Log-concavity of the Fennessey-Larcombe-French Sequence

Arthur L.B. Yang ${ }^{1}$ and James J.Y. Zhao ${ }^{2}$
${ }^{1}$ Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P. R. China
${ }^{2}$ Center for Applied Mathematics
Tianjin University, Tianjin 300072, P. R. China
Email: ${ }^{1}$ yang@nankai.edu.cn, ${ }^{2}$ jjyzhao@tju.edu.cn

Abstract

We prove the log-concavity of the Fennessey-Larcombe-French sequence based on its three-term recurrence relation, which was recently conjectured by Zhao. The key ingredient of our approach is a sufficient condition for log-concavity of a sequence subject to certain three-term recurrence.

AMS Classification 2010: Primary 05A20
Keywords: Log-concavity, the Fennessey-Larcombe-French sequence, three-term recurrence.

1 Introduction

The objective of this paper is to prove the log-concavity conjecture of the Fennessey-Larcombe-French sequence, which was posed by Zhao [17] in the study of log-balancedness of combinatorial sequences.

Let us begin with an overview of Zhao's conjecture. Recall that a sequence $\left\{a_{k}\right\}_{k \geq 0}$ is said to be log-concave if

$$
a_{k}^{2} \geq a_{k+1} a_{k-1}, \quad \text { for } k \geq 1,
$$

and it is log-convex if

$$
a_{k}^{2} \leq a_{k+1} a_{k-1}, \quad \text { for } k \geq 1
$$

We say that $\left\{a_{k}\right\}_{k \geq 0}$ is log-balanced if the sequence itself is log-convex while $\left\{\frac{a_{k}}{k!}\right\}_{k \geq 0}$ is log-concave.

The Fennessey-Larcombe-French sequence $\left\{V_{n}\right\}_{n \geq 0}$ can be given by the following threeterm recurrence relation [9]

$$
\begin{equation*}
n(n+1)^{2} V_{n+1}=8 n\left(3 n^{2}+5 n+1\right) V_{n}-128(n-1)(n+1)^{2} V_{n-1}, \quad \text { for } n \geq 1, \tag{1.1}
\end{equation*}
$$

with the initial values $V_{0}=1$ and $V_{1}=8$. This sequence was introduced by Larcombe, French and Fennessey [8], in connection with a series expansion of the complete elliptic integral of the second kind, precisely,

$$
\int_{0}^{\pi / 2} \sqrt{1-c^{2} \sin ^{2} \theta} d \theta=\frac{\pi \sqrt{1-c^{2}}}{2} \sum_{n=0}^{\infty}\left(\frac{1-\sqrt{1-c^{2}}}{16}\right)^{n} V_{n}
$$

The Fennessey-Larcombe-French sequence is closely related to the Catalan-LarcombeFrench sequence, which was first studied by E. Catalan [1] and later examined and clarified by Larcombe and French [7]. Let $\left\{P_{n}\right\}_{n \geq 0}$ denote the Catalan-Larcombe-French sequence, and the following three-term recurrence relation holds:

$$
(n+1)^{2} P_{n+1}=8\left(3 n^{2}+3 n+1\right) P_{n}-128 n^{2} P_{n-1}, \quad \text { for } n \geq 1
$$

with $P_{0}=1$ and $P_{1}=8$. As a counterpart of V_{n}, the numbers P_{n} appear as coefficients in the series expansion of the complete elliptic integral of the first kind, precisely,

$$
\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-c^{2} \sin ^{2} \theta}} d \theta=\frac{\pi}{2} \sum_{n=0}^{\infty}\left(\frac{1-\sqrt{1-c^{2}}}{16}\right)^{n} P_{n}
$$

Many interesting properties have been found for the Catalan-Larcombe-French sequence and the Fennessey-Larcombe-French sequence, and the reader may consult references $[5,6,7,8,9,15]$.

Recently, there has arisen an interest in the study of the log-behavior of the Catalan-Larcombe-French sequence. For instance, Xia and Yao [13] obtained the log-convexity of the Catalan-Larcombe-French sequence, and confirmed a conjecture of Sun [11]. By using a log-balancedness criterion due to Došlić [4], Zhao [16] proved the log-balancedness of the Catalan-Larcombe-French sequence.

Zhao further studied the log-behavior of the Fennessey-Larcombe-French sequence, and obtained the following result.

Theorem 1.1 ([17]). Both $\left\{n V_{n}\right\}_{n \geq 1}$ and $\left\{\frac{V_{n}}{(n-1)!}\right\}_{n \geq 1}$ are log-concave.
She also made the following conjecture.
Conjecture 1.2. The Fennessey-Larcombe-French sequence $\left\{V_{n}\right\}_{n \geq 1}$ is log-concave.
Note that the Hadamard product of two log-concave sequences without internal zeros is still log-concave, see [14, Proposition 2]. Since both $\{n\}_{n \geq 1}$ and $\left\{\frac{1}{(n-1)!}\right\}_{n \geq 1}$ are logconcave, Conjecture 1.2 implies Theorem 1.1.

In this paper, we obtain a sufficient condition for proving the log-concavity of a sequence satisfying a three-term recurrence. Then we give an affirmative answer to Conjecture 1.2 by using this criterion. By further employing a result of Wang and Zhu [12, Theorem 2.1], we derive the monotonicity of the sequence $\left\{\sqrt[n]{V_{n+1}}\right\}_{n \geq 1}$ from the \log concavity of $\left\{V_{n}\right\}_{n \geq 1}$.

2 Log-concavity derived from three-term recurrence

The aim of this section is to prove the log-concavity of the Fennessey-Larcombe-French sequence based on its three-term recurrence relation.

We first give a sufficient condition for log-concavity of a positive sequence subject to certain three-term recurrence. It should be mentioned that the log-behavior of sequences satisfying three-term recurrences has been extensively studied, see Liu and Wang [10], Chen and Xia [3], Chen, Guo and Wang [2], and Wang and Zhu [12]. However, most of these studies have focused on the log-convexity of such sequences instead of their log-concavity. Our criterion for determining the log-concavity of a sequence satisfying a three-term recurrence is as follows.

Proposition 2.1. Let $\left\{S_{n}\right\}_{n \geq 0}$ be a positive sequence satisfying the following recurrence relation:

$$
\begin{equation*}
a(n) S_{n+1}+b(n) S_{n}+c(n) S_{n-1}=0, \quad \text { for } n \geq 1 \tag{2.2}
\end{equation*}
$$

where $a(n), b(n)$ and $c(n)$ are real functions in n. Suppose that there exists an integer n_{0} such that for any $n>n_{0}$,
(i) it holds a n) >0, and
(ii) either $b^{2}(n)<4 a(n) c(n)$ or $\frac{S_{n}}{S_{n-1}} \geq \frac{-b(n)+\sqrt{b^{2}(n)-4 a(n) c(n)}}{2 a(n)}$.

Then the sequence $\left\{S_{n}\right\}_{n \geq n_{0}}$ is log-concave, namely, $S_{n}^{2} \geq S_{n+1} S_{n-1}$ for any $n>n_{0}$.
Proof. Let $r(n)=\frac{S_{n}}{S_{n-1}}$. It suffices to show that $r(n) \geq r(n+1)$ for any $n>n_{0}$. On one hand, the conditions (i) and (ii) imply that

$$
a(n) r^{2}(n)+b(n) r(n)+c(n) \geq 0, \quad \text { for } n>n_{0} .
$$

Since $\left\{S_{n}\right\}_{n \geq 0}$ is a positive sequence, so is $\left\{r_{n}\right\}_{n \geq 1}$. Thus, the above inequality is equivalent to the following

$$
\begin{equation*}
a(n) r(n)+b(n)+\frac{c(n)}{r(n)} \geq 0, \quad \text { for } n>n_{0} . \tag{2.3}
\end{equation*}
$$

On the other hand, dividing both sides of (2.2) by S_{n}, we obtain

$$
\begin{equation*}
a(n) r(n+1)+b(n)+\frac{c(n)}{r(n)}=0 . \tag{2.4}
\end{equation*}
$$

Combining (2.3) and (2.4), we get

$$
a(n) r(n+1) \leq a(n) r(n), \quad \text { for } n>n_{0} .
$$

By the condition (i), we have $r(n+1) \leq r(n)$ for any $n>n_{0}$. This completes the proof.

We are now able to give the main result of this section, which offers an affirmative answer to Conjecture 1.2.

Theorem 2.2. Let $\left\{V_{n}\right\}_{n \geq 0}$ be the Fennessey-Larcombe-French sequence given by (1.1). Then, for any $n \geq 2$, we have $V_{n}^{2} \geq V_{n-1} V_{n+1}$.

Proof. By the recurrence relation (1.1), we have $V_{1}=8, V_{2}=144, V_{3}=2432$ and $V_{4}=$ 40000. It is easy to verify that $V_{2}^{2} \geq V_{1} V_{3}$ and $V_{3}^{2} \geq V_{2} V_{4}$.

We proceed to use Proposition 2.1 to prove that $V_{n}^{2}>V_{n-1} V_{n+1}$ for $n>3$, namely taking $n_{0}=3$. For the sequence $\left\{V_{n}\right\}_{n \geq 0}$, the corresponding polynomials $a(n), b(n), c(n)$ appearing in Proposition 2.1 are as follows:

$$
\begin{aligned}
& a(n)=n(n+1)^{2} \\
& b(n)=-8 n\left(3 n^{2}+5 n+1\right) \\
& c(n)=128(n-1)(n+1)^{2}
\end{aligned}
$$

It is clear that $a(n)>0$ for any $n>3$. By a routine computation, we get

$$
b^{2}(n)-4 a(n) c(n)=64\left(n^{6}+6 n^{5}+15 n^{4}+26 n^{3}+25 n^{2}+8 n\right)>0, \quad \text { for } n>3
$$

It suffices to show that

$$
\begin{equation*}
\frac{V_{n}}{V_{n-1}} \geq \frac{-b(n)+\sqrt{b^{2}(n)-4 a(n) c(n)}}{2 a(n)}, \quad \text { for } n>3 \tag{2.5}
\end{equation*}
$$

This inequality also implies the positivity of V_{n} since its right-hand side is positive for any $n>3$. (Note that $b(n)$ is negative.) However, it is difficult to directly prove (2.5). The key idea of our proof is to find an intermediate function $h(n)$ such that

$$
\frac{V_{n}}{V_{n-1}} \geq h(n) \geq \frac{-b(n)+\sqrt{b^{2}(n)-4 a(n) c(n)}}{2 a(n)}, \quad \text { for } n>3
$$

Let

$$
\begin{equation*}
h(n)=\frac{16\left(n^{3}-n^{2}+1\right)}{n^{3}-n^{2}}, \quad \text { for } n \geq 2 \tag{2.6}
\end{equation*}
$$

and we shall show that this function fulfills our purpose. This will be done in two steps.
First, we need to prove that

$$
\begin{equation*}
h(n)-\frac{-b(n)+\sqrt{b^{2}(n)-4 a(n) c(n)}}{2 a(n)} \geq 0, \quad \text { for } n>3 \tag{2.7}
\end{equation*}
$$

A straightforward computation shows that the quantity on the left-hand side is equal to

$$
\frac{32\left(4 n^{6}+7 n^{5}+n^{4}+n^{3}+9 n^{2}+8 n+2\right)}{\left(n^{4}-n^{2}\right)(n+1)\left(n^{5}+2 n^{4}+n^{2}+8 n+4+\left(n^{2}-n\right) \sqrt{n^{6}+6 n^{5}+15 n^{4}+26 n^{3}+25 n^{2}+8 n}\right)},
$$

which is clearly positive for $n>3$.

Second, we need to prove that

$$
\begin{equation*}
\frac{V_{n}}{V_{n-1}} \geq h(n), \quad \text { for } n>3 \tag{2.8}
\end{equation*}
$$

For the sake of convenience, let $g(n)=\frac{V_{n}}{V_{n-1}}$. We use induction on n to prove that $g(n) \geq h(n)$ for $n>3$. By the recurrence relation (1.1), we have

$$
\begin{equation*}
g(n+1)=\frac{8\left(3 n^{2}+5 n+1\right)}{(n+1)^{2}}-\frac{128(n-1)}{n g(n)}, \quad n \geq 1, \tag{2.9}
\end{equation*}
$$

with the initial value $g(1)=8$. It is clear that $g(3)=152 / 9=h(3)$ and $g(4)=625 / 38>$ $49 / 3=h(4)$ by (2.6) and (2.9). Assume that $g(n)>h(n)$, and we proceed to show that $g(n+1)>h(n+1)$. Note that

$$
\begin{aligned}
g(n+1)-h(n+1) & =\frac{8\left(3 n^{2}+5 n+1\right)}{(n+1)^{2}}-\frac{128(n-1)}{n g(n)}-\frac{16\left(n^{3}+2 n^{2}+n+1\right)}{n(n+1)^{2}} \\
& =\frac{8\left(n^{3}+n^{2}-n-2\right)}{n(n+1)^{2}}-\frac{128(n-1)}{n g(n)} \\
& =\frac{8\left(n^{3}+n^{2}-n-2\right) g(n)-128(n-1)(n+1)^{2}}{n(n+1)^{2} g(n)} .
\end{aligned}
$$

By the induction hypothesis, we have $g(n)>h(n)>0$ and thus

$$
\begin{aligned}
g(n+1)-h(n+1) & >\frac{8\left(n^{3}+n^{2}-n-2\right) h(n)-128(n-1)(n+1)^{2}}{n(n+1)^{2} g(n)} \\
& =\frac{128\left(2 n^{2}-n-2\right)}{n^{3}(n-1)(n+1)^{2} g(n)}>0 .
\end{aligned}
$$

Combining (2.7) and (2.8), we obtained the inequality (2.5). This completes the proof.
Wang and Zhu [12, Theorem 2.1] showed that if $\left\{z_{n}\right\}_{n \geq 0}$ is a log-concave sequence of positive integers with $z_{0}>1$, then $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is strictly decreasing. Applying their criterion to the Fennessey-Larcombe-French sequence, we obtain immediately the following result.

Proposition 2.3. The sequence $\left\{\sqrt[n]{V_{n+1}}\right\}_{n \geq 1}$ is strictly decreasing.
Proof. Let $\left\{z_{n}\right\}_{n \geq 0}$ be the sequence given by $z_{n}=V_{n+1}$. It is clear that $z_{0}=V_{1}=8>1$. Moreover, by Theorem 2.2, the sequence $\left\{z_{n}\right\}_{n \geq 0}$ is log-concave. Thus, $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is strictly decreasing by [12, Theorem 2.1].
Acknowledgements. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education and the National Science Foundation of China.

References

[1] E. Catalan, Sur les Nombres de Segner, Rend. Circ. Mat. Palermo, 1 (1887) 190-201.
[2] W.Y.C. Chen, J.J.F. Guo and L.X.W. Wang, Infinitely log-monotonic combinatorial sequences, Adv. Appl. Math., 52 (2014) 99-120.
[3] W.Y.C. Chen and E.X.W. Xia, The 2-log-convexity of the Apéry Numbers, Proc. Amer. Math. Soc., 139 (2011) 391-400.
[4] T. Došlić, Log-balanced combinatorial sequences, Int. J. Math. Math. Sci., 4 (2005) 507-522.
[5] A.F. Jarvis, P.J. Larcombe and D.R. French, Linear recurrences between two recent integer sequences, Congr. Numer., 169 (2004) 79-99.
[6] F. Jarvis and H.A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J., 22 (2010) 171-186.
[7] P.J. Larcombe and D.R. French, On the "other" Catalan numbers: a historical formulation re-examined, Congr. Numer., 143 (2000) 33-64.
[8] P.J. Larcombe, D.R. French and E.J. Fennessey, The Fennessey-Larcombe-French sequence $\{1,8,144,2432,40000, \ldots\}$: formulation and asymptotic form, Congr. Numer., 158 (2002) 179-190.
[9] P.J. Larcombe, D.R. French and E.J. Fennessey, The Fennessey-Larcombe-French sequence $\{1,8,144,2432,40000, \ldots\}$: a recursive formulation and prime factor decomposition, Congr. Numer., 160 (2003) 129-137.
[10] L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. Appl. Math., 39 (2007) 453-476.
[11] Z.W. Sun, Conjectures involving arithmetical sequences, in Numbers Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H. Li and J. Liu), Proc. 6th China-Japan Seminar (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. arXiv: 1208.2683v9.
[12] Y. Wang and B.X. Zhu, Proofs of some conjectures on monotonicity of numbertheoretic and combinatorial sequences, Sci. China Math., 57(11) (2014) 2429-2435.
[13] E.X.W. Xia and O.X.M. Yao, A criterion for the log-convexity of combinatorial sequences, Electron. J. Combin., 20(4) (2013) \#P3.
[14] R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci., 576 (1989) 500-535.
[15] D. Zagier, Integral solutions of Apéry-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
[16] F.-Z. Zhao, The log-behavior of the Catalan-Larcombe-French sequences, Int. J. Number Theory, 10 (2014) 177-182.
[17] F.-Z. Zhao, The log-balancedness of combinatorial sequences, The 6th National Conference on Combinatorics and Graph Theory, Guangzhou, November 7-10, 2014, China.

