Avoiding vincular patterns on alternating words

Emma L.L. Gao ${ }^{1}$, Sergey Kitaev ${ }^{2}$, and Philip B. Zhang ${ }^{3}$
${ }^{1}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China
${ }^{2}$ Department of Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
${ }^{3}$ College of Mathematical Science, Tianjin Normal University, Tianjin 300387, P. R. China
Email: ${ }^{1}$ gaolulublue@mail.nankai.edu.cn, ${ }^{2}$ sergey.kitaev@cis.strath.ac.uk,
${ }^{3}$ zhangbiaonk@163.com

Abstract

A word $w=w_{1} w_{2} \cdots w_{n}$ is alternating if either $w_{1}<w_{2}>w_{3}<w_{4}>\cdots$ (when the word is up-down) or $w_{1}>w_{2}<w_{3}>w_{4}<\cdots$ (when the word is down-up). The study of alternating words avoiding classical permutation patterns was initiated by the authors in [2], where, in particular, it was shown that 123-avoiding up-down words of even length are counted by the Narayana numbers.

However, not much was understood on the structure of 123 -avoiding up-down words. In this paper, we fill in this gap by introducing the notion of a cut-pair that allows us to subdivide the set of words in question into equivalence classes. We provide a combinatorial argument to show that the number of equivalence classes is given by the Catalan numbers, which induces an alternative (combinatorial) proof of the corresponding result in [2].

Further, we extend the enumerative results in [2] to the case of alternating words avoiding a vincular pattern of length 3 . We show that it is sufficient to enumerate updown words of even length avoiding the consecutive pattern 132 and up-down words of odd length avoiding the consecutive pattern 312 to answer all of our enumerative questions. The former of the two key cases is enumerated by the Stirling numbers of the second kind.

Keywords: alternating word, up-down word, pattern-avoidance, Narayana number, Catalan number, Stirling number of the second kind, Dyck path

AMS Subject Classifications: 05A05, 05A15

1 Introduction

A permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ is called up-down if $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\pi_{5}<\cdots$. A permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ is called down-up if $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\pi_{5}>\cdots$. A famous result of André is saying that if E_{n} is the number of up-down (equivalently, down-up)
permutations of $1,2, \ldots, n$, then

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x
$$

Some aspects of up-down and down-up permutations, also called reverse alternating and alternating, respectively, are surveyed in [5]. Slightly abusing these definitions, we refer to alternating permutations as the union of up-down and down-up permutations. This union is known as the set of zigzag permutations.

In [2] we extended the study of alternating permutations to that of alternating words. These words, also called zigzag words, are the union of up-down and down-up words, which are defined in a similar way to the definition of up-down and down-up permutations, respectively. For example, 1214, 2413, 2424 and 3434 are examples of up-down words of length 4 over the alphabet $\{1,2,3,4\}$.

For a word $w=w_{1} w_{2} \cdots w_{n}$ over the alphabet $\{1,2, \ldots, k\}$, its complement w^{c} is the word $c_{1} c_{2} \cdots c_{n}$, where for each $i=1,2, \ldots, n, c_{i}=k+1-w_{i}$. For example, the complement of the word 24265 over the alphabet $\{1,2, \ldots, 6\}$ is 53512 . For a word $w=w_{1} w_{2} \cdots w_{n}$, its reverse w^{r} is the word $w_{n} w_{n-1} \cdots w_{1}$. For example, if $w=53512$ then $w^{r}=21535$.

A (permutation) pattern is a permutation $\tau=\tau_{1} \tau_{2} \cdots \tau_{k}$. We say that a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ contains an occurrence of τ if there are $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ such that $\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{k}}$ is order-isomorphic to τ. If π does not contain an occurrence of τ, we say that π avoids τ. For example, the permutation 315267 contains several occurrences of the pattern 123 , such as, the subsequences 356 and 157 , while this permutation avoids the pattern 321. Such patterns are referred to as "classical patterns" in the theory of patterns in permutations and words (see [3] for a comprehensive introduction to the theory). Occurrences of a pattern in words are defined similarly as subsequences orderisomorphic to a given word called pattern (the only difference with permutation patterns is that word patterns can contain repetitive letters, which is not in the scope of this paper).

Another type of patterns of our interest is vincular patterns, also known as generalized patterns [1], in occurrences of which some of the letters may be required to be adjacent in a permutation or a word. We underline letters of a given pattern to indicate the letters that must be adjacent in any occurrence of the pattern. For example, the word $w=1244254$ contains four occurrences of the pattern 132, namely, the subsequences 142, 154, and 254 twice: in each of these occurrences, the letters in w corresponding to 2 and 3 in the pattern stay next to each other. On the other hand, w contains just one occurrence of the pattern 132 formed by the rightmost three letters in w. If all letters in an occurrence of a pattern are required to stay next to each other, which is indicated by underlying all letters in the pattern, such patterns are called consecutive patterns. Vincular patterns play an important role in the theory of patterns in permutations and words (see [3] for details).

In this paper, $[k]=\{1,2, \ldots, k\}, S_{k, n}^{p}$ denotes the set of p-avoiding up-down words of length n over $[k]$, and $N_{k, n}^{p}$ denotes the number of p-avoiding words in $S_{k, n}^{p}$. Two patterns, p_{1} and p_{2}, are Wilf-equivalent if $N_{k, n}^{p_{1}}=N_{k, n}^{p_{2}}$ for $n \geq 0$ and $k \geq 1$. Also, for a word w, $\{w\}^{+}$denotes a word in $\{w, w w, w w w, \ldots\}$ and $\{w\}^{*}$ denotes a word in $\{w\}^{+} \cup\{\epsilon\}$, where ϵ is the empty word.

The content of this paper is as follows. In Section 2 we not only discuss in more detail the structure of 123 -avoiding up-down words of even length, but also give an alternative, combinatorial way to show that the number of these words is given by the Narayana numbers. Originally, this fact was established in [2]. An essential part of our studies here is the notion of a cut-pair, which allows us to subdivide the set of words in question into equivalence classes. We prove that the number of equivalence classes is counted by the Catalan numbers, which is done by establishing a bijection between the classes and Dyck paths of certain length. Recall that the n-th Catalan number is $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ and the Narayana number $N_{n, m}$ is $\frac{1}{m+1}\binom{n}{m}\binom{n-1}{m}$. Also, a Dyck path of semi-length n is a lattice path with steps $(1,1)$ and $(1,-1)$ which begins at $(0,0)$, ends at $(2 n, 0)$, and never goes below the x-axis.

Further, in Sections 3 and 4 we extend the enumerative results in [2] to the case of alternating words avoiding a vincular pattern of length 3 . This direction of research is also an extension of vincular pattern-avoidance results on all words to alternating words; see [3, Section 7.2] for a survey of the respective results.

	$\underline{123}$	$\underline{132}$	$\underline{213}$	$\underline{231}$	$\underline{312}$	$\underline{321}$
even	K	A	A	C	C	K
odd	L	B	D	B	D	L

	$1 \underline{23}$	$\underline{132}$	$2 \underline{13}$	$2 \underline{31}$	$\underline{312}$	$\underline{321}$
even	A	A	N	N	C	E
odd	F	B	H	G	D	D

	$\underline{123}$	$\underline{132}$	$\underline{213}$	$\underline{231}$	$\underline{312}$	$\underline{321}$
even	A	N	A	C	N	E
odd	D	G	D	B	H	F

Table 1: Wilf-equivalence for the enumerative results in this paper.
Table 1 shows Wilf-equivalent classes, where A is given by Theorem 3.4, B by Theorem 3.5, C by Theorem 3.10, and D by Theorem 3.9. Also, G, H, N are given by Corollary 4.5 and Theorem 4.6 , and E and F by Theorems 4.8 and 4.9. Finally, we do not give separate enumeration for K and L, but treat these cases together in Theorem 3.1 by providing a recurrence relation for these numbers. In particular, we show that it is sufficient to enumerate up-down words of even length avoiding the consecutive pattern $\underline{132}$ (corresponding to A in Table 1) and up-down words of odd length avoiding the con-
secutive pattern 312 (corresponding to D in Table 1) to deduce all of our enumerative results. Note that A in Table 1 is given by the Stirling numbers of the second kind $S(n, m)$ counting the number of ways to partition a set of n elements into m nonempty subsets.

All our results in this paper are for up-down pattern-avoiding words. However, they can be easily turned into results on down-up pattern-avoiding words by using the complement operation. In what follows, we assume that any up-down word $w=b_{1} t_{1} b_{2} t_{2} \cdots$, where $b_{i}<t_{i}>b_{i+1}$ for $i \geq 1$. We call a letter b_{i} a bottom element and t_{i} a top element.

2 Structure of 123-avoiding up-down words of even length

Recall that 123-avoiding up-down words were enumerated in [2]. To be more precise, the following theorem was proved in [2].

Theorem 2.1. [2] For $p \in\{123,132,312,213,231\}$ and $i \geq 1$,

$$
N_{k, 2 i}^{p}=N_{k+i-1, i}
$$

where $N_{k, j}$, for $0 \leq j \leq k-1$, is the Narayana number $\frac{1}{j+1}\binom{n}{j}\binom{n-1}{j}$.
In this section, we give more details on the structure of 123 -avoiding up-down words, and provide an alternative, combinatorial proof for their enumeration.

2.1 Cut-pairs and cut-equivalence

We begin with a description of the structure of 123-avoiding up-down words of even length.
Lemma 2.2. An up-down word $w=b_{1} t_{1} b_{2} t_{2} \cdots b_{i} t_{i}$ is 123 -avoiding if and only if the following two conditions hold:
(a) $b_{1} \geq b_{2} \geq \cdots \geq b_{i}$,
(b) $t_{1} \geq t_{2} \geq \cdots \geq t_{i}$.

Proof. We first show that if w is a 123 -avoiding up-down word, then (a) and (b) hold. (a) is true since if there exist $1 \leq j_{1}<j_{2} \leq i$ such that $b_{j_{1}}<b_{j_{2}}$, then $b_{j_{1}} b_{j_{2}} t_{j_{2}}$ forms the pattern 123. Similarly, (b) is true since if there exist $1 \leq j_{1}<j_{2} \leq i$ such that $t_{j_{1}}<t_{j_{2}}$, then $b_{j_{1}} t_{j_{1}} t_{j_{2}}$ forms the pattern 123 .

We next prove that any up-down word w satisfying (a) and (b) must be 123-avoiding. Suppose that there is an occurrence $x y z$ of the pattern 123 in w. Then at most one of the three letters x, y and z can stay in bottom positions, since otherwise it would contradict the condition (a). Similarly, due to (b), at most one of the three letters can stay in top positions. This is impossible and thus w is 123 -avoiding, which completes the proof.

Given a word $w=b_{1} t_{1} b_{2} t_{2} \cdots b_{i} t_{i} \in S_{k, 2 i}^{123}$, we let $\mathcal{P}_{w}=\left\{b_{j} t_{j} \mid 1 \leq j \leq i\right\}$, that is, \mathcal{P}_{w} contains all distinct pairs $x y$, where $x<y$, appearing in w.

Definition 1. For a word $w=b_{1} t_{1} b_{2} t_{2} \cdots b_{i} t_{i} \in S_{k, 2 i}^{123}, b_{j} t_{j} \in \mathcal{P}_{w}$ is a cut-pair if

- $1<b_{j}<k-1$ and either $j=i$ or $b_{j}>b_{m}$ for $j+1 \leq m \leq i$, and
- $2<t_{j}<k$ and either $j=1$ or $t_{j}<t_{m}$ for $1 \leq m \leq j-1$.

For example, the word $w=4645252512 \in S_{6,10}^{123}$ has $\mathcal{P}_{w}=\{46,45,25,12\}$ and its only cut-pair is 45 . For another example, the set of all cut-pairs in the word $3534242313 \in S_{5,10}^{123}$ is $\{34,23\}$. The word "cut" in "cut-pair" came in analogy to the notion of a cut-point in a permutation that can be used to define reducible/irreducible permutations [3]. A cut-point in that context is a place in the permutation, where every element to the left of the place is smaller than any element to the right of it.

Combining the definition of cut-pairs with Lemma 2.2, it is easy to see that if a 123-avoiding up-down word $w=b_{1} t_{1} b_{2} t_{2} \cdots b_{i} t_{i}$ has cut-pairs $b_{p_{1}} t_{p_{1}}, b_{p_{2}} t_{p_{2}}, \ldots, b_{p_{j}} t_{p_{j}}$, then there must be $k-1>b_{p_{1}}>b_{p_{2}}>\cdots>b_{p_{j}}>1$ and $k>t_{p_{1}}>t_{p_{2}}>\cdots>t_{p_{j}}>2$.

Definition 2. Two words $w_{1}, w_{2} \in S_{k, 2 i}^{123}$ are cut-equivalent if their sets of cut-pairs are the same.

Clearly, "to be cut-equivalent" is an equivalence relation on $S_{k, 2 i}^{123}$, and the corresponding equivalence classes are uniquely characterized by the cut-pairs. Let $\mathcal{F}_{k, 2 i}^{123}$ denote the set of cut-equivalence classes of $S_{k, 2 i}^{123}$. For any cut-equivalence class f in $S_{k, 2 i}^{123}$, denote by $n(f)$ the number of cut-pairs each word in f has (this number is the same for any word in f by definition).

Lemma 2.3. Any 123-avoiding up-down word $w=b_{1} t_{1} b_{2} t_{2} \cdots$ of even length over $[k]$ with cut-pairs $b_{p_{1}} t_{p_{1}}, b_{p_{2}} t_{p_{2}}, \ldots, b_{p_{j}} t_{p_{j}}$, where $p_{1}<p_{2}<\cdots<p_{j}$, can be obtained from

$$
\begin{align*}
& \{(k-1) k\}^{*}\{(k-2) k\}^{*} \cdots\left\{b_{p_{1}} k\right\}^{*}\left\{b_{p_{1}}(k-1)\right\}^{*} \cdots\left\{b_{p_{1}} t_{p_{1}}\right\}^{+}\left\{\left(b_{p_{1}}-1\right) t_{p_{1}}\right\}^{*} \cdots \\
& \left\{b_{p_{2}} t_{p_{1}}\right\}^{*}\left\{b_{p_{2}}\left(t_{p_{1}}-1\right)\right\}^{*} \cdots\left\{b_{p_{j}} t_{p_{j}}\right\}^{+} \cdots\left\{1 t_{p_{j}}\right\}^{*} \cdots\{12\}^{*}, \tag{1}
\end{align*}
$$

where the second line is continuation of the first one. Moreover, two different expressions of the form (1) cannot give the same word.

Proof. By Lemma 2.2, any $w \in S_{k, 2 i}^{123}$ with cut-pairs $b_{p_{1}} t_{p_{1}}, b_{p_{2}} t_{p_{2}}, \ldots, b_{p_{j}} t_{p_{j}}$ is of the form

$$
X=\{(k-1) k\}^{*} \cdots\left\{b_{p_{1}} t_{p_{1}}\right\}^{+} \cdots\left\{b_{p_{2}} t_{p_{2}}\right\}^{+} \cdots\left\{b_{p_{j}} t_{p_{j}}\right\}^{+} \cdots\{12\}^{*}
$$

Observe that to obtain an expression covering all possible w, we have from Lemma 2.2 that for any consecutive pairs $\{a b\}$ and $\{c d\}$ (having the upper index $*$ or +) in X, either $c=a-1$ or $d=b-1$, but not both. To prove the lemma, we need to show that for any
pair, except 12 , in (1), to get to the cut-pair which is closest to the right (or to $\{12\}^{*}$ if no such cut-pair exists), one needs to decrease first the bottom element (by 1 each time) as much as possible, and then to decrease the top element (by 1 each time) until the target pair is reached.

Let $b_{p_{0}} t_{p_{0}}=(k-1) k$ and $b_{p_{j+1}} t_{p_{j+1}}=12$. We claim that for $0 \leq m \leq j$, the pairs between $b_{p_{m}} t_{p_{m}}$ and $b_{p_{m+1}} t_{p_{m+1}}$ in X can only be of the form

$$
\left\{b_{p_{m}} t_{p_{m}}\right\}^{c_{m}}\left\{\left(b_{p_{j^{*}}}-1\right) t_{p_{m}}\right\}^{*} \cdots\left\{b_{p_{m+1}} t_{p_{m}}\right\}^{*} \cdots\left\{b_{p_{m+1}}\left(t_{p_{m+1}}+1\right)\right\}^{*}\left\{b_{p_{m+1}} t_{p_{m+1}}\right\}^{d_{m}}
$$

where

$$
c_{m}=\left\{\begin{array}{ll}
* & \text { if } m=0 \\
+ & \text { if } 1 \leq m \leq j
\end{array} \text { and } d_{m}= \begin{cases}+ & \text { if } 0 \leq m \leq j-1 \\
* & \text { if } m=j\end{cases}\right.
$$

Since $b_{p_{m}} t_{p_{m}}$ is a cut-pair for $1 \leq m \leq j$ and $b_{p_{0}} t_{p_{0}}=(k-1) k$, the pair immediately following $b_{p_{m}} t_{p_{m}}$ must be $\left(b_{p_{m}}-1\right) t_{p_{m}}$ in X. Let $b_{s} t_{p_{m}}$ be the first pair after $b_{p_{m}} t_{p_{m}}$ such that the pair following $b_{s} t_{p_{m}}$ is $b_{s}\left(t_{p_{m}}-1\right)$. By Lemma 2.2, we have that $b_{s} \geq b_{p_{m+1}}$. If $b_{s}=b_{p_{m+1}}$, we are done. If $b_{s}>b_{p_{m+1}}$, let $b_{s} t_{s}$ be the first pair after $b_{s} t_{p_{m}}$ such that the pair following $b_{s} t_{s}$ is $\left(b_{s}-1\right) t_{s}$. Since the pair preceding $b_{s} t_{s}$ is $\left(b_{s}+1\right) t_{s}$, we get that $b_{s} t_{s}$ must be a cut-pair in w, which contradicts the fact that there are no cut-pairs between $b_{p_{m}} t_{p_{m}}$ and $b_{p_{m+1}} t_{p_{m+1}}$ in X. Hence, $b_{s}=b_{p_{m+1}}$ and X must be of the form (1).

Finally, two expressions of the form (1), say E_{1} and E_{2}, are different only if the sets of cut-pairs in them (corresponding to + -terms) are different. But then no word produced by E_{1} can be the same as a word produced by E_{2}.

From Lemma 2.3, we see that each cut-equivalence class in $S_{k, 2 i}^{123}$ can be represented by an expression of the form (1). For example, $\mathcal{F}_{5,2 i}^{123}$, the set of cut-equivalence classes for $S_{5,2 i}^{123}$, is as follows:

Class 1: $\{45\}^{*}\{35\}^{*}\{25\}^{*}\{15\}^{*}\{14\}^{*}\{13\}^{*}\{12\}^{*} ;$
Class 2: $\{45\}^{*}\{35\}^{*}\{25\}^{*}\{24\}^{+}\{14\}^{*}\{13\}^{*}\{12\}^{*}$;
Class 3: $\{45\}^{*}\{35\}^{*}\{25\}^{*}\{24\}^{*}\{23\}^{+}\{13\}^{*}\{12\}^{*}$;
Class 4: $\{45\}^{*}\{35\}^{*}\{34\}^{+}\{24\}^{*}\{14\}^{*}\{13\}^{*}\{12\}^{*} ;$
Class 5: $\{45\}^{*}\{35\}^{*}\{34\}^{+}\{24\}^{*}\{23\}^{+}\{13\}^{*}\{12\}^{*}$.

2.2 A bijection between Dyck paths and cut-equivalence classes

Let \mathbf{D}_{n} denote the set of all Dyck paths of semi-length n. It is a well-known fact that the number of paths in \mathbf{D}_{n} is given by C_{n}, the n-th Catalan number.

Each Dyck path in \mathbf{D}_{n} can be encoded by a Dyck word $\pi=\pi_{1} \pi_{2} \cdots \pi_{2 n}$, where $\pi_{i} \in$ $\{U, D\}$ for $1 \leq i \leq 2 n$, and π satisfies the condition that for $1 \leq k \leq 2 n$, the number of U s
in $\pi_{1} \pi_{2} \cdots \pi_{k}$ is no less than the number of D s there. Thus, U corresponds to an up-step $(1,1)$ and D corresponds to a down-step $(1,-1)$. Slightly abusing the terminology, we think of a Dyck path to be the same as the Dyck word encoding it.

A valley in $\pi \in \mathbf{D}_{n}$ is any occurrence of $D U$, that is, any U in π immediately preceded by a D. We let $v(\pi)$ denote the number of valleys in π. For example, Figure 1 shows a Dyck path π of semi-length 8 with $v(\pi)=3$. It is a well-known result that the number of Dyck paths of semi-length n with j valleys is given the Narayana number $N_{n, j}=\frac{1}{j+1}\binom{n}{j}\binom{n-1}{j}$, where $0 \leq j \leq n-1$.

Figure 1: The Dyck path $\pi=U U D D U U U U D D D U D U D D$.
Theorem 2.4. There is a bijection ϕ from $\mathcal{F}_{k, 2 i}^{123}$ to \mathbf{D}_{k-2} such that if $f \in \mathcal{F}_{k, 2 i}^{123}$ and $\phi(f)=\pi$ then the number of cut-pairs $n(f)=v(\pi)$.

Proof. Let f be the cut-equivalence class in $\mathcal{F}_{k, 2 i}^{123}$ with cut-pairs $b_{p_{1}} t_{p_{1}}, b_{p_{2}} t_{p_{2}}, \ldots, b_{p_{j}} t_{p_{j}}$. By Lemma 2.3, any word in f must be of the form

$$
\{k-1, k\}^{*} \cdots\left\{b_{p_{1}} k\right\}^{*} \cdots\left\{b_{p_{1}} t_{p_{1}}\right\}^{+} \cdots\left\{b_{p_{2}} t_{p_{1}}\right\}^{*} \cdots \cdots\left\{b_{p_{j}} t_{p_{j}}\right\}^{+} \cdots\left\{1 t_{p_{j}}\right\}^{*} \cdots\{12\}^{*},
$$

where $k-1>b_{p_{1}}>b_{p_{2}}>\cdots>b_{p_{j}}>1$ and $k>t_{p_{1}}>t_{p_{2}}>\cdots>t_{p_{j}}>2$. We define $\pi=\phi(f)$ to be

In particular, if f is the unique cut-equivalence class containing no cut-pairs, then

$$
\phi(f)=\underbrace{U \cdots U}_{k-2} \underbrace{D \cdots D}_{k-2} .
$$

Clearly, π contains $k-2$ up-steps and $k-2$ down-steps. Moreover, since $b_{p_{\ell}}<t_{p_{\ell}}$ for $1 \leq \ell \leq j$, we have that $k-1-b_{p_{\ell}} \geq k-t_{p_{\ell}}$ for $1 \leq \ell \leq j$, which implies that the number of up-steps is never less than that of down-steps in any initial part of π. Thus, $\pi \in \mathbf{D}_{k-2}$. Finally, note that π contains exactly j valleys since there are $j D U \mathrm{~s}$ in π, and thus $n(f)=v(\pi)$.

In order to show that ϕ is injective, we need to show that for different $f_{1}, f_{2} \in \mathcal{F}_{k, 2 i}^{123}$, we have $\phi\left(f_{1}\right) \neq \phi\left(f_{2}\right)$. If $n\left(f_{1}\right) \neq n\left(f_{2}\right)$, then $v\left(\phi\left(f_{1}\right)\right) \neq v\left(\phi\left(f_{2}\right)\right)$ and thus $\phi\left(f_{1}\right) \neq \phi\left(f_{2}\right)$. If $n\left(f_{1}\right)=n\left(f_{2}\right)=j$, where $1 \leq j \leq k-3$, suppose that the cut-pairs of f_{1} are $b_{p_{1}} t_{p_{1}}, b_{p_{2}} t_{p_{2}}$, $\ldots, b_{p_{j}} t_{p_{j}}$ and the cut-pairs of f_{2} are $b_{p_{1}}^{\prime} t_{p_{1}}^{\prime}, b_{p_{2}}^{\prime} t_{p_{2}}^{\prime}, \ldots, b_{p_{j}}^{\prime} t_{p_{j}}^{\prime}$. Let j^{*} be the smallest index
such that $b_{p_{j^{*}}} t_{p_{j^{*}}} \neq b_{p_{j^{*}}}^{\prime} t_{p_{j^{*}}}^{\prime}$, so that for any $j^{* *}, 1 \leq j^{* *}<j^{*}$, we have $b_{p_{j^{* *}}} t_{p_{j^{* *}}}=b_{p_{j^{* *}}}^{\prime} t_{p_{j^{* *}}}^{\prime}$. According to the definition of $\phi, \phi\left(f_{1}\right)$ and $\phi\left(f_{2}\right)$ are the same in the first $k-1-b_{p_{j^{*}-1}}$ upsteps and the first $k-t_{p_{j^{*}-1}}$ down-steps. Then in $\phi\left(f_{1}\right), b_{p_{j^{*}-1}}-b_{p_{j^{*}}}$ up-steps and $t_{p_{j^{*}-1}}-t_{p_{j^{*}}}$ down-steps follow, and in $\phi\left(f_{2}\right), b_{p_{j^{*}-1}}-b_{p_{j^{*}}}^{\prime}$ up-steps and $t_{p_{j^{*}-1}}-t_{p_{j^{*}}}^{\prime}$ down-steps follow. However, because either $b_{p_{j^{*}-1}}-b_{p_{j^{*}}} \neq b_{p_{j^{*}-1}}-b_{p_{j^{*}}}^{\prime}$ or $t_{p_{j^{*}-1}}-t_{p_{j^{*}}} \neq t_{p_{j^{*}-1}}-t_{p_{j^{*}}}^{\prime}$, we have that $\phi\left(f_{1}\right) \neq \phi\left(f_{2}\right)$.

To complete the proof, it remains to describe the inverse map ϕ^{-1}. For any Dyck path $\pi \in \mathbf{D}_{k-2}$ with $v(\pi)=j, \pi$ must be of the form

$$
\begin{equation*}
\underbrace{U \cdots U}_{\alpha_{1}} \underbrace{D \cdots D}_{\beta_{1}} \underbrace{U \cdots U}_{\alpha_{2}} \underbrace{D \cdots D}_{\beta_{2}} \cdots \cdots \underbrace{U \cdots}_{\alpha_{j}} \underbrace{D \cdots D}_{\beta_{j}} \underbrace{U \cdots U}_{\alpha_{j+1}} \underbrace{D \cdots D}_{\beta_{j+1}}, \tag{3}
\end{equation*}
$$

where $\alpha_{m}>0$ and $\beta_{m}>0$ for $1 \leq m \leq j+1$, and $\sum_{i=1}^{j+1} \alpha_{i}=\sum_{i=1}^{j+1} \beta_{i}=k-2$. We define the corresponding cut-equivalence class as follows. For $1 \leq m \leq j$, let

$$
b_{p_{m}}=k-1-\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right)
$$

and

$$
t_{p_{m}}=k-\left(\beta_{1}+\beta_{2}+\cdots+\beta_{m}\right)
$$

It is clear that $k-1>b_{p_{1}}>b_{p_{2}}>\cdots>b_{p_{j}}>1$ and $k>t_{p_{1}}>t_{p_{2}}>\cdots>t_{p_{j}}>2$. By Lemma 2.3, the cut-pairs of a 123 -avoiding up-down word uniquely determine the cut-equivalence class that it belongs to. Thus, we can determine the cut-equivalence class f corresponding to the Dyck path π from the sequence of integer pairs $\left\{\left(b_{p_{m}}, t_{p_{m}}\right)\right\}_{m=1}^{j}$. Clearly, we have $n(f)=j$.

Moreover, combining forms (2) and (3), we can get that $\phi \circ \phi^{-1}=\phi^{-1} \circ \phi=i d$. This completes the proof.

To illustrate the bijection given in Theorem 2.4, we consider the set $S_{5,2 i}^{123}$ whose five cut-equivalence classes were listed above. The Dyck paths corresponding to these classes, in the respective order, are given in Figure 2. Class 1 is the only class in $S_{5,2 i}^{123}$ which has no cut-pair. Classes 2, 3 and $\mathbf{4}$ have one cut-pair. The only class in $S_{5,2 i}^{123}$ which has two cut-pairs is Class 5.

Figure 2: Dyck paths corresponding to cut-equivalence Classes $1-5$ in $S_{5,2 i}^{123}$, respectively.
The following statement is an immediate corollary to Theorem 2.4 and well-known enumerative properties of Dyck paths.

Corollary 2.5. There are C_{k-2} equivalence classes with respect to the cut-equivalence relation in $S_{k, 2 i}^{123}$. Moreover, the number of cut-equivalence classes with j cut-pairs in $S_{k, 2 i}^{123}$ is $N_{k-2, j}$, where $0 \leq j \leq k-3$.

2.3 An alternative enumeration of $N_{k, 2 i}^{123}$

Corollary 2.5 allows us to give an alternative, combinatorial proof of the following theorem appearing in [2].

Theorem 2.6. [2] For $k \geq 3$, we have

$$
N_{k, 2 i}^{123}=\frac{1}{i+1}\binom{i+k-2}{i}\binom{i+k-1}{i} .
$$

Proof. Let f be the cut-equivalence class corresponding to cut-pairs $b_{p_{1}} t_{p_{1}}, b_{p_{2}} t_{p_{2}}, \ldots$, $b_{p_{j}} t_{p_{j}}$. We first claim that the number of words belonging to f is $\binom{2 k-4+i-j}{2 k-4}$. Indeed, by Lemma 2.3, any word $w \in f$ must be obtained from (1). Further, by Theorem 2.4, there are at most $2(k-2)+1=2 k-3$ distinct pairs in (1), which gives an upper bound on the number of distinct pairs in \mathcal{P}_{w}. For $1 \leq i \leq 2 k-3$, we let x_{i} denote the number of times the i-th pair in (1), from left to right, appears in w. Thus the words in f are in 1 -to- 1 correspondence with nonnegative solutions of the equation $x_{1}+x_{2}+\cdots+x_{2 k-3}=i$, where specified $j x_{m} \mathrm{~s}$ (corresponding to cut-pairs) are forced to be positive. The number of such solutions is $\binom{2 k-4+i-j}{2 k-4}$, as desired.

Combining the last statement with Corollary 2.5, we obtain that

$$
N_{k, 2 i}^{123}=\sum_{j=0}^{k-3} N_{k-2, j}\binom{2 k-4+i-j}{2 k-4} .
$$

On the other hand, the following identity involving the Narayana numbers, where $k \geq 3$, can be checked, e.g. by Mathematica:

$$
N_{k+i-1, i}=\sum_{j=0}^{k-3} N_{k-2, j}\binom{2 k-4+i-j}{2 k-4} .
$$

Thus, $N_{k, 2 i}^{123}=N_{k+i-1, i}$ completing our proof.
To illustrate Theorem 2.6, the words in the five cut-equivalence classess in $S_{5,2 i}^{123}$ are enumerated by $\binom{i+6}{6},\binom{i+5}{6},\binom{i+5}{6},\binom{i+5}{6}$, and $\binom{i+4}{6}$, respectively. Hence, the number of words in $S_{5,2 i}^{123}$ is

$$
\binom{i+6}{6}+3\binom{i+5}{6}+\binom{i+4}{6}=\frac{1}{i+1}\binom{i+4}{4}\binom{i+3}{3} .
$$

3 Enumeration of length 3 consecutive pattern-avoiding up-down words

The following theorem is a straightforward corollary to a result in [2], since the patterns $\underline{123}$ and $\underline{321}$ do not bring any new restrictions on alternating words.

Theorem 3.1. We have

$$
N_{k, \ell}^{\frac{123}{}}=N_{k, \ell}^{\frac{321}{}}=M_{k, \ell},
$$

where the numbers $M_{k, \ell}$ satisfy the following recurrence relation for $k \geq 3$ and $\ell \geq 2$:

$$
\begin{equation*}
M_{k, \ell}=M_{k-1, \ell}+\sum_{i=0}^{\left\lfloor\frac{\ell-1}{2}\right\rfloor} M_{k-1,2 i} M_{k, \ell-2 i-1}-\delta_{\ell \text { is even }} \cdot M_{k-1, \ell-2} \tag{4}
\end{equation*}
$$

with the initial conditions $M_{k, 0}=1, M_{k, 1}=k$ for $k \geq 2$, and $M_{2, \ell}=1$ for $\ell \geq 2$. Here $\delta_{\ell \text { is even }}$ is the Kronecher delta (it is 1 if ℓ is even and 0 otherwise).

Proof. It follows from the definition of up-down words that any such word is necessarily $\underline{123}$-avoiding and $\underline{321}$-avoiding. Thus, $N_{k, \ell}^{123}=N_{k, \ell}^{321}=M_{k, \ell}$, where $M_{k, \ell}$ is the number of all up-down words of length ℓ over $[k]$. The rest of the proof follows from [2, Formula (1)].

$3.1 \quad$ 132-avoiding up-down words

Table 2 provides the numbers $N_{k, \ell}^{132}$ of up-down words of length ℓ over an alphabet $[k]$ for small values of k and ℓ. For convenience, we present separately even and odd length cases.

k	0	2	4	6	8
2	1	1	1	1	1
3	1	3	7	15	31
4	1	6	25	90	301
5	1	10	65	350	1701

k	1	3	5	7	9
2	2	1	1	1	1
3	3	4	8	16	32
4	4	10	33	106	333
5	5	20	98	456	2034

Table 2: $N_{k, \ell}^{132}$ for small values of k and ℓ.

We first give a description of 132 -avoiding up-down words.
Lemma 3.2. An up-down word $w=w_{1} w_{2} \cdots w_{\ell}$ is $\underline{132}$-avoiding if and only if the bottom elements of w are weakly decreasing from left to right, i.e.,

$$
b_{1} \geq b_{2} \geq \cdots \geq b_{\left\lceil\frac{\ell}{2}\right\rceil}
$$

Proof. For w, if there would exist $1 \leq j \leq\left\lceil\frac{\ell}{2}\right\rceil-1$ such that $b_{j}<b_{j+1}$, then $b_{j} t_{j} b_{j+1}$ would form an occurrence of the pattern 132 .

Conversely, if there is an occurrence $w_{j} w_{j+1} w_{j+2}$ of the pattern $\underline{132}$ in w, where $1 \leq$ $j \leq \ell-2$, then we have $w_{j}<w_{j+2}<w_{j+1}$. According to the definition of up-down words,
w_{j+1} must be a top element in w, and w_{j} and w_{j+2} must be bottom elements in w, and $w_{j}<w_{j+2}$.

This completes the proof.
Let $A_{k, \ell}=N_{k, \ell}^{132}$. We begin with enumerating $A_{k, 2 i}$.
Lemma 3.3. For $k \geq 3$ and $i \geq 1$, the numbers $A_{k, 2 i}$ satisfy the following recurrence relation:

$$
\begin{equation*}
A_{k, 2 i}=A_{k-1,2 i}+(k-1) A_{k, 2 i-2} \tag{5}
\end{equation*}
$$

with the initial conditions $A_{2,2 i}=1$ for all $i \geq 1$ and $A_{k, 0}=1$ for all $k \geq 2$.
Proof. Note that any 132 -avoiding up-down word w of length $2 i, i \geq 1$, belongs to one of the following two cases:
(a) There are no 1 s in w. These words are counted by $A_{k-1,2 i}$ (which can be seen by subtracting a 1 from each element in w);
(b) There is at least one 1 in w. By Lemma 3.2, $w_{2 i-1}=1$, since $w_{2 i-1}$ is the minimum element in w. Thus w is of the form $w^{\prime} 1 w^{\prime \prime}$, where w^{\prime} is a 132 -avoiding up-down word of length $2 i-2$ and $w^{\prime \prime}$ is a letter in $\{2,3, \ldots, k\}$. Such words are counted by $(k-1) A_{k, 2 i-2}$.

The initial conditions are easy to check, which concludes our proof.
Theorem 3.4. For all $k \geq 2$ and $i \geq 0$, we have

$$
A_{k, 2 i}=S(k+i-1, k-1)
$$

where $S(n, m)$ is the Stirling number of the second kind. Therefore,

$$
\begin{equation*}
A_{k, 2 i}=\frac{1}{(k-1)!} \sum_{j=0}^{k-1}(-1)^{k-j-1}\binom{k-1}{j} j^{i+k-1} \tag{6}
\end{equation*}
$$

Proof. By Lemma 3.3, we have that $A_{k, 2 i}=S(k+i-1, k-1)$ since these numbers have the same recurrence relation and initial conditions. Indeed, from a well-known recurrence relation for Stirling numbers of the second kind:

$$
S(k+i-1, k-1)=S(k+i-2, k-2)+(k-1) S(k+i-2, k-1),
$$

together with their initial conditions $S(i+1,1)=1$ for all $i \geq 0$ and $S(k-1, k-1)=1$ for all $k \geq 2$. The formula (6) now follows from the well-known formula for Stirling numbers of the second kind [4]. This completes the proof.

We now turn out attention to considering $A_{k, 2 i+1}$.
Theorem 3.5. For all $k \geq 2$ and $i \geq 1$, we have

$$
\begin{equation*}
A_{k, 2 i+1}=\sum_{j=2}^{k} A_{j, 2 i}=\sum_{j=1}^{k-1} \frac{1}{j!} \sum_{j^{\prime}=0}^{j}(-1)^{j-j^{\prime}}\binom{j}{j^{\prime}} j^{i+j} . \tag{7}
\end{equation*}
$$

Proof. Let $A_{k, \ell}^{j}$ denote the number of those words counted by $A_{k, \ell}$ that end with j. It is easy to see that for $k \geq 2$ and $i \geq 1$,

$$
A_{k, 2 i+1}=\sum_{j=1}^{k-1} A_{k, 2 i+1}^{j}
$$

By Lemma 3.2, for any word $w \in S_{k, 2 i+1}^{132}$ whose last letter is j, the minimum letter of w is also j. Thus, we have that

$$
A_{k, 2 i+1}^{j}=A_{k-j+1,2 i+1}^{1}
$$

where $1 \leq j \leq k-1$, because we can subtract j from each letter of any word counted by $A_{k, 2 i+1}^{j}$. Moreover, for any word in $S_{k-j+1,2 i+1}^{132}$ ending with 1 , we can remove 1 to form a word of length $2 i$, which is also 132 -avoiding. On the other hand, for any word $S_{k-j+1,2 i}^{132}$, we can adjoin the letter 1 at the end to form a $\underline{132}$-avoiding word of length $2 i+1$. Thus,

$$
A_{k-j+1,2 i+1}^{1}=A_{k-j+1,2 i}
$$

So, we obtain that

$$
A_{k, 2 i+1}=\sum_{j=1}^{k-1} A_{k-j+1,2 i}=\sum_{j=2}^{k} A_{j, 2 i} .
$$

The desired equality follows from (6), which completes the proof.
Theorem 3.6. For $k \geq 2$, let $N_{k}^{132}(x)=\sum_{\ell \geq 0} A_{k, \ell} x^{\ell}$ be the generating function for $N_{k, \ell}^{132}$. Then we have

$$
N_{k}^{132}(x)=\sum_{j=1}^{k} \frac{x+\delta_{j, k}}{\left(1-x^{2}\right)\left(1-2 x^{2}\right) \cdots\left(1-(j-1) x^{2}\right)},
$$

where $\delta_{j, k}=1$ if $j=k$ and $\delta_{j, k}=0$ otherwise.
Proof. Let

$$
A_{k}(x)=\sum_{i \geq 0} A_{k, 2 i} x^{i}
$$

By Lemma 3.3, it follows that

$$
\begin{aligned}
A_{k}(x) & =\sum_{i \geq 0} A_{k, 2 i} x^{i} \\
& =1+\sum_{i \geq 1} A_{k-1,2 i} x^{i}+(k-1) \sum_{i \geq 1} A_{k, 2 i-2} x^{i} \\
& =A_{k-1}(x)+(k-1) x A_{k}(x)
\end{aligned}
$$

for $k \geq 2$ and $A_{1}(x)=1$. This leads to the following well-known generating function for Stirling numbers of the second kind, where $k \geq 1$:

$$
A_{k}(x)=\frac{1}{(1-x)(1-2 x) \cdots(1-(k-1) x)}
$$

From the definition of $N \frac{132}{k}(x)$ as well as the fact $A_{k, 1}=k$, we have that

$$
\begin{aligned}
N_{k}^{132}(x) & =\sum_{\ell \geq 0} A_{k, \ell} x^{\ell} \\
& =\sum_{i \geq 0} A_{k, 2 i} x^{2 i}+\sum_{i \geq 0} A_{k, 2 i+1} x^{2 i+1} \\
& =A_{k}\left(x^{2}\right)+\sum_{i \geq 0} \sum_{j=2}^{k} A_{j, 2 i} x^{2 i+1}+x \\
& =A_{k}\left(x^{2}\right)+x \sum_{j=2}^{k} \sum_{i \geq 0} A_{j, 2 i} x^{2 i}+x \\
& =A_{k}\left(x^{2}\right)+x \sum_{j=2}^{k} A_{j}\left(x^{2}\right)+x \\
& =\sum_{j=1}^{k} \frac{x+\delta_{j, k}}{\left(1-x^{2}\right)\left(1-2 x^{2}\right) \cdots\left(1-(j-1) x^{2}\right)},
\end{aligned}
$$

as desired. This completes the proof.
In fact, there is another relation between the odd length and even length cases enumeration for $A_{k, \ell}$, which can easily be obtained form our results above. The following proposition gives a combinatorial proof of this relation.

Proposition 3.7. For $k \geq 2$ and $i \geq 1$, we have

$$
A_{k, 2 i}=A_{k, 2 i+1}-A_{k-1,2 i+1} .
$$

Proof. For any word $w=w_{1} w_{2} \cdots w_{2 i+1} \in S_{k, 2 i+1}^{132}, w_{2 i+1}=b_{i+1}$ must be the minimum letter in w, so w belongs to one of the following two cases:
(a) There are no 1 s in w. Such words are counted by $A_{k-1,2 i+1}$ (which can be seen by subtracting a 1 from each element in w).
(b) There is at least one 1 in w. Then $w_{2 i+1}=1$, and such words are counted by $A_{k, 2 i}$. This completes the proof.

3.2 312-avoiding up-down words

In this subsection, we consider the enumeration of 312-avoiding up-down words, which is similar to the enumeration of $\underline{132}$-avoiding up-down words done in Subsection 3.1. Table 3 provides the numbers $N_{k, \ell}^{312}$ for small values of k and ℓ.

k	0	2	4	6	8
2	1	1	1	1	1
3	1	3	6	12	24
4	1	6	20	65	206
5	1	10	50	238	1080

k	1	3	5	7	9
2	2	1	1	1	1
3	3	5	11	23	47
4	4	14	53	182	593
5	5	30	173	874	4089

Table 3: $N_{k, \ell}^{312}$ for small values of k and ℓ.
We begin with giving a description of $\underline{312 \text {-avoiding up-down words. }}$
Lemma 3.8. An up-down word $w=w_{1} w_{2} \cdots w_{\ell}$ is $\underline{312 \text {-avoiding if and only if the top }}$ elements of w are weakly increasing from left to right, i.e.,

$$
t_{1} \leq t_{2} \leq \cdots \leq t_{\left\lfloor\frac{\ell}{2}\right\rfloor}
$$

Proof. For any up-down word w, if there exists $1 \leq j \leq\left\lfloor\frac{\ell}{2}\right\rfloor-1$ such that $t_{j}>t_{j+1}$, then $t_{j} b_{j+1} t_{j+1}$ would be an occurrence of the pattern $\underline{312}$.

Conversely, if there is an occurrence $w_{j} w_{j+1} w_{j+2}$ of the pattern $\underline{312}$ in w, where $1 \leq$ $j \leq \ell-2$, we would have $w_{j+1}<w_{j+2}<w_{j}$. By definition of up-down words, w_{j+1} must be a bottom element in w, and w_{j} and w_{j+2} must be top elements in w. But then $w_{j}>w_{j+2}$.

This completes the proof.
For $\ell \geq 2$, let $B_{k, \ell}$ denote the number of 312 -avoiding up-down words of length ℓ over an alphabet $[k]$. Also, let $B_{k, 0}=1$ and to simplify our calculations, we assume that $B_{k, 1}=k-1$.

First, we deal with the enumeration of $B_{k, 2 i+1}$.
Theorem 3.9. For $k \geq 2$ and $i \geq 1$, the numbers $B_{k, 2 i+1}$ satisfy the following recurrence relation:

$$
\begin{equation*}
B_{k, 2 i+1}=B_{k-1,2 i+1}+(k-1) B_{k, 2 i-1} \tag{8}
\end{equation*}
$$

with the initial conditions $B_{1,2 i+1}=0$ for all $i \geq 1$ and $B_{k, 1}=k-1$ for all $k \geq 2$. Moreover, for $k \geq 2$ and $i \geq 1$, we have

$$
B_{k, 2 i+1}=\sum_{\substack{j=1, \ldots, k-1 \\ i_{j}+\cdots+i_{k-1}=i}} j^{i_{j}}(j+1)^{i_{j+1}} \cdots(k-1)^{i_{k-1}}
$$

where i_{m} are nonnegative integers for all $j \leq m \leq k-1$.
Proof. Our proof of (8) is similar to the proof of (5) considering subclasses of whether k appears in w or not, and we omit it.

For any $k \geq 1$, let

$$
B_{k}(x)=\sum_{i \geq 0} B_{k, 2 i+1} x^{i}
$$

By (8), we have

$$
\begin{aligned}
B_{k}(x) & =\sum_{i \geq 0} B_{k, 2 i+1} x^{i} \\
& =k-1+\sum_{i \geq 1} B_{k-1,2 i+1} x^{i}+(k-1) \sum_{i \geq 1} B_{k, 2 i-1} x^{i} \\
& =1+B_{k-1}(x)+(k-1) x B_{k}(x)
\end{aligned}
$$

for $k \geq 2$. Therefore,

$$
B_{k}(x)=\frac{B_{k-1}(x)+1}{1-(k-1) x}
$$

with the initial condition $B_{1}(x)=0$ and $B_{2}(x)=\frac{1}{1-x}$.
Hence, for $k \geq 2$, we have

$$
\begin{aligned}
B_{k}(x) & =\frac{1}{(1-x)(1-2 x) \cdots(1-(k-1) x)}+\frac{1}{(1-2 x) \cdots(1-(k-1) x)}+\cdots+\frac{1}{1-(k-1) x} \\
& =\sum_{j=1}^{k-1} \frac{1}{(1-j x) \cdots(1-(k-1) x)} \\
& =\sum_{j=1}^{k-1}\left[\sum_{i_{j} \geq 0} j^{i_{j}} x^{i_{j}} \cdots \sum_{i_{k-1} \geq 0}(k-1)^{i_{k-1}} x^{i_{k-1}}\right] \\
& =\sum_{j=1}^{k-1} \sum_{i_{j}+\cdots+i_{k-1}=i} j^{i_{j}}(j+1)^{i_{j+1}} \cdots(k-1)^{i_{k-1}} x^{i},
\end{aligned}
$$

where i_{m} are nonnegative integers for all $j \leq m \leq k-1$. Thus, taking the same coefficients on both sides of the above equation, we get the desired formula, which completes the proof.

Now we turn our attention to the words of even length.
Theorem 3.10. For all $k \geq 2$ and $i \geq 2$,

$$
B_{k, 2 i}=\sum_{j=2}^{k} B_{j, 2 i-1}
$$

Proof. Let $B_{k, \ell}^{j}$ denote the number of those words counted by $B_{k, \ell}$ that end with j for $\ell \geq 2$. It is easy to see that for $k \geq 2$ and $i \geq 2$,

$$
B_{k, 2 i}=\sum_{j=2}^{k} B_{k, 2 i}^{j} .
$$

For any word $w \in S_{k, 2 i}^{312}$ whose last letter is j, by Lemma 3.8, the maximum letter of w is also j. Thus, for $2 \leq j \leq k$, we have that

$$
B_{k, 2 i}^{j}=B_{j, 2 i}^{j} .
$$

Moreover, for any word in $S_{j, 2 i}^{312}$ ending with j, we can remove j to form a word of length $2 i-1$, which is also 312 -avoiding. On the other hand, for any word $S_{j, 2 i-1}^{312}$, we can adjoin a letter j at the end to form a 312 -avoiding word of length $2 i$. Thus,

$$
B_{j, 2 i}^{j}=B_{j, 2 i-1} .
$$

So, we obtain that

$$
B_{k, 2 i}=\sum_{j=2}^{k} B_{j, 2 i-1}
$$

which completes the proof.
Proposition 3.11. For $k \geq 2$, let $N_{k}^{\underline{312}}(x)=x+\sum_{\ell \geq 0} B_{k, \ell} x^{\ell}$ be the generating function for $N_{k, \ell}^{312}$. Then

$$
N_{k}^{312}(x)=1+x+\sum_{j=2}^{k} \sum_{i=1}^{j-1} \frac{x^{2}+x \delta_{j, k}}{\left(1-i x^{2}\right) \cdots\left(1-(j-1) x^{2}\right)},
$$

where $\delta_{j, k}=1$ if $j=k$ and $\delta_{j, k}=0$ otherwise.
Proof. From Theorem 3.10 together with the fact $B_{k, 2}=\sum_{j=2}^{k} B_{j, 1}=\binom{k}{2}$, we obtain that

$$
\begin{aligned}
N_{k}^{312}(x) & =x+\sum_{\ell \geq 0} B_{k, \ell} x^{\ell} \\
& =x+\sum_{i \geq 0} B_{k, 2 i} x^{2 i}+\sum_{i \geq 0} B_{k, 2 i+1} x^{2 i+1} \\
& =1+x+\sum_{i \geq 1} \sum_{j=2}^{k} B_{j, 2 i-1} x^{2 i}+x B_{k}\left(x^{2}\right) \\
& =1+x+x^{2} \sum_{j=2}^{k} B_{j}\left(x^{2}\right)+x B_{k}\left(x^{2}\right) \\
& =1+x+\sum_{j=2}^{k} \sum_{i=1}^{j-1} \frac{x^{2}+x \delta_{j, k}}{\left(1-i x^{2}\right) \cdots\left(1-(j-1) x^{2}\right)} .
\end{aligned}
$$

This completes the proof.

In fact, there is also a relation between even length and odd length enumeration cases similarly to those of 132 -avoidance. It is recorded in the next proposition whose proof we omit.

Proposition 3.12. For all $k \geq 2$ and $i \geq 2$, we have

$$
B_{k, 2 i-1}=B_{k, 2 i}-B_{k-1,2 i} .
$$

3.3 213-avoiding or 231-avoiding up-down words

In what follows, we resume using $N_{k, \ell}^{p}$ for the number of p-avoiding up-down words of length ℓ over an alphabet $[k]$.

Theorem 3.13. For all $k \geq 2$ and $i \geq 0$, we have

$$
N_{k, 2 i+1}^{213}=N_{k, 2 i+1}^{312}
$$

and

$$
N_{k, 2 i}^{231}=N_{k, 2 i}^{2 i+1} .
$$

Proof. The equalities hold by applying the reverse operation to all words, which keeps the property of being an up-down word. This completes the proof.

For the case of the even lengths, we have the following result.
Theorem 3.14. For all $k \geq 2$ and $i \geq 1$, there is

$$
N_{k, 2 i}^{213}=N_{k, 2 i}^{132}
$$

and

$$
N_{k, 2 i}^{231}=N_{k, 2 i}^{312} .
$$

Proof. The statement follows by applying the complement and reverse operations which turns an up-down word into an up-down word. This completes the proof.

4 Enumeration of up-down words avoiding a vincular pattern of length 3

In Section 3, we enumerated up-down words avoiding consecutive patterns of length 3, which are a particular case of vincular patterns. In this section, we consider avoidance of other vincular patterns of length 3 on up-down words. We divide patterns of the form $x y z$ into three subcases; in each subcase proofs are similar.

4.1 132-avoiding or 312-avoiding up-down words

Similarly to our considerations above, we first give a description of $1 \underline{32}$-avoiding up-down words.

Theorem 4.1. The following two statements hold:
(a) An up-down word $w=w_{1} w_{2} \cdots w_{\ell}$ is $1 \underline{32-a v o i d i n g ~ i f ~ a n d ~ o n l y ~ i f ~ t h e ~ b o t t o m ~ e l e m e n t s ~}$ of w are weakly decreasing from left to right, i.e.,

$$
b_{1} \geq b_{2} \geq \cdots \geq b_{\left\lceil\frac{\ell}{2}\right\rceil}
$$

(b) An up-down word w is 122-avoiding if and only if w is 132-avoiding, and thus, for $k \geq 2$ and $\ell \geq 0$, we have

$$
N_{k, \ell}^{132}=N_{k, \ell}^{132},
$$

which is enumerated in Subsection 3.1.
Proof.
(a) For w, if there exists $1 \leq j \leq\left\lceil\frac{\ell}{2}\right\rceil-1$ such that $b_{j}<b_{j+1}$, then $b_{j} t_{j} b_{j+1}$ would be an occurrence of the pattern $1 \underline{32}$.

Conversely, if in w there is an occurrence $w_{j^{*}} w_{j} w_{j+1}$ of the pattern 132, where $1 \leq j^{*}<j \leq \ell-1$, we would have $w_{j^{*}}<w_{j+1}<w_{j}$. According to the definition of up-down words, w_{j} must be a top element and w_{j+1} must be a bottom element in w. If $w_{j^{*}}$ is a bottom element, then there is $w_{j^{*}}<w_{j+1}$ and the bottom element $w_{j^{*}}$ is to the left of the bottom element w_{j+1}. If $w_{j^{*}}$ is a top element, then there is $w_{j^{*}+1}<w_{j^{*}}<w_{j+1}$, and the bottom element $w_{j^{*}+1}$ is to the left of the bottom element w_{j+1}.
(b) Combining Lemma 3.2 and (a), we get the desired result.

This completes the proof.
The enumeration of $3 \underline{12}$-avoiding up-down words is similar to that of $1 \underline{32}$-avoiding up-down words, and we omit a proof of the following theorem leaving it to the interested Reader.

Theorem 4.2. The following two statements hold:
(a) An up-down word w is 312-avoiding if and only if the top elements of w are weakly increasing from left to right, i.e.,

$$
t_{1} \leq t_{2} \leq \cdots \leq t_{\left\lfloor\frac{\ell}{2}\right\rfloor}
$$

(b) An up-down word w is 312-avoiding if and only if w is 312-avoiding. Thus, for all $k \geq 2$ and $\ell \geq 0$, we have

$$
N_{k, \ell}^{3 \frac{12}{}}=N_{k, \ell}^{312} .
$$

4.2 231-avoiding or 213-avoiding up-down words

Our proof of the following lemma is very similar to the proof of Theorem 4.1 (a), and thus is omitted.

Lemma 4.3. In a 231-avoiding up-down word, the bottom elements are weakly increasing from left to right, i.e.,

$$
b_{1} \leq b_{2} \leq \cdots \leq b_{\left\lceil\frac{\ell}{2}\right\rceil}
$$

Note that unlike Theorem 4.1 (a), we do not have "if and only if" statement in Lemma 4.3 as demonstrate, e.g., by the word 12131.

The following theorem shows that avoidance of the pattern $2 \underline{31}$ is equivalent to avoidance of the classical pattern 231 studied in [2].

Theorem 4.4. An up-down word $w=w_{1} w_{2} \cdots w_{\ell}$ is 231-avoiding if and only if w is 231-avoiding.

Proof. If w has an occurrence of the pattern 231 then it clearly has an occurrence of the pattern 231. Thus, we just need to show that if w is 231-avoiding, then w is 231-avoiding. Suppose that w is 231-avoiding, but there is an occurrence $w_{j_{1}} w_{j_{2}} w_{j_{3}}$ of the pattern 231 in w , that is, $j_{1}<j_{2}<j_{3}$ and $w_{j_{3}}<w_{j_{1}}<w_{j_{2}}$. Among all such occurrences, we can pick one which has $j_{3}-j_{1}$ minimum possible.
(a) If $w_{j_{2}}$ is a bottom element, then $w_{j_{3}}$ must be a top element by Lemma 4.3. Since $w_{j_{3}-1}<w_{j_{3}}$, we have that $w_{j_{2}} \neq w_{j_{3}-1}$. But then, $w_{j_{2}}$ and $w_{j_{3}-1}$ are bottom elements such that $w_{j_{3}-1}$ is to the right of $w_{j_{2}}$ and $w_{j_{3}-1}<w_{j_{2}}$ contradicting Lemma 4.3.
(b) If $w_{j_{2}}$ is a top element, we have the following cases to consider. If $j_{3}=j_{2}+1$, then $w_{j_{1}} w_{j_{2}} w_{j_{3}}$ is an occurrence of the pattern $2 \underline{331}$, which is impossible. If $j_{3} \geq j_{2}+2$ and $w_{j_{3}}$ is a bottom element, according to the definition of up-down words and Lemma 4.3, we have $w_{j_{2}+1} \leq w_{j_{3}}$ and thus $w_{j_{1}} w_{j_{2}} w_{j_{2}+1}$ is an occurrence of the pattern 231; contradiction. Finally, if $j_{3} \geq j_{2}+2$ and $w_{j_{3}}$ is a top element, then $w_{j_{1}} w_{j_{2}} w_{j_{3}-1}$ is an occurrence of the pattern 231 with $w_{j_{1}}$ and $w_{j_{3}-1}$ being closer to each other than $w_{j_{1}}$ and $w_{j_{3}}$ contradicting our choice of $w_{j_{1}} w_{j_{2}} w_{j_{3}}$.

The proof is completed.
The following statement is a direct corollary to Theorem 4.4.
Corollary 4.5. For all $k \geq 2$ and $\ell \geq 0$, we have

$$
N_{k, \ell}^{231}=N_{k, \ell}^{231}
$$

which is enumerated in Theorem 2.1.

The enumeration of $2 \underline{13}$-avoiding up-down words is similar to that of $2 \underline{31}$-avoiding up-down words. Here we list all the results about the former objects omitting the proofs.

Theorem 4.6. The following two statements hold:
(a) In an up-down 213-avoiding word w, the top elements are weakly increasing from left to right, i.e.,

$$
t_{1} \geq t_{2} \geq \cdots \geq t_{\left\lfloor\frac{\ell}{2}\right\rfloor}
$$

(b) An up-down word w is 213-avoiding if and only if w is 213-avoiding. Thus, for all $k \geq 2$ and $\ell \geq 0$, we have

$$
N_{k, \ell}^{213}=N_{k, \ell}^{213}
$$

which is enumerated in Theorem 2.1.

Note that in Theorem 4.6 (a) we do not have an "if and only if" statement, as shown by, e.g., the word 2313 .

4.3 123-avoiding or 321-avoiding up-down words

A description of $1 \underline{23}$-avoiding up-down words is as follows.
Lemma 4.7. An up-down word $w=w_{1} w_{2} \cdots w_{\ell}$ is $1 \underline{23}$-avoiding if and only if

$$
b_{1} \geq b_{2} \geq \cdots \geq b_{\left\lfloor\frac{e}{2}\right\rfloor}
$$

Proof. For any $1 \underline{23}$-avoiding up-down word w, if there exists $1 \leq j \leq\left\lfloor\frac{\ell}{2}\right\rfloor-1$ such that $b_{j}<b_{j+1}$, then $b_{j} b_{j+1} t_{j+1}$ is an occurrence of the pattern $1 \underline{23}$, which is a contradiction.

Conversely, if there is an occurrence $w_{j^{*}} w_{j} w_{j+1}$ of the pattern $1 \underline{23}$ in w, where $1 \leq$ $j^{*}<j \leq \ell$, we would have $w_{j^{*}}<w_{j}<w_{j+1}$. According to the definition of up-down words, w_{j} must be a bottom element, and w_{j+1} must be a top element in w. If $w_{j^{*}}$ is a bottom element, then $w_{j^{*}}$ is to the left of w_{j} and $w_{j^{*}}<w_{j}$. If $w_{j^{*}}$ is a top element, then the bottom element $w_{j^{*}+1} \neq w_{j}$ is to the left of w_{j} and $w_{j^{*}+1}<w_{j}$.

This completes the proof.
We can now obtain the following enumerative result.
Theorem 4.8. The following two statements hold, where $N_{k, \ell}^{132}$ is enumerated in Subsection 3.1:
(a) For all $k \geq 2$ and $i \geq 0$, we have

$$
N_{k, 2 i}^{123}=N_{k, 2 i}^{132} .
$$

(b) For all $k \geq 2$ and $i \geq 1$, there is

$$
N_{k, 2 i+1}^{123}=N_{k, 2 i+1}^{132}+\sum_{j=1}^{k-1}\binom{k-j}{2} N_{k-j+1,2 i-2}^{132} .
$$

Proof. (a) follows immediately from Lemmas 3.2 and 4.7.
For (b), there are two cases to consider:

- $b_{i} \geq b_{i+1}$. These words are counted by $N_{k, 2 i+1}^{132}$;
- $b_{i}<b_{i+1}$. Then, b_{i} is the minimum element in w. Suppose that $b_{i}=j$, where $1 \leq j \leq k-1$. Then the word w must be of the form $w^{\prime} j w^{\prime \prime}$, where w^{\prime} is a $1 \underline{23-}$ avoiding up-down word of length $2 i-2$ over $\{j, j+1, \ldots, k\}$, and $w^{\prime \prime}$ is a down-up word of length 2 over $\{j+1, \ldots, k\}$. Thus, the words in question are counted by $\sum_{j=1}^{k-1}\binom{k-j}{2} N_{k-j+1,2 i-2}^{132}$.

This completes the proof.
The case of enumeration of $3 \underline{21}$-avoiding up-down words is similar to that of 123avoiding up-down words conducted above. Thus, we omit our proof of the following theorem.

Theorem 4.9. The following three statements hold:
(a) An up-down word w is 321-avoiding if and only if

$$
t_{1} \leq t_{2} \leq \cdots \leq t_{\left\lfloor\frac{\ell-1}{2}\right\rfloor}
$$

(b) For all $k \geq 2$ and $i \geq 0$, we have

$$
N_{k, 2 i+1}^{321}=N_{k, 2 i}^{312} .
$$

(c) For all $k \geq 2$ and $i \geq 2$, we have

$$
N_{k, 2 i}^{321}=N_{k, 2 i}^{312}+\sum_{j=2}^{k}\binom{j-1}{2}\left(N_{j, 2 i-3}^{312}-\delta_{i, 2}\right),
$$

where $\delta_{i, 2}=1$ if $i=2$ and $\delta_{i, 2}=0$ otherwise.

4.4 The remaining cases

The remaining enumeration cases for vincular pattern-avoiding up-down words are obtained by applying the reverse and complement operations to our obtained results. We record these cases in the following two theorems.

Theorem 4.10. For all $k \geq 2$ and $i \geq 0$, we have

$$
N_{k, 2 i}^{123}=N_{k, 2 i}^{123}, \quad N_{k, 2 i}^{213}=N_{k, 2 i}^{132}, \quad N_{k, 2 i}^{132}=N_{k, 2 i}^{213}
$$

and

$$
N_{k, 2 i}^{312}=N_{k, 2 i}^{231}, \quad N_{k, 2 i}^{231}=N_{k, 2 i}^{312}, \quad N_{k, 2 i}^{321}=N_{k, 2 i}^{321} .
$$

Theorem 4.11. For all $k \geq 2$ and $i \geq 0$, we have

$$
N_{k, 2 i+1}^{123}=N_{k, 2 i+1}^{321}, \quad N_{k, 2 i+1}^{213}=N_{k, 2 i+1}^{312}, \quad N_{k, 2 i+1}^{132}=N_{k, 2 i+1}^{231}
$$

and

$$
N_{k, 2 i+1}^{\frac{312}{2}}=N_{k, 2 i+1}^{213}, \quad N_{k, 2 i+1}^{231}=N_{k, 2 i+1}^{132}, \quad N_{k, 2 i+1}^{321}=N_{k, 2 i+1}^{123} .
$$

5 Concluding remarks

In this paper, we not only enumerated all cases of length 3 vincular pattern-avoidance on alternating words providing a link, e.g., to the Stirling numbers of the second kind, but also discussed the structure of 123 -avoiding up-down words of even length. As the result, we provided an alternative, combinatorial proof of the fact that these words are counted by the Narayana numbers. However, our combinatorial proof uses a bijection between Dyck paths and certain equivalence classes on words in question, along with a known relation on Narayana numbers. It is still desirable to provide a direct combinatorial proof of the fact that 123 -avoiding up-down words of even length are counted by the Narayana numbers, namely, a bijection sending these words to Dyck paths directly is still missing.

Also, it would be interesting to describe the structure of 132-avoiding up-down words of even length, e.g., via the notion of a cut-pair introduced in this paper, and possibly provide an alternative proof of the fact that these words are counted by the Narayana numbers, as was shown in [2]. We leave this as an open research direction.

Finally, there are many other types of patterns studied in the literature (see [3]) and one could study occurrences of these patterns on alternating words, which should bring more links to known combinatorial structures.

Acknowledgments

The work of the first and the third authors was supported by the 973 Project, the PCSIRT Project of the Ministry of Education and the National Science Foundation of China. The
second author is grateful to the administration of the Center for Combinatorics at Nankai University for their hospitality during the author's stay in June-July 2015.

References

[1] E. Babson and E. Steingrímsson. Generalized permutation patterns and a classification of the Mahonian statistics. Seminaire Lotharingien de Combinatoire, B44b:18pp, 2000.
[2] E. L.L. Gao, S. Kitaev, and P. B. Zhang. Pattern-avoiding alternating words, arXiv:1505.04078.
[3] S. Kitaev. Patterns in permutations and words. Springer-Verlag, 2011.
[4] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
[5] R. P. Stanley. A survey of alternating permutations. In Combinatorics and graphs, volume 531 of Contemp. Math., pages 165-196. Amer. Math. Soc., Providence, RI, 2010.

