein. Information on chemical applications of the Wiener index can be found in $[27,28]$.

The Steiner distance of a graph, introduced by Chartrand et al. in [6] in 1989, is a natural and nice generalization of the concept of the classical graph distance. For a graph $G=(V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph $T=\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance $d(S)$ among the vertices of S (or simply the distance of S) is the minimum size of a connected subgraph whose vertex set contains S. Note that if H is a connected subgraph of G such that $S \subseteq V(H)$ and $|E(H)|=d(S)$, then H is a tree. Clearly, $d(S)=\min \{|E(T)|, S \subseteq V(T)\}$, where T is a subtree of G. Furthermore, if $S=\{u, v\}$, then $d(S)=d(u, v)$ is nothing new, but the classical distance between u and v. Clearly, if $|S|=k$, then $d(S) \geq k-1$. For more details on Steiner distance, we refer to $[1,5,6,8,13,26]$.

In [23], we proposed a generalization of the Wiener index concept, using Stein-
er distance. Thus, the k-th Steiner Wiener index $S W_{k}(G)$ of a connected graph G is defined by

$$
S W_{k}(G)=\sum_{\substack{S \subset V(G) \\|S|=k}} d(S)
$$

For $k=2$, the Steiner Wiener index coincides with the ordinary Wiener index. It is usual to consider $S W_{k}$ for $2 \leq k \leq n-1$, but the above definition implies $S W_{1}(G)=0$ and $S W_{n}(G)=n-1$ for a connected graph G of order n. For more details on Steiner Wiener index, we refer to [23-25].

A chemical application of $S W_{k}$ was recently reported in [16].
It should be noted that in the 1990s, Dankelmann et al. in $[8,9]$ studied the average Steiner distance, which is related to our Steiner Wiener index via $S W_{k}(G) /\binom{n}{k}$.

The seemingly elementary question: "which natural numbers are Wiener indices of graphs? was much investigated in the past; see [12,19,21,29,31,32]. We now consider the analogous question for Steiner Wiener indices:

Problem. Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order $n \geq k$ such that $S W_{k}(G)=$ $w\left(\right.$ or $\left.S W_{k}(T)=w\right)$?

For $k=2$, the authors have nice results in [30,32], completely solved a conjecture by Lepović and Gutman [22] for trees, which states that for all but 49 positive integers w one can find a tree with Wiener index w. This is different from our problem for trees, since here we consider graphs or trees with order n.

2 The cases $k=n$ and $k=n-1$

At first, let's consider the case $k=n$.
If G is a connected graph or a tree of order n, then for $k=n, S W_{k}(G)=n-1$. Thus the following result is immediate.

Proposition 2.1 For a positive integer w, there exists a connected graph G or a tree T of order n such that $S W_{n}(G)=w$ or $S W_{n}(T)=w$ if and only if $w=n-1$.

For the case $k=n-1$, we need the following results in [23].

Lemma 2.2 [23] Let T be a tree of order n, possessing p pendant vertices. Then

$$
S W_{n-1}(T)=n(n-1)-p
$$

irrespective of any other structural detail of T.

Lemma 2.3 [23] Let K_{n} be the complete graph of order n, and let k be an integer such that $2 \leq k \leq n$. Then

$$
S W_{k}\left(K_{n}\right)=\binom{n}{k}(k-1) .
$$

Lemma 2.4 [23] Let G be a connected graph of order n, and let k be an integer such that $2 \leq k \leq n$. Then

$$
\binom{n}{k}(k-1) \leq S W_{k}(G) \leq(k-1)\binom{n+1}{k+1}
$$

Moreover, the lower bound is sharp.

From the above results, we can derive the following proposition.

Proposition 2.5 For a positive integer w, there exists a connected graph G of order n such that $S W_{n-1}(G)=w$, if and only if $n^{2}-2 n \leq w \leq n^{2}-n-2$.

Proof. By Lemma 2.4, if G is a connected graph of order n, then

$$
n(n-2) \leq S W_{n-1}(G) \leq(n+1)(n-2)
$$

Therefore, $n^{2}-2 n \leq w \leq n^{2}-n-2$.
By Lemma 2.3, $S W_{n-1}\left(K_{n}\right)=n^{2}-2 n$.

Let T be a tree of order n with p pendant vertices with $2 \leq p \leq n-1$. By Lemma 2.2, $S W_{n-1}(T)=n^{2}-n-p$, and thus for any integer w with $n^{2}-n-(n-$ 1) $\leq w \leq n^{2}-n-2$, there exists a tree T of order n such that $S W_{n-1}(T)=w$.

From the proof of Proposition 2.5 it follows immediately that

Proposition 2.6 For a positive integer w, there exists a tree T of order n such that $S W_{n-1}(T)=w$ if and only if $n^{2}-2 n+1 \leq w \leq n^{2}-n-2$.

3 The case $k=n-2$

Similarly to Lemma 2.2, we can derive the following result.

Lemma 3.1 Let T be a tree of order n, possessing p pendant vertices. Let q be the number of vertices of degree 2 in T that are adjacent to a pendant vertex. Then

$$
\begin{equation*}
S W_{n-2}(T)=\frac{1}{2}\left(n^{3}-2 n^{2}+n-2 n p+2 p-2 q\right) . \tag{3.1}
\end{equation*}
$$

Proof. For any $S \subseteq V$ and $|S|=n-2$, let $\bar{S}=\{u, v\}$. If $d_{T}(u)=d_{T}(v)=1$, then $d_{T}(S)=n-3$, and this case contributes to $S W_{n-2}$ by

$$
\sum_{\substack{u, v \in \bar{S} \\ d_{T}(u)=d_{T}(v)=1}} d_{T}(S)=\binom{p}{2}(n-3) .
$$

If $d_{T}(u) \geq 2$ and $d_{T}(v) \geq 2$, then $d_{T}(S)=n-1$, and this case contributes to $S W_{n-2}$ by

$$
\sum_{\substack{u, v \in \bar{S} \\ d_{T}(u) \geq 2, d_{T}(v) \geq 2}} d_{T}(S)=\binom{n-p}{2}(n-1) .
$$

Suppose that $d_{T}(u)=1$ and $d_{T}(v) \geq 2$. If $d_{T}(u)=1, d_{T}(v)=2$ and $u v \in E(G)$, then $d_{T}(S)=n-3$. If $d_{T}(u)=1, d_{T}(v) \geq 3$ and $u v \in E(T)$, then
$d_{T}(S)=n-2$. If $d_{T}(u)=1, d_{T}(v) \geq 2$ and $u v \notin E(T)$, then $d_{T}(S)=n-2$. Therefore, this case contributes to $S W_{n-2}$ by

$$
\begin{aligned}
\sum_{\substack{u, v \in \tilde{S} \\
d_{T}(u)=1, d_{T}(v) \geq 2}} d_{T}(S) & =\sum_{\substack{u, v \in \bar{S}, u v \in E \in(T) \\
d_{T}(u)=1, d_{T}(v)=2}} d_{T}(S)+\sum_{\begin{array}{c}
u, v \in \mathcal{S}, u v \in E(T) \\
d_{T}(u)=1, d_{T}(v) \geq 3
\end{array}} d_{T}(S)+\sum_{\begin{array}{c}
u, v \in \bar{S}, w v \notin(T) \\
d_{T}(u)=1, d_{T}(v) \geq 2
\end{array}} d_{T}(S) \\
& =q(n-3)+(p-q)(n-2)+p(n-p-1)(n-2) .
\end{aligned}
$$

From the above argument, we have

$$
\begin{aligned}
S W_{n-2}(T) & =\binom{p}{2}(n-3)+\binom{n-p}{2}(n-1)+q(n-3) \\
& +(p-q)(n-2)+p(n-p-1)(n-2) \\
& =\frac{1}{2}\left(n^{3}-2 n^{2}+n-2 n p+2 p-2 q\right) .
\end{aligned}
$$

Li et al. obtained the following sharp lower and upper bounds of $S W_{k}(T)$ for a tree T.

Lemma 3.2 [23] Let T be a tree of order n, and let k be an integer such that $2 \leq k \leq n$. Then

$$
\binom{n-1}{k-1}(n-1) \leq S W_{k}(T) \leq(k-1)\binom{n+1}{k+1}
$$

Moreover, among all trees of order n, the star S_{n} minimizes the Steiner Wiener k-index, whereas the path P_{n} maximizes the Steiner Wiener k-index.

For trees, we have the following result.

Theorem 3.3 For a positive integer w, there exists a tree T of order $n(n \geq 5)$, possessing p pendant vertices, such that $S W_{n-2}(T)=w$ if and only if $w=\frac{1}{2}\left(n^{3}-\right.$ $2 n^{2}+n-2 n p+2 p-2 q$), where q is the number of vertices of degree 2 in T that are adjacent to a pendant vertex, and one of the following holds:
(1) $2 \leq q \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $q \leq p \leq n-q-1$;
(2) $q=1$ and $3 \leq p \leq n-2$;
(3) $q=0$ and $4 \leq p \leq n-1$.

Proof. Suppose that $w=\frac{1}{2}\left(n^{3}-2 n^{2}+n-2 n p+2 p-2 q\right)$, where $0 \leq q \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, $q \leq p \leq n-q-1$. Let $K_{1, p-1}$ be a star of order p, and let v be the center of $K_{1, p-1}$. Then $K_{1, p-1}^{*}$ is a graph obtained from $K_{1, p-1}$ by picking up $q-1$ edges and then replacing each of them by a path of length 2 . Note that $K_{1, p-1}^{*}$ is a subdivision of $K_{1, p-1}$. Let G be a graph obtained by $K_{1, p-1}^{*}$ and a path $P_{n-p-q+2}$ by identifying v and one endvertex of the path. Clearly, G is a tree of order n with p pendant vertices, and there are exactly q vertices of degree 2 in T such that each of them is adjacent to a pendant vertex. From Lemma 3.1, we have $S W_{n-2}(T)=\frac{1}{2}\left(n^{3}-2 n^{2}+n-2 n p+2 p-2 q\right)=w$, as desired.

Conversely, for any tree T of order $n(n \geq 5)$ with p pendant vertices, from Lemma 3.1, $S W_{n-2}(T)=\frac{1}{2}\left(n^{3}-2 n^{2}+n-2 n p+2 p-2 q\right)$. We now show that p, q satisfy one of (1), (2), (3). Clearly, $p \geq 2,0 \leq q \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $q \leq p$.

Claim 1. $p+q \leq n-1$.
Proof of Claim 1. Assume, to the contrary, that $p+q=n$. Then T is path of order n. Since $n \geq 5$, it follows that there exists a vertex of degree 2 having no adjacent pendant vertex, which contradicts to $p+q=n$.

If $q \geq 2$, then it follows from Claim 1 and $q \leq p$ that $q \leq p \leq n-q-1$. If $q=1$, then it follows from Claim 1 that $2 \leq p \leq n-2$. Furthermore, if $p=2$, then T is a path of n. Since $n \geq 5$, it follows that $q=2$, a contradiction. If $q=0$, then it follows from Claim 1 that $2 \leq p \leq n-1$. Furthermore, if $p=2$, then T is a path of n. Since $n \geq 5$, it follows that $q=2$, a contradiction. If $p=3$, then T is a tree of n. Since $n \geq 5$, it follows that $q \geq 1$, a contradiction.

4 The case for general k

For trees, we have the following result.

Theorem 4.1 Let T be a graph obtained from a path P_{t} and a star S_{n-t+1} by identifying a pendant vertex of P_{t} and the center v of S_{n-t+1}, where $1 \leq t \leq n-1$ and $k \leq n$. Then

$$
S W_{k}(T)=t\binom{n-1}{k}-\binom{t}{k+1}-\binom{n}{k+1}+\binom{n-t+1}{k+1}+(k-1)\binom{n}{k} .
$$

Proof. For any $S \subseteq V(T)$ and $|S|=k$, if $S \subseteq V\left(S_{n-t+1}\right)-v$, then $d_{G}(S)=k$. There are $\binom{n-t}{k}$ such subsets, contributing to $S W_{k}$ by $k\binom{n-t}{k}$. If $S \subseteq V\left(P_{t}\right)$, then it contributes to $S W_{k}$ by $(k-1)\binom{t+1}{k+1}$ from Lemma 3.2. Suppose that $S \cap V\left(P_{t}\right) \neq \emptyset$ and $S \cap\left(V\left(S_{n-t+1}\right)-v\right) \neq \emptyset$. Let $\left|S \cap V\left(S_{n-t+1}-v\right)\right|=i$, $\left|S \cap V\left(P_{t}\right)\right|=k-i$ and $P_{t}=u_{1} u_{2} \ldots u_{t}$, where $v=u_{1}$. Without loss of generality, let $S \cap V\left(P_{t}\right)=\left\{u_{j_{1}}, u_{j_{2}}, \ldots, u_{j_{k-i}}\right\}$ where $1 \leq j_{1}<j_{2}<\cdots<j_{k-i} \leq t$. Then $k-i \leq j_{k-i} \leq t$. Let $j_{k-i}=j$. Then $d_{G}(S)=i+j-1$, and $k-i \leq j \leq t$. Once the vertex u_{j} is chosen, we have $\binom{j-2}{k-i-1}$ ways to choose $u_{j_{1}}, u_{j_{2}}, \ldots, u_{j_{k-i-1}}$. In this case, we contribute to $S W_{k}$ by

$$
X=\sum_{i=1}^{k-1}\binom{n-t}{i}\left[\sum_{j=k-i}^{t}\binom{j-1}{k-i-1}(j+i-1)\right]
$$

Since

$$
\begin{aligned}
\binom{j-1}{k-i-1}(j+i-1) & =\binom{j-1}{k-i-1} j+\binom{j-1}{k-i-1}(i-1) \\
& =(k-i)\binom{j}{k-i}+(i-1)\binom{j-1}{k-i-1}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \sum_{j=k-i}^{t}\binom{j-1}{k-i-1}(j+i-1) \\
= & (k-i) \sum_{j=k-i}^{t}\binom{j}{k-i}+(i-1) \sum_{j=k-i}^{t}\binom{j-1}{k-i-1} \\
= & (k-i)\binom{t+1}{k-i+1}+(i-1)\binom{t}{k-i},
\end{aligned}
$$

and hence

$$
\begin{aligned}
& X= \sum_{i=1}^{k-1}\binom{n-t}{i}\left[\sum_{j=k-i}^{t}\binom{j-1}{k-i-1}(j+i-1)\right] \\
&= \sum_{i=1}^{k-1}\binom{n-t}{i}\left[(k-i)\binom{t+1}{k-i+1}+(i-1)\binom{t}{k-i}\right] \\
&= \sum_{i=1}^{k-1}\binom{n-t}{i}(k-i)\binom{t+1}{k-i+1}+\sum_{i=1}^{k-1}\binom{n-t}{i}(i-1)\binom{t}{k-i} \\
&= \sum_{i=1}^{k-1}(k-i)\binom{t}{k-i+1}\binom{n-t}{i}+\sum_{i=1}^{k-1}(k-i)\binom{t}{k-i}\binom{n-t}{i} \\
&+\sum_{i=1}^{k-1}(i-1)\binom{t}{k-i}\binom{n-t}{i} \\
&= \sum_{i=1}^{k-1}(k-i)\binom{t}{k-i+1}\binom{n-t}{i}+(k-1) \sum_{i=1}^{k-1}\binom{t}{k-i}\binom{n-t}{i} \\
&=\sum_{i=1}^{k-1}(k-i)\binom{t}{k-i+1}\binom{n-t}{i}+(k-1)\left[\binom{n}{k}-\binom{t}{k}-\binom{n-t}{k}\right] .
\end{aligned}
$$

Let

$$
Y=\sum_{i=1}^{k-1}(k-i)\binom{t}{k-i+1}\binom{n-t}{i} .
$$

Then

$$
\begin{aligned}
Y= & \sum_{i=1}^{k-1}(k-i+1)\binom{t}{k-i+1}\binom{n-t}{i}-\sum_{i=1}^{k-1}\binom{t}{k-i+1}\binom{n-t}{i} \\
= & t \sum_{i=1}^{k-1}\binom{t-1}{k-i}\binom{n-t}{i}-\sum_{i=1}^{k-1}\binom{t}{k+1-i}\binom{n-t}{i} \\
= & t\left[\binom{n-1}{k}-\binom{t-1}{k}-\binom{n-t}{k}\right] \\
& -\left[\binom{n}{k+1}-\binom{t}{k+1}-t\binom{n-t}{k}-\binom{n-t}{k+1}\right],
\end{aligned}
$$

and hence

$$
\begin{aligned}
& S W_{k}(T) \\
= & (k-1)\binom{t+1}{k+1}+k\binom{n-t}{k}+X \\
= & (k-1)\binom{t+1}{k+1}+k\binom{n-t}{k}+Y+(k-1)\left[\binom{n}{k}-\binom{t}{k}-\binom{n-t}{k}\right] \\
= & (k-1)\binom{t+1}{k+1}+k\binom{n-t}{k}+t\left[\binom{n-1}{k}-\binom{t-1}{k}-\binom{n-t}{k}\right] \\
& -\left[\binom{n}{k+1}-\binom{t}{k+1}-t\binom{n-t}{k}-\binom{n-t}{k+1}\right] \\
& +(k-1)\left[\binom{n}{k}-\binom{t}{k}-\binom{n-t}{k}\right] \\
= & (k-1)\binom{t}{k+1}+(k-1)\binom{t}{k}+k\binom{n-t}{k}+t\binom{n-1}{k}-t\binom{t-1}{k} \\
& -t\binom{n-t}{k}-\binom{n}{k+1}+\binom{t}{k+1}+t\binom{n-t}{k}+\binom{n-t}{k+1} \\
& +(k-1)\binom{n}{k}-(k-1)\binom{t}{k}-(k-1)\binom{n-t}{k}
\end{aligned}
$$

$$
\begin{aligned}
= & (k-1)\binom{t}{k+1}+k\binom{n-t}{k}+t\binom{n-1}{k}-t\binom{t-1}{k} \\
& -\binom{n}{k+1}+\binom{t}{k+1}+\binom{n-t}{k+1}+(k-1)\binom{n}{k}-(k-1)\binom{n-t}{k} \\
= & k\binom{t}{k+1}+\binom{n-t}{k}+t\binom{n-1}{k}-t\binom{t-1}{k}-\binom{n}{k+1}+\binom{n-t}{k+1} \\
& +\left(\begin{array}{l}
k-1
\end{array}\right)\binom{n}{k} \\
= & k\binom{t}{k+1}+t\binom{n-1}{k}-t\binom{t-1}{k}-\binom{n}{k+1}+\binom{n-t+1}{k+1}+(k-1)\binom{n}{k} \\
= & t\binom{n-1}{k}-\binom{t}{k+1}-\binom{n}{k+1}+\binom{n-t+1}{k+1}+(k-1)\binom{n}{k} .
\end{aligned}
$$

The following corollary is immediate from Theorem 4.1.

Corollary 4.2 For a positive integer w, there exists a tree T of order n such that $S W_{k}(T)=w$ if

$$
w=t\binom{n-1}{k}-\binom{t}{k+1}-\binom{n}{k+1}+\binom{n-t+1}{k+1}+(k-1)\binom{n}{k},
$$

where $1 \leq t \leq n-1$ and $k \leq n$.

For general graphs, we have the following.

Theorem 4.3 Let G be a graph obtained from a clique K_{n-r} and a star S_{r+1} by identifying a vertex of K_{n-r} and the center v of S_{r+1}. For $k \leq r \leq n-1-k$,

$$
S W_{k}(G)=(n-1)\binom{n-1}{k-1}-\binom{n-r-1}{k} .
$$

Proof. For any $S \subseteq V(G)$ and $|S|=k$, if $S \subseteq V\left(K_{n-r}\right)$, then $d_{G}(S)=k-1$. There are $\binom{n-r}{k}$ such subsets, contributing to $S W_{k}$ by $(k-1)\binom{n-r}{k}$. If $S \subseteq$ $V\left(S_{r+1}\right)-v$, then $d_{G}(S)=k$. There are $\binom{r}{k}$ such subsets, contributing to $S W_{k}$
by $k\binom{r}{k}$. Suppose that $S \cap V\left(K_{n-r}\right) \neq \emptyset$ and $S \cap\left(V\left(S_{r+1}\right)-v\right) \neq \emptyset$. If $v \in S$, then $d_{G}(S)=k-1$. There are $\binom{n-r-1}{k-x-1}\binom{r}{x}$ such subsets, contributing to $S W_{k}$ by $(k-1) \sum_{x=1}^{k-1}\binom{n-r-1}{k-x-1}\binom{r}{x}$. If $v \notin S$, then $d_{G}(S)=k$. There are $\binom{n-r-1}{k-x}\binom{r}{x}$ such subsets, contributing to $S W_{k}$ by $k \sum_{x=1}^{k-1}\binom{n-r-1}{k-x}\binom{r}{x}$. Then

$$
\begin{aligned}
& S W_{k}(G) \\
= & (k-1)\binom{n-r}{k}+k\binom{r}{k}+(k-1) \sum_{x=1}^{k-1}\binom{n-r-1}{k-x-1}\binom{r}{x} \\
& +k \sum_{x=1}^{k-1}\binom{n-r-1}{k-x}\binom{r}{x} \\
= & (k-1)\binom{n-r}{k}+k\binom{r}{k}+(k-1)\left[\binom{n-1}{k-1}-\binom{n-1-r}{k-1}\right] \\
& +k\left[\binom{n-1}{k}-\binom{n-1-r}{k}-\binom{r}{k}\right] \\
= & (k-1)\binom{n-r}{k}+(k-1)\left[\binom{n-1}{k-1}-\binom{n-1-r}{k-1}\right] \\
& +k\left[\binom{n-1}{k}-\binom{n-1-r}{k}\right] \\
= & (k-1)\binom{n-r}{k}+(n-1)\binom{n-1}{k-1}-(k-1)\binom{n-1-r}{k-1}-k\binom{n-1-r}{k} \\
= & (n-1)\binom{n-1}{k-1}-\binom{n-1-r}{k-1}+(k-1)\binom{n-r-1}{k}-k\binom{n-1-r}{k}
\end{aligned}
$$

as desired.
The following corollary is immediate from Theorems 4.1 and 4.3 .

Corollary 4.4 For a positive integer w, there exists a connected graph G of order n such that $S W_{k}(G)=w$ if w satisfies one of the following conditions:
(1) $w=t\binom{n-1}{k}-\binom{t}{k+1}-\binom{n}{k+1}+\binom{n-t+1}{k+1}+(k-1)\binom{n}{k}$, where $1 \leq t \leq n-1$
and $k \leq n$.
(2) $w=(n-1)\binom{n-1}{k-1}-\binom{n-r-1}{k}$, where $k \leq r \leq n-1-k$ and $k \leq n$.

Acknowledgement. The authors are very grateful to the referees for their valuable comments and suggestions.

References

[1] P. Ali, P. Dankelmann, S. Mukwembi, Upper bounds on the Steiner diameter of a graph, Discrete Appl. Math. 160 (2012) 1845-1850.
[2] E.O.D. Andriantiana, S. Wagner, H. Wang, Maximum Wiener index of trees with given segment sequence, MATCH Commun. Math. Comput. Chem. 75 (2016) 91-104.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[4] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
[5] J. Cáceres, A. Márquez, M.L. Puertas, Steiner distance and convexity in graphs, Eur. J. Combin. 29 (2008) 726-736.
[6] G. Chartrand, O.R. Oellermann, S. Tian, H.B. Zou, Steiner distance in graphs, Časopis Pest. Mat. 114 (1989) 399-410.
[7] L. Chen, X. Li, M. Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph, Eur. J. Comb. 36 (2014) 237-246.
[8] P. Dankelmann, O.R. Oellermann, H.C. Swart, The average Steiner distance of a graph, J. Graph Theory 22 (1996) 15-22.
[9] P. Dankelmann, O.R. Oellermann, H.C. Swart, On the average Steiner distance of certain classes of graphs, Discrete Appl. Math. 79 (1997) 91-103.
[10] A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math. 66 (2001) 211-249.
[11] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czech. Math. J. 26 (1976) 283-296.
[12] J. Fink, B. Lužar, R. Škrekovski, Some remarks on inverse Wiener index problem, Discrete Appl. Math. 160 (2012) 1851-1858.
[13] W. Goddard, O.R. Oellermann, Distance in graphs, in: M. Dehmer (Ed.), Structural Analysis of Complex Networks, Birkhäuser, Dordrecht, 2011, pp. 49-72.
[14] M. Goubko, Minimizing Wiener index for vertex-weighted trees with given weight and degree sequences, MATCH Commun. Math. Comput. Chem. 75 (2016) 3-27.
[15] I. Gutman, R. Cruz, J. Rada, Wiener index of Eulerian graphs, Discrete Appl. Math. 162 (2014) 247-250.
[16] I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015) 1009-1017.
[17] I. Gutman, K. Xu, M. Liu, A congruence relation for Wiener and Szeged indices, Filomat 29 (2015) 1081-1083.
[18] I. Gutman, Y.N. Yeh, The sum of all distances in bipartite graphs, Math. Slovaca 45 (1995) 327-334.
[19] I. Gutman, Y.N. Yeh, J.C. Chen, On the sum of all distances in graphs, Tamkang J. Math. 25 (1986) 83-86.
[20] M. Knor, R. Škrekovski, Wiener index of generalized 4-stars and of their quadratic line graphs, Australas. J. Comb. 58 (2014) 119-126.
[21] M. Krnc, R. Škrekovski, On Wiener inverse interval problem, MATCH Commun. Math. Comput. Chem. 75 (2016) 71-80.
[22] M. Lepović, I. Gutman, A collective property of trees and chemical trees, J. Chem. Inf. Comput. Sci. 38(1998) 823-826.
[23] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36(2)(2016) 455-465.
[24] Y. Mao, Z. Wang, I. Gutman, Steiner Wiener index of graph products, Trans. Combin. 5(3)(2016), 39-50.
[25] Y. Mao, Z. Wang, Y. Xiao, C. Ye, Steiner Wiener index and connectivity of graphs, Utilitas Math., in press.
[26] O.R. Oellermann, S. Tian, Steiner centers in graphs, J. Graph Theory 14 (1990) 585-597.
[27] D.H. Rouvray, Harry in the limelight: The life and times of Harry Wiener, in: D. H. Rouvray, R. B. King (Eds.), Topology in Chemistry - Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 1-15.
[28] D.H. Rouvray, The rich legacy of half century of the Wiener index, in: D.H. Rouvray, R.B. King (Eds.), Topology in Chemistry - Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 16-37.
[29] S. Wagner, A note on the inverse problem for the Wiener index, MATCH Commun. Math. Comput. Chem. 64 (2010) 639-646.
[30] S. Wagner, A class of trees and its Wiener index, Acta Appl. Math. 91, 119-132.
[31] S.G. Wagner, H. Wang, G. Yu, Molecular graphs and the inverse Wiener index problem, Discrete Appl. Math. 157 (2009) 1544-1554.
[32] H. Wang, G. Yu, All but 49 numbers are Wiener indices of trees, Acta Appl. Math. 92(1)(2006), 15-20.
[33] K. Xu, M. Liu, K.C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 461-508.

[^0]: *Supported by the National Science Foundation of China (Nos. 11371205, 11601254, $11661068,11551001,11161037)$ and the Science Found of Qinghai Province (Nos. 2016-ZJ948Q, and 2014-ZJ-907).

