Inverse problem on the Steiner Wiener index^{*}

Xueliang Li¹, Yaping Mao², Ivan Gutman³

¹Center for Combinatorics and LPMC Nankai University, Tianjin 300071, China

²Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China

³Faculty of Science P. O. Box 60, 34000 Kragujevac, Serbia, and State University of Novi Pazar, Novi Pazar, Serbia E-mails: lxl@nankai.edu.cn; maoyaping@ymail.com; gutman@kg.ac.rs

Abstract

The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as $W(G) = \sum_{u,v \in V(G)} d_G(u,v)$ where $d_G(u,v)$ is the distance (length a shortest path) between the vertices u and v in G. For $S \subseteq V(G)$, the Steiner distance d(S) of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index $SW_k(G)$ of G is defined as $SW_k(G) = \sum_{\substack{S \subseteq V(G) \\ |S|=k}} d(S)$. We investigate the following problem: Fixed a positive integer k, for what kind of positive integer wdoes there exist a connected graph G (or a tree T) of order $n \geq k$ such that $SW_k(G) = w$ (or $SW_k(T) = w$)? In this paper, we give some solutions to this problem.

Keywords: Distance; Steiner distance; Wiener index; Steiner Wiener index. AMS subject classification 2010: 05C05; 05C12; 05C35.

^{*}Supported by the National Science Foundation of China (Nos. 11371205, 11601254, 11661068, 11551001, 11161037) and the Science Found of Qinghai Province (Nos. 2016-ZJ-948Q, and 2014-ZJ-907).

1 Introduction

All graphs in this paper are assumed to be undirected, finite and simple. We refer to [3] for graph theoretical notation and terminology not specified here. Distance is one of basic concepts of graph theory [4]. If G is a connected graph and $u, v \in V(G)$, then the *distance* $d(u, v) = d_G(u, v)$ between u and v is the length of a shortest path connecting u and v. For more details on this subject, see [13].

The Wiener index W(G) of a connected graph G is defined by

$$W(G) = \sum_{u,v \in V(G)} d_G(u,v)$$

Mathematicians have studied this graph invariant since the 1970s in [11]; for details see the surveys [10,33], the recent papers [2,7,14,15,17,20] and the references cited therein. Information on chemical applications of the Wiener index can be found in [27,28].

The Steiner distance of a graph, introduced by Chartrand et al. in [6] in 1989, is a natural and nice generalization of the concept of the classical graph distance. For a graph G = (V, E) and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T = (V', E') of G that is a tree with $S \subseteq V'$. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance d(S) among the vertices of S (or simply the distance of S) is the minimum size of a connected subgraph whose vertex set contains S. Note that if H is a connected subgraph of G such that $S \subseteq V(H)$ and |E(H)| = d(S), then H is a tree. Clearly, $d(S) = \min\{|E(T)|, S \subseteq V(T)\}$, where T is a subtree of G. Furthermore, if $S = \{u, v\}$, then d(S) = d(u, v) is nothing new, but the classical distance between u and v. Clearly, if |S| = k, then $d(S) \ge k-1$. For more details on Steiner distance, we refer to [1, 5, 6, 8, 13, 26].

In [23], we proposed a generalization of the Wiener index concept, using Stein-

er distance. Thus, the *k*-th Steiner Wiener index $SW_k(G)$ of a connected graph G is defined by

$$SW_k(G) = \sum_{\substack{S \subseteq V(G) \\ |S|=k}} d(S) \, .$$

For k = 2, the Steiner Wiener index coincides with the ordinary Wiener index. It is usual to consider SW_k for $2 \le k \le n - 1$, but the above definition implies $SW_1(G) = 0$ and $SW_n(G) = n - 1$ for a connected graph G of order n. For more details on Steiner Wiener index, we refer to [23–25].

A chemical application of SW_k was recently reported in [16].

It should be noted that in the 1990s, Dankelmann et al. in [8,9] studied the *average Steiner distance*, which is related to our Steiner Wiener index via $SW_k(G)/\binom{n}{k}$.

The seemingly elementary question: "which natural numbers are Wiener indices of graphs ?" was much investigated in the past; see [12,19,21,29,31,32]. We now consider the analogous question for Steiner Wiener indices:

Problem. Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order $n \ge k$ such that $SW_k(G) = w$ (or $SW_k(T) = w$)?

For k = 2, the authors have nice results in [30, 32], completely solved a conjecture by Lepović and Gutman [22] for trees, which states that for all but 49 positive integers w one can find a tree with Wiener index w. This is different from our problem for trees, since here we consider graphs or trees with order n.

2 The cases k = n and k = n - 1

At first, let's consider the case k = n.

If G is a connected graph or a tree of order n, then for k = n, $SW_k(G) = n-1$. Thus the following result is immediate. **Proposition 2.1** For a positive integer w, there exists a connected graph G or a tree T of order n such that $SW_n(G) = w$ or $SW_n(T) = w$ if and only if w = n-1.

For the case k = n - 1, we need the following results in [23].

Lemma 2.2 [23] Let T be a tree of order n, possessing p pendant vertices. Then

$$SW_{n-1}(T) = n(n-1) - p$$

irrespective of any other structural detail of T.

Lemma 2.3 [23] Let K_n be the complete graph of order n, and let k be an integer such that $2 \le k \le n$. Then

$$SW_k(K_n) = \binom{n}{k}(k-1).$$

Lemma 2.4 [23] Let G be a connected graph of order n, and let k be an integer such that $2 \le k \le n$. Then

$$\binom{n}{k}(k-1) \le SW_k(G) \le (k-1)\binom{n+1}{k+1}.$$

Moreover, the lower bound is sharp.

From the above results, we can derive the following proposition.

Proposition 2.5 For a positive integer w, there exists a connected graph G of order n such that $SW_{n-1}(G) = w$, if and only if $n^2 - 2n \le w \le n^2 - n - 2$.

Proof. By Lemma 2.4, if G is a connected graph of order n, then

$$n(n-2) \le SW_{n-1}(G) \le (n+1)(n-2).$$

Therefore, $n^2 - 2n \le w \le n^2 - n - 2$.

By Lemma 2.3, $SW_{n-1}(K_n) = n^2 - 2n$.

Let T be a tree of order n with p pendant vertices with $2 \le p \le n-1$. By Lemma 2.2, $SW_{n-1}(T) = n^2 - n - p$, and thus for any integer w with $n^2 - n - (n - 1) \le w \le n^2 - n - 2$, there exists a tree T of order n such that $SW_{n-1}(T) = w$.

From the proof of Proposition 2.5 it follows immediately that

Proposition 2.6 For a positive integer w, there exists a tree T of order n such that $SW_{n-1}(T) = w$ if and only if $n^2 - 2n + 1 \le w \le n^2 - n - 2$.

3 The case k = n - 2

Similarly to Lemma 2.2, we can derive the following result.

Lemma 3.1 Let T be a tree of order n, possessing p pendant vertices. Let q be the number of vertices of degree 2 in T that are adjacent to a pendant vertex. Then

$$SW_{n-2}(T) = \frac{1}{2} \left(n^3 - 2n^2 + n - 2np + 2p - 2q \right).$$
(3.1)

Proof. For any $S \subseteq V$ and |S| = n - 2, let $\overline{S} = \{u, v\}$. If $d_T(u) = d_T(v) = 1$, then $d_T(S) = n - 3$, and this case contributes to SW_{n-2} by

$$\sum_{\substack{u,v\in\bar{S}\\d_T(u)=d_T(v)=1}} d_T(S) = \binom{p}{2}(n-3).$$

If $d_T(u) \ge 2$ and $d_T(v) \ge 2$, then $d_T(S) = n - 1$, and this case contributes to SW_{n-2} by

$$\sum_{\substack{u,v\in\bar{S}\\ d_T(u)\geq 2,\ d_T(v)\geq 2}} d_T(S) = \binom{n-p}{2}(n-1).$$

Suppose that $d_T(u) = 1$ and $d_T(v) \ge 2$. If $d_T(u) = 1$, $d_T(v) = 2$ and $uv \in E(G)$, then $d_T(S) = n - 3$. If $d_T(u) = 1$, $d_T(v) \ge 3$ and $uv \in E(T)$, then

 $d_T(S) = n - 2$. If $d_T(u) = 1$, $d_T(v) \ge 2$ and $uv \notin E(T)$, then $d_T(S) = n - 2$. Therefore, this case contributes to SW_{n-2} by

$$\sum_{\substack{u,v\in\bar{S}\\d_T(u)=1,\ d_T(v)\geq 2}} d_T(S) = \sum_{\substack{u,v\in\bar{S},uv\in E(T)\\d_T(u)=1,\ d_T(v)=2}} d_T(S) + \sum_{\substack{u,v\in\bar{S},uv\in E(T)\\d_T(u)=1,\ d_T(v)\geq 3}} d_T(S) + \sum_{\substack{u,v\in\bar{S},uv\notin E(T)\\d_T(u)=1,\ d_T(v)\geq 2}} d_T(S)$$
$$= q(n-3) + (p-q)(n-2) + p(n-p-1)(n-2).$$

From the above argument, we have

$$SW_{n-2}(T) = \binom{p}{2}(n-3) + \binom{n-p}{2}(n-1) + q(n-3)$$

+ $(p-q)(n-2) + p(n-p-1)(n-2)$
= $\frac{1}{2}(n^3 - 2n^2 + n - 2np + 2p - 2q).$

Li et al. obtained the following sharp lower and upper bounds of $SW_k(T)$ for a tree T.

Lemma 3.2 [23] Let T be a tree of order n, and let k be an integer such that $2 \le k \le n$. Then

$$\binom{n-1}{k-1}(n-1) \le SW_k(T) \le (k-1)\binom{n+1}{k+1}$$

Moreover, among all trees of order n, the star S_n minimizes the Steiner Wiener k-index, whereas the path P_n maximizes the Steiner Wiener k-index.

For trees, we have the following result.

Theorem 3.3 For a positive integer w, there exists a tree T of order $n \ (n \ge 5)$, possessing p pendant vertices, such that $SW_{n-2}(T) = w$ if and only if $w = \frac{1}{2}(n^3 - 2n^2 + n - 2np + 2p - 2q)$, where q is the number of vertices of degree 2 in T that are adjacent to a pendant vertex, and one of the following holds:

- (1) $2 \le q \le \lfloor \frac{n-1}{2} \rfloor$ and $q \le p \le n-q-1$;
- (2) q = 1 and $3 \le p \le n 2;$
- (3) q = 0 and $4 \le p \le n 1$.

Proof. Suppose that $w = \frac{1}{2} \left(n^3 - 2n^2 + n - 2np + 2p - 2q \right)$, where $0 \le q \le \lfloor \frac{n-1}{2} \rfloor$, $q \le p \le n - q - 1$. Let $K_{1,p-1}$ be a star of order p, and let v be the center of $K_{1,p-1}$. Then $K_{1,p-1}^*$ is a graph obtained from $K_{1,p-1}$ by picking up q - 1 edges and then replacing each of them by a path of length 2. Note that $K_{1,p-1}^*$ is a subdivision of $K_{1,p-1}$. Let G be a graph obtained by $K_{1,p-1}^*$ and a path $P_{n-p-q+2}$ by identifying v and one endvertex of the path. Clearly, G is a tree of order n with p pendant vertices, and there are exactly q vertices of degree 2 in T such that each of them is adjacent to a pendant vertex. From Lemma 3.1, we have $SW_{n-2}(T) = \frac{1}{2} \left(n^3 - 2n^2 + n - 2np + 2p - 2q \right) = w$, as desired.

Conversely, for any tree T of order $n \ (n \ge 5)$ with p pendant vertices, from Lemma 3.1, $SW_{n-2}(T) = \frac{1}{2}(n^3 - 2n^2 + n - 2np + 2p - 2q)$. We now show that p, q satisfy one of (1), (2), (3). Clearly, $p \ge 2, 0 \le q \le \lfloor \frac{n-1}{2} \rfloor$ and $q \le p$.

Claim 1. $p + q \le n - 1$.

Proof of Claim 1. Assume, to the contrary, that p + q = n. Then *T* is path of order *n*. Since $n \ge 5$, it follows that there exists a vertex of degree 2 having no adjacent pendant vertex, which contradicts to p + q = n.

If $q \ge 2$, then it follows from Claim 1 and $q \le p$ that $q \le p \le n - q - 1$. If q = 1, then it follows from Claim 1 that $2 \le p \le n - 2$. Furthermore, if p = 2, then T is a path of n. Since $n \ge 5$, it follows that q = 2, a contradiction. If q = 0, then it follows from Claim 1 that $2 \le p \le n - 1$. Furthermore, if p = 2, then T is a path of n. Since $n \ge 5$, it follows that q = 2, a contradiction. If p = 3, then T is a tree of n. Since $n \ge 5$, it follows that $q \ge 1$, a contradiction.

4 The case for general k

For trees, we have the following result.

Theorem 4.1 Let T be a graph obtained from a path P_t and a star S_{n-t+1} by identifying a pendant vertex of P_t and the center v of S_{n-t+1} , where $1 \le t \le n-1$ and $k \le n$. Then

$$SW_k(T) = t \binom{n-1}{k} - \binom{t}{k+1} - \binom{n}{k+1} + \binom{n-t+1}{k+1} + (k-1)\binom{n}{k}.$$

Proof. For any $S \subseteq V(T)$ and |S| = k, if $S \subseteq V(S_{n-t+1}) - v$, then $d_G(S) = k$. There are $\binom{n-t}{k}$ such subsets, contributing to SW_k by $k\binom{n-t}{k}$. If $S \subseteq V(P_t)$, then it contributes to SW_k by $(k-1)\binom{t+1}{k+1}$ from Lemma 3.2. Suppose that $S \cap V(P_t) \neq \emptyset$ and $S \cap (V(S_{n-t+1}) - v) \neq \emptyset$. Let $|S \cap V(S_{n-t+1} - v)| = i$, $|S \cap V(P_t)| = k - i$ and $P_t = u_1 u_2 \dots u_t$, where $v = u_1$. Without loss of generality, let $S \cap V(P_t) = \{u_{j_1}, u_{j_2}, \dots, u_{j_{k-i}}\}$ where $1 \leq j_1 < j_2 < \dots < j_{k-i} \leq t$. Then $k - i \leq j_{k-i} \leq t$. Let $j_{k-i} = j$. Then $d_G(S) = i + j - 1$, and $k - i \leq j \leq t$. Once the vertex u_j is chosen, we have $\binom{j-2}{k-i-1}$ ways to choose $u_{j_1}, u_{j_2}, \dots, u_{j_{k-i-1}}$. In this case, we contribute to SW_k by

$$X = \sum_{i=1}^{k-1} \binom{n-t}{i} \left[\sum_{j=k-i}^{t} \binom{j-1}{k-i-1} (j+i-1) \right].$$

Since

$$\binom{j-1}{k-i-1}(j+i-1) = \binom{j-1}{k-i-1}j + \binom{j-1}{k-i-1}(i-1)$$

= $(k-i)\binom{j}{k-i} + (i-1)\binom{j-1}{k-i-1},$

it follows that

$$\sum_{j=k-i}^{t} {j-1 \choose k-i-1} (j+i-1)$$

$$= (k-i) \sum_{j=k-i}^{t} {j \choose k-i} + (i-1) \sum_{j=k-i}^{t} {j-1 \choose k-i-1}$$

$$= (k-i) {t+1 \choose k-i+1} + (i-1) {t \choose k-i},$$

and hence

$$X = \sum_{i=1}^{k-1} {n-t \choose i} \left[\sum_{j=k-i}^{t} {j-1 \choose k-i-1} (j+i-1) \right]$$

=
$$\sum_{i=1}^{k-1} {n-t \choose i} \left[(k-i) {t+1 \choose k-i+1} + (i-1) {t \choose k-i} \right]$$

=
$$\sum_{i=1}^{k-1} {n-t \choose i} (k-i) {t+1 \choose k-i+1} + \sum_{i=1}^{k-1} {n-t \choose i} (i-1) {t \choose k-i}$$

=
$$\sum_{i=1}^{k-1} (k-i) {t \choose k-i+1} {n-t \choose i} + \sum_{i=1}^{k-1} (k-i) {t \choose k-i} {n-t \choose i}$$

+
$$\sum_{i=1}^{k-1} (i-1) {t \choose k-i} {n-t \choose i}$$

$$= \sum_{i=1}^{k-1} (k-i) \binom{t}{k-i+1} \binom{n-t}{i} + (k-1) \sum_{i=1}^{k-1} \binom{t}{k-i} \binom{n-t}{i} \\ = \sum_{i=1}^{k-1} (k-i) \binom{t}{k-i+1} \binom{n-t}{i} + (k-1) \left[\binom{n}{k} - \binom{t}{k} - \binom{n-t}{k} \right].$$

Let

$$Y = \sum_{i=1}^{k-1} (k-i) \binom{t}{k-i+1} \binom{n-t}{i}.$$

Then

$$Y = \sum_{i=1}^{k-1} (k-i+1) \binom{t}{k-i+1} \binom{n-t}{i} - \sum_{i=1}^{k-1} \binom{t}{k-i+1} \binom{n-t}{i}$$
$$= t \sum_{i=1}^{k-1} \binom{t-1}{k-i} \binom{n-t}{i} - \sum_{i=1}^{k-1} \binom{t}{k+1-i} \binom{n-t}{i}$$
$$= t \left[\binom{n-1}{k} - \binom{t-1}{k} - \binom{n-t}{k} \right]$$
$$- \left[\binom{n}{k+1} - \binom{t}{k+1} - t\binom{n-t}{k} - \binom{n-t}{k+1} \right],$$

and hence

$$SW_{k}(T) = (k-1)\binom{t+1}{k+1} + k\binom{n-t}{k} + X$$

$$= (k-1)\binom{t+1}{k+1} + k\binom{n-t}{k} + Y + (k-1)\left[\binom{n}{k} - \binom{t}{k} - \binom{n-t}{k}\right]$$

$$= (k-1)\binom{t+1}{k+1} + k\binom{n-t}{k} + t\left[\binom{n-1}{k} - \binom{t-1}{k} - \binom{n-t}{k}\right]$$

$$- \left[\binom{n}{k+1} - \binom{t}{k+1} - t\binom{n-t}{k} - \binom{n-t}{k+1}\right]$$

$$+ (k-1)\left[\binom{n}{k} - \binom{t}{k} - \binom{n-t}{k}\right]$$

$$= (k-1)\binom{t}{k+1} + (k-1)\binom{t}{k} + k\binom{n-t}{k} + t\binom{n-1}{k} - t\binom{t-1}{k}$$

$$- t\binom{n-t}{k} - \binom{n}{k+1} + \binom{t}{k+1} + t\binom{n-t}{k} + \binom{n-t}{k+1}$$

$$= (k-1)\binom{t}{k+1} + k\binom{n-t}{k} + t\binom{n-1}{k} - t\binom{t-1}{k}$$
$$-\binom{n}{k+1} + \binom{t}{k+1} + \binom{n-t}{k+1} + (k-1)\binom{n}{k} - (k-1)\binom{n-t}{k}$$
$$= k\binom{t}{k+1} + \binom{n-t}{k} + t\binom{n-1}{k} - t\binom{t-1}{k} - \binom{n}{k+1} + \binom{n-t}{k+1}$$
$$+ (k-1)\binom{n}{k}$$
$$= k\binom{t}{k+1} + t\binom{n-1}{k} - t\binom{t-1}{k} - \binom{n}{k+1} + \binom{n-t+1}{k+1} + (k-1)\binom{n}{k}$$
$$= t\binom{n-1}{k} - \binom{t}{k+1} - \binom{n}{k+1} + \binom{n-t+1}{k+1} + (k-1)\binom{n}{k}.$$

The following corollary is immediate from Theorem 4.1.

Corollary 4.2 For a positive integer w, there exists a tree T of order n such that $SW_k(T) = w$ if

$$w = t \binom{n-1}{k} - \binom{t}{k+1} - \binom{n}{k+1} + \binom{n-t+1}{k+1} + (k-1)\binom{n}{k},$$

where $1 \leq t \leq n-1$ and $k \leq n$.

For general graphs, we have the following.

Theorem 4.3 Let G be a graph obtained from a clique K_{n-r} and a star S_{r+1} by identifying a vertex of K_{n-r} and the center v of S_{r+1} . For $k \leq r \leq n-1-k$,

$$SW_k(G) = (n-1)\binom{n-1}{k-1} - \binom{n-r-1}{k}.$$

Proof. For any $S \subseteq V(G)$ and |S| = k, if $S \subseteq V(K_{n-r})$, then $d_G(S) = k - 1$. There are $\binom{n-r}{k}$ such subsets, contributing to SW_k by $(k-1)\binom{n-r}{k}$. If $S \subseteq V(S_{r+1}) - v$, then $d_G(S) = k$. There are $\binom{r}{k}$ such subsets, contributing to SW_k

by $k\binom{r}{k}$. Suppose that $S \cap V(K_{n-r}) \neq \emptyset$ and $S \cap (V(S_{r+1}) - v) \neq \emptyset$. If $v \in S$, then $d_G(S) = k - 1$. There are $\binom{n-r-1}{k-x-1}\binom{r}{x}$ such subsets, contributing to SW_k by $(k-1)\sum_{x=1}^{k-1} \binom{n-r-1}{k-x-1} \binom{r}{x}$. If $v \notin S$, then $d_G(S) = k$. There are $\binom{n-r-1}{k-x} \binom{r}{x}$ such subsets, contributing to SW_k by $k\sum_{x=1}^{k-1} \binom{n-r-1}{k-x} \binom{r}{x}$. Then

$$SW_{k}(G) = (k-1)\binom{n-r}{k} + k\binom{r}{k} + (k-1)\sum_{x=1}^{k-1}\binom{n-r-1}{k-x-1}\binom{r}{x} + k\sum_{x=1}^{k-1}\binom{n-r-1}{k-x}\binom{r}{x}$$
$$+k\sum_{x=1}^{k-1}\binom{n-r-1}{k-x}\binom{r}{x}$$
$$= (k-1)\binom{n-r}{k} + k\binom{r}{k} + (k-1)\left[\binom{n-1}{k-1} - \binom{n-1-r}{k-1}\right] + k\left[\binom{n-1}{k} - \binom{n-1-r}{k} - \binom{r}{k}\right]$$
$$= (k-1)\binom{n-r}{k} + (k-1)\left[\binom{n-1}{k-1} - \binom{n-1-r}{k-1}\right] + k\left[\binom{n-1}{k} - \binom{n-1-r}{k}\right] = (k-1)\binom{n-1}{k} + (n-1)\binom{n-1}{k-1} - (k-1)\binom{n-1-r}{k-1} - k\binom{n-1-r}{k}$$
$$= (n-1)\binom{n-1}{k-1} + (k-1)\binom{n-r-1}{k} - k\binom{n-1-r}{k}$$

as desired.

The following corollary is immediate from Theorems 4.1 and 4.3.

Corollary 4.4 For a positive integer w, there exists a connected graph G of order n such that $SW_k(G) = w$ if w satisfies one of the following conditions:

(1)
$$w = t \binom{n-1}{k} - \binom{t}{k+1} - \binom{n}{k+1} + \binom{n-t+1}{k+1} + (k-1)\binom{n}{k}$$
, where $1 \le t \le n-1$

and $k \leq n$.

(2)
$$w = (n-1)\binom{n-1}{k-1} - \binom{n-r-1}{k}$$
, where $k \le r \le n-1-k$ and $k \le n$.

Acknowledgement. The authors are very grateful to the referees for their valuable comments and suggestions.

References

- P. Ali, P. Dankelmann, S. Mukwembi, Upper bounds on the Steiner diameter of a graph, Discrete Appl. Math. 160 (2012) 1845–1850.
- [2] E.O.D. Andriantiana, S. Wagner, H. Wang, Maximum Wiener index of trees with given segment sequence, MATCH Commun. Math. Comput. Chem. 75 (2016) 91–104.
- [3] J.A. Bondy, U.S.R. Murty, *Graph Theory*, Springer, New York, 2008.
- [4] F. Buckley, F. Harary, *Distance in Graphs*, Addison–Wesley, Redwood, 1990.
- [5] J. Cáceres, A. Márquez, M.L. Puertas, Steiner distance and convexity in graphs, Eur. J. Combin. 29 (2008) 726–736.
- [6] G. Chartrand, O.R. Oellermann, S. Tian, H.B. Zou, Steiner distance in graphs, Časopis Pest. Mat. 114 (1989) 399–410.
- [7] L. Chen, X. Li, M. Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph, Eur. J. Comb. 36 (2014) 237–246.
- [8] P. Dankelmann, O.R. Oellermann, H.C. Swart, The average Steiner distance of a graph, J. Graph Theory 22 (1996) 15–22.
- [9] P. Dankelmann, O.R. Oellermann, H.C. Swart, On the average Steiner distance of certain classes of graphs, Discrete Appl. Math. 79 (1997) 91–103.
- [10] A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math. 66 (2001) 211–249.

- [11] R.C. Entringer, D.E. Jackson, D.A. Snyder, *Distance in graphs*, Czech. Math. J. 26 (1976) 283–296.
- [12] J. Fink, B. Lužar, R. Skrekovski, Some remarks on inverse Wiener index problem, Discrete Appl. Math. 160 (2012) 1851–1858.
- [13] W. Goddard, O.R. Oellermann, Distance in graphs, in: M. Dehmer (Ed.), Structural Analysis of Complex Networks, Birkhäuser, Dordrecht, 2011, pp. 49–72.
- [14] M. Goubko, Minimizing Wiener index for vertex-weighted trees with given weight and degree sequences, MATCH Commun. Math. Comput. Chem. 75 (2016) 3–27.
- [15] I. Gutman, R. Cruz, J. Rada, Wiener index of Eulerian graphs, Discrete Appl. Math. 162 (2014) 247–250.
- [16] I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015) 1009–1017.
- [17] I. Gutman, K. Xu, M. Liu, A congruence relation for Wiener and Szeged indices, Filomat 29 (2015) 1081–1083.
- [18] I. Gutman, Y.N. Yeh, The sum of all distances in bipartite graphs, Math. Slovaca 45 (1995) 327–334.
- [19] I. Gutman, Y.N. Yeh, J.C. Chen, On the sum of all distances in graphs, Tamkang J. Math. 25 (1986) 83–86.
- [20] M. Knor, R. Škrekovski, Wiener index of generalized 4-stars and of their quadratic line graphs, Australas. J. Comb. 58 (2014) 119–126.
- [21] M. Krnc, R. Škrekovski, On Wiener inverse interval problem, MATCH Commun. Math. Comput. Chem. 75 (2016) 71–80.
- [22] M. Lepović, I. Gutman, A collective property of trees and chemical trees, J. Chem. Inf. Comput. Sci. 38(1998) 823–826.
- [23] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36(2)(2016) 455–465.

- [24] Y. Mao, Z. Wang, I. Gutman, Steiner Wiener index of graph products, Trans. Combin. 5(3)(2016), 39–50.
- [25] Y. Mao, Z. Wang, Y. Xiao, C. Ye, Steiner Wiener index and connectivity of graphs, Utilitas Math., in press.
- [26] O.R. Oellermann, S. Tian, Steiner centers in graphs, J. Graph Theory 14 (1990) 585–597.
- [27] D.H. Rouvray, Harry in the limelight: The life and times of Harry Wiener,
 in: D. H. Rouvray, R. B. King (Eds.), Topology in Chemistry Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 1–15.
- [28] D.H. Rouvray, The rich legacy of half century of the Wiener index, in: D.H. Rouvray, R.B. King (Eds.), Topology in Chemistry – Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 16–37.
- [29] S. Wagner, A note on the inverse problem for the Wiener index, MATCH Commun. Math. Comput. Chem. 64 (2010) 639–646.
- [30] S. Wagner, A class of trees and its Wiener index, Acta Appl. Math. 91, 119–132.
- [31] S.G. Wagner, H. Wang, G. Yu, Molecular graphs and the inverse Wiener index problem, Discrete Appl. Math. 157 (2009) 1544–1554.
- [32] H. Wang, G. Yu, All but 49 numbers are Wiener indices of trees, Acta Appl. Math. 92(1)(2006), 15–20.
- [33] K. Xu, M. Liu, K.C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 461–508.