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Abstract

A path P in an edge-colored graph G is called a proper path if no two adjacent

edges of P are colored the same, and G is proper connected if every two vertices

of G are connected by a proper path in G. The proper connection number of a

connected graph G, denoted by pc(G), is the minimum number of colors that are

needed to make G proper connected. In this paper, we investigate the proper con-

nection number of the complement of a graph G according to some constraints of G

itself. Also, we characterize the graphs on n vertices that have proper connection

number n− 2. Using this result, we give a Nordhaus-Gaddum-type theorem for the

proper connection number. We prove that if G and G are both connected, then

4 ≤ pc(G) + pc(G) ≤ n, and the upper bound holds if and only if G or G is the

n-vertex tree with maximum degree n− 2.
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Nordhaus-Gaddum-type
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1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow

the terminology and the notation of Bondy and Murty [2]. The distance between t-
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wo vertices u and v in a connected graph G, denoted by dist(u, v), is the length of a

shortest path between them in G. The eccentricity of a vertex v in G is defined as

eccG(v) = max{dist(x, v) : x ∈ V (G)}, and the diameter of G denoted by diam(G) is

defined as diam(G) = max{eccG(v) : x ∈ V (G)}.
An edge coloring of a graph G is an assignment c of colors to the edges of G, one color

to each edge of G. If adjacent edges of G are assigned different colors by c, then c is a

proper (edge) coloring. The minimum number of colors needed in a proper coloring of G is

referred to as the chromatic index of G and denoted by χ′(G). A path in an edge-colored

graph with no two edges sharing the same color is called a rainbow path. An edge-colored

graph G is said to be rainbow connected if every pair of distinct vertices of G is connected

by at least one rainbow path in G. Such a coloring is called a rainbow coloring of the

graph. The minimum number of colors in a rainbow coloring of G is referred to as the

rainbow connection number of G and denoted by rc(G). The concept of rainbow coloring

was first introduced by Chartrand et al. in [5]. In recent years, the rainbow coloring has

been extensively studied and has gotten a variety of nice results, see [4, 6, 11, 12, 14] for

examples. For more details we refer to a survey paper [15] and a book [16].

Inspired by rainbow colorings and proper colorings in graphs, Andrews et al. [1] in-

troduce the concept of proper-path colorings. Let G be an edge-colored graph, where

adjacent edges may be colored the same. A path P in G is called a proper path if no two

adjacent edges of P are colored the same. An edge-coloring c is a proper-path coloring of

a connected graph G if every pair of distinct vertices u, v of G is connected by a proper

u− v path in G. A graph with a proper-path coloring is said to be proper connected. If k

colors are used, then c is referred to as a proper-path k-coloring. The minimum number

of colors needed to produce a proper-path coloring of G is called the proper connection

number of G, denoted by pc(G).

Let G be a nontrivial connected graph of order n and size m. Then the proper

connection number of G has the following bounds:

1 ≤ pc(G) ≤ min{χ′(G), rc(G)} ≤ m.

Furthermore, pc(G) = 1 if and only if G = Kn and pc(G) = m if and only if G = K1,m is

a star of size m.

Among many interesting problems of determining the proper connection numbers of

graphs, it is worth while to study the proper connection number of G according to some

constraints of the complementary graph. In [17], the authors considered this kind of

question for the rainbow connection number rc(G).

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or prod-
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uct of the values of a parameter for a graph and its complement. The name “Nordhaus-

Gaddum-type” is given because Nordhaus and Gaddum [18] first established the type of

inequalities for the chromatic number of graphs in 1956. They proved that if G and G

are complementary graphs on n vertices whose chromatic numbers are χ(G) and χ(G),

respectively, then 2
√
n ≤ χ(G) + χ(G) ≤ n + 1. Since then, many analogous inequalities

of other graph parameters have been considered, such as diameter [9], domination number

[10], rainbow connection number [7, 8], generalized edge-connectivity [13], and so on.

The rest of this paper is organized as follows: In Section 2, we list some important

known results on proper connection number. In Section 3, we investigate the proper

connection number of the complement of a graph G according to some constraints of G.

In Section 4, we first characterize the graphs on n vertices that have proper connection

number n − 2. Using this result, we give a Nordhaus-Gaddum-type theorem for the

proper connection number. We prove that if G and G are both connected, then 4 ≤
pc(G) + pc(G) ≤ n, and the upper bound holds if and only if G or G is the n-vertex tree

with maximum degree n− 2.

2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path

colorings which can be found in [1].

Lemma 2.1. [1] If G is a connected graph and H is a connected spanning subgraph of G,

then pc(G) ≤ pc(H). In particular, pc(G) ≤ pc(T ) for every spanning tree T of G.

Lemma 2.2. [1] Let G be a connected graph that contains bridges. If b is the maximum

number of bridges incident to a single vertex in G, then pc(G) ≥ b.

Lemma 2.3. [1] If T is a tree with at least two vertices, then pc(T ) = χ′(T ) = ∆(T ).

Given a colored path P = v1v2 . . . vs−1vs between any two vertices v1 and vs, we denote

by start(P ) the color of the first edge in the path, i.e. c(v1v2), and by end(P ) the last

color, i.e. c(vs−1vs). If P is just the edge v1vs then start(P ) = end(P ) = c(v1vs).

Definition 2.1. Let c be an edge-coloring of G that makes G proper connected. We say G

has the strong property if for any pair of vertices u and v ∈ V (G), there exist two proper

paths P1 and P2 between them (not necessarily disjoint) such that start(P1) 6= start(P2)

and end(P1) 6= end(P2).
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In [3], the authors studied proper-connection numbers in bipartite graphs. Also, they

presented a result which improve the upper bound ∆(G) of pc(G) and this result is best

possible whenever the graph G is bipartite and 2-connected.

Lemma 2.4. [3] Let G be a graph. If a graph G is bipartite and 2-connected then pc(G) =

2 and there exists a 2-edge-coloring of G such that G has the strong property.

Every complete k-partite graphG = Kn1,n2,...,nk
contains a spanning bipartite subgraph

H = Kn1+n2+...nk−1,nk
. We know that H is 2-connected if nk ≥ 2 and k ≥ 3. Therefore,

we have the following result.

Corollary 2.5. Every complete k-partite graph G (k ≥ 3) except for the complete graph

Kk has proper connection number two, and there exists a 2-edge-coloring c of G such that

G has the strong property.

For general 2-connected graphs, Borozan et al. [3] gave a tight upper bound for the

proper connection number.

Lemma 2.6. [3] Let G be a graph. If a graph G is 2-connected then pc(G) ≤ 3 and there

exists a 3-edge-coloring c of G such that G has the strong property.

Lemma 2.7. Let H = G∪{v1}∪{v2} such that H is connected. If there is a proper-path

k-coloring c of G such that G has the strong property, then pc(H) ≤ k.

Proof. Let {1, 2, . . . , k} be the color set of c. If v1v2 ∈ E(H), since H is connected, then

there is a vertex u ∈ V (G) such that u is adjacent to either v1 or v2. Without loss of

generality, suppose that uv1 ∈ E(H). We extend the coloring c of G to the whole graph

H by assigning color 1 to uv1, and 2 to v1v2. To show that H is proper connected, we

only need to find a proper path between v1 and w for any w ∈ V (G). Since G has the

strong property, there exist two proper paths P1, P2 between w and u (not necessarily

disjoint) such that start(P1) 6= start(P2) and end(P1) 6= end(P2). We can get that at

least one of wP1uv1 and wP2uv1 is a proper path. Then we know that pc(H) ≤ k. Thus,

we may assume that v1v2 /∈ E(H). Let u1 ∈ NH(v1) and u2 ∈ NH(v2). If u1 = u2, we

assign color 1 to u1v1, and 2 to u2v2. Otherwise, we have that u1 6= u2. Since G is proper

connected, there exists a proper path P of G connecting u1 and u2. We assign a color

of c being distinct from start(P ) to u1v1, and a color of c being distinct from end(P )

to u2v2. It can be easily checked that H is proper connected. Hence pc(H) ≤ k follows

correspondingly.
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Figure 1: G and G with diam(G) ≥ 4

3 Proper connection number of the complementary

graph

We first investigate the proper connection number of G if graph G has diameter at

least 4.

Theorem 3.1. If G is a connected graph with diam(G) ≥ 4, then pc(G) = 2.

Proof. First of all, we see that G is connected since otherwise diam(G) ≤ 2, contradicting

the condition diam(G) ≥ 4. We choose a vertex x with eccG(x) = diam(G). Let Ni(x) =

{v : dist(x, v) = i} where 0 ≤ i ≤ 3 and N4(x) = {v : dist(x, v) ≥ 4}. So N0 = {x} and

N1 = NG(x). In the rest of our paper, we use Ni instead of Ni(x) for convenience. By the

definition of Ni, we know that uv ∈ E(G) for any u ∈ Ni, v ∈ Nj with |i− j| ≥ 2. Now we

give G an edge-coloring as follows: we first assign the color 1 to the edges xu for u ∈ N3,

and to all edges between N1 and N4; next we give the color 2 to all the remaining edges.

We prove that there is a proper path between any two vertices u and v in G. It is trivial

when uv ∈ E(G). Thus we only need to consider the pairs u, v ∈ Ni or u ∈ Ni, v ∈ Ni+1.

As P = xx3x1x4x2 is a proper path where xi ∈ Ni, one can see that u and v are connected

by a proper path for any u ∈ Ni, v ∈ Ni+1. So it suffices to show that for any u, v ∈ Ni,

there is a proper path connecting them in G. For i = 1, let P = ux3xx4v where x3 ∈ N3

and x4 ∈ N4. Clearly, P is a proper path. Similarly, there is a proper path connecting

any two vertices u, v ∈ N3 or N4. For i = 2, let Q = uxx3x1x4v, where x1 ∈ N1, x3 ∈ N3

and x4 ∈ N4. One can see that Q is a proper path. Thus G is proper connected. Hence

we have pc(G) = 2.
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Figure 2: G and G with diam(G) = 3

Theorem 3.2. For a connected noncomplete graph G, if G does not belong to the following

two cases: (i) diam(G) = 2, 3, (ii) G contains exactly two components and one of them

is trivial, then pc(G) = 2.

Proof. If G is connected, we know that diam(G) ≥ 4. Hence pc(G) = 2 clearly holds by

Theorem 3.1. Now we may assume that G is disconnected. Suppose that Gi (1 ≤ i ≤ h)

are the components of G with ti = |V (Gi)|. Then G contains a spanning subgraph

Kt1,t2,...,th . By the assumption, G has either at least three components or exactly two

nontrivial components. Then we have pc(G) = 2 from Lemma 2.4 and Corollary 2.5.

If diam(G) = 3, we have the following theorem for the proper connection number of

G.

Theorem 3.3. Let G be a connected graph with diam(G) = 3 and x the vertex of G such

that eccG(x) = 3 (see Fig. 2). Denote by ni the number of vertices that has distance i

to x for i = 1, 2, 3. We have pc(G) = 2 for the two cases (i) n1 = n2 = n3 = 1, (ii)

n2 = 1, n3 ≥ 2. For the remaining cases, if G is triangle-free, then pc(G) = 2.

Proof. If n1 = n2 = n3 = 1. Then G is a 4-path P4, and so pc(G) = pc(P4) = 2. Then we

consider the case that n2 = 1, n3 ≥ 2. One can see thatG[N0∪N1∪N3] contains a spanning

subgraph K1+n1,n3
. By Lemmas 2.1 and 2.4, we know that pc(G[N0 ∪ N1 ∪ N3]) = 2.

Hence, we can get that pc(G) = 2 from Lemma 2.7. The remaining cases are: (1)

n1 > 1, n2 = n3 = 1, and (2) n2 ≥ 2.

If G is triangle-free, then N1 is an independent set in G, and so a clique in G. We

give G an edge-coloring as follows: assign color 1 to xx2 and x1x3 for any x1 ∈ N1, x2 ∈
N2, x3 ∈ N3 and assign color 2 to all the other edges in G. Now we prove that this is a

proper-path 2-coloring of G.
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For any u ∈ Ni and v ∈ Nj with |i− j| ≥ 2 or u, v ∈ N1, one have that uv ∈ G. Since

P = x2xx3x1 is a proper path for any xi ∈ Ni for i = 1, 2, 3, one can see that u and v are

connected by a proper path for any u ∈ Ni, v ∈ Ni+1. So we only need to consider the

case that for any u, v ∈ N2 or N3 with uv 6∈ E(G), there is a proper path between them.

In fact, as G is triangle-free, if uv ∈ E(G), one can see that there is a vertex w ∈ N1

such that wu ∈ E(G) and wv 6∈ E(G). Thus P = uxx3wv is a proper path connecting

u and v in G where x3 ∈ N3. Similarly, we can see that for any u, v ∈ N3, there is a

proper path between them. Thus we have that this coloring is a proper-path 2-coloring.

So pc(G) = 2.

Remark: If n2 = n3 = 1 and n1 > 1, letN3 = {x3}, and n′
1 = |{v ∈ N1 : NG(v)∩N1 =

∅}|. One can see that there are n′
1 cut edges in G that is adjacent to x3. By Lemma 2.2,

we have that pc(G) ≥ n′
1. If n2 ≥ 2, let n′

2 = |{v ∈ N2 : dG(v) = 1}|. One can see that

there are n′
2 cut edges in G that is adjacent to x. By Lemma 2.2, we have that pc(G) ≥ n′

2.

Hence, the condition “G is triangle-free” is necessary to determine the proper connection

number of G in the theorem.

The following corollary clearly holds.

Corollary 3.4. For any tree T that is not a star, one has that pc(T ) = 2.

Theorem 3.5. Let G be a triangle-free graph with diam(G) = 2. If G is connected, then

pc(G) = 2.

Proof. We choose a vertex x with eccG(x) = 2, and Ni = {v : dist(x, v) = i} for i = 0, 1, 2.

One can see that N0 = {x}, N1 = NG(x), and N2 = V \ (N1 ∪N0). As G is triangle-free,

it is obvious that N1 is a clique in G. Since G is connected, then we have that |N1| > 1

and there is at least one edge uv ∈ E(G) such that u ∈ N1 and v ∈ N2.

We give G an edge-coloring as follows: assign color 1 to the edges between N1 and N2,

and assign color 2 to all the other edges in G. Now we prove that this is a proper-path

coloring of G. For any z ∈ N1, we know that P = xvuz (u and z may coincide) is a proper

path. So there are proper paths between x and any other vertices, and there are proper

paths between v and vertices in N1. For any y ∈ N2\{v} and z ∈ N1, ifNG(y)∩N1 6= ∅, let
w ∈ NG(y)∩N1. Then ywz is a proper path between y and z. Otherwise, NG(y)∩N1 = ∅.
We claim that y is adjacent to all the other vertices of N2 in G. In fact, for any vertex

w ∈ N2 \ y, there exists a vertex w′ ∈ N1 such that ww′ ∈ E(G). Since yw′ ∈ E(G), we

know that yw ∈ E(G). Especially, we know that yv ∈ E(G). Then yvuz is a proper path

between y and z. Next consider x2, x
′
2 ∈ N2 such that x2x

′
2 /∈ E(G). Since x2, x

′
2 ∈ N2,
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there are x1, x
′
1 ∈ N1 such that x1x2, x

′
1x

′
2 ∈ E(G). As G is triangle-free, one can see that

x1 6= x′
1 and x1x

′
2, x2x

′
1 ∈ E(G). So we have that x2x

′
1x1x

′
2 is a proper path connecting x1

and x′
1. Hence we have that pc(G) = 2.

Proposition 3.6. If G is triangle-free and contains two components one of which is

trivial, then pc(G) = 2.

Proof. Let G1 and G2 be the two components of G such that V (G1) = {v}. Then

G = G1 ∨ G2, where “∨” is the join of two graphs, that is, vertex v is adjacent to all

the other vertices in G. If G2 is connected, then pc(G2) = 2 from Theorem 3.1, Theorem

3.3 and Theorem 3.5. Hence, we can get that pc(G) = 2. Otherwise, G2 is disconnected.

Since G is triangle-free, we know that G2 has two components, and both of them are

cliques of G2. Suppose that H1 and H2 are the two component of G2, we assign color 1 to

all the edges between v and H1 and assign color 2 to the remaining edges. As P = x1vx2

is a proper path connecting x1 and x2 for any x1 ∈ H1 and x2 ∈ H2. So we have that G

is proper connected. Hence pc(G) = 2.

In conclusion, we can get the following result.

Theorem 3.7. For a connected noncomplete graph G, if G is triangle-free, then pc(G) =

2.

Proof. We consider two cases:

Case 1. G is connected. The result holds for the case diam(G) ≤ 4 from Theorem

3.1, the case diam(G) = 3 from Theorem 3.3 and the case diam(G) = 2 from Theorem

3.5.

Case 2. G is disconnected. The result holds for the case that G contains two com-

ponents with one of them trivial from Proposition 3.6, and holds for the remaining case

from Lemma 2.4 and Corollary 2.5.

4 Nordhaus-Gaddum-Type theorem for proper con-

nection number of graphs

Firstly, we characterize the graphs on n vertices that have proper connection number

n − 2. This result is crucial to investigate the Nordhaus-Gaddum-type result for the

proper connection number of G. We use Cn, Sn to denote the cycle and the star graph

on n vertices, respectively, and use T (a, b) to denote the double star that is obtained by

adding an edge between the center vertices of Sa and Sb. For a nontrivial graph G such
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that G+ uv ∼= G+ xy for every two pairs {u, v}, {x, y} of nonadjacent vertices of G, we

use G+ e to denote the graph obtained from G by joining two nonadjacent vertices of G.

Theorem 4.1. Let G be a connected graph on n vertices. Then pc(G) = n − 2 if and

only if G is one of the following 6 graphs: T (2, n− 2), C3, C4, C4 + e, S4 + e, and S5 + e.

Proof. If G is one of the above 6 graphs, we can easily check that pc(G) = n − 2. So

it remains to verify the converse of the theorem. Suppose that pc(G) = n − 2. If G is

acyclic, from Lemma 2.3, we know that G ∼= T (2, n − 2). So we may assume that G

contains cycles. Let G∗ be a spanning unicycle subgraph of G such that the cycle C in

G∗ is the longest cycle in G. Without loss of generality, suppose that C = v1v2 . . . vkv1

and dG∗(v1) ≥ dG∗(vi) for i = 2, 3, . . . , k. Note that pc(C) = 2 for all k ≥ 4. Giving C a

proper-path 2-coloring and assigning n−k new colors to the remaining n−k edges of G∗,

we get a proper-path coloring of G∗. It follows that pc(G∗) ≤ 2 + n − k. From Lemma

2.1, we know that pc(G) ≤ pc(G∗) ≤ 2 + n − k. Thus we can get that pc(G) < n − 2 if

k > 4, contradicting with the fact that pc(G) = n− 2. So we only need to consider that

k = 3 or k = 4.

If k = 4, let G1 = G∗ − v1v2. One can see that G1 is a spanning tree of G. If n = 4,

then G∗ ∼= C4. We can get that G ∼= C4 or G ∼= C4 + e since the longest cycle of G is

of length 4. So we consider that n ≥ 5. Since dG∗(v1) ≥ dG∗(vi) for i = 2, 3, . . . , k and

G∗ is unicycle, we see that ∆(G1) ≤ n − 3. So by Lemma 2.1, pc(G) ≤ pc(G1) ≤ n − 3,

contradicting the fact that pc(G) = n− 2.

Now we consider the case k = 3. Let c be an edge coloring of G∗ such that the cut

edges are colored by n − 3 distinct colors. If n ≥ 6, that is, G∗ has more than three

cut edges, choose three colors that have been used on the cut edges, say 1, 2, 3. Let

c(v1v2) = 1, c(v2v3) = 2, and c(v3v1) = 3. We know that G∗ is proper connected under

edge-coloring c. Hence pc(G) ≤ pc(G∗) ≤ n−3, contradicting the fact that pc(G) = n−2.

So we may assume that n ≤ 5. If n = 5, one can see that G ∼= S5 + e since otherwise

there is a spanning P5 in G, then pc(G) ≤ pc(P5) = 2, a contradiction. If n = 4, one can

see that G ∼= S4+ e since otherwise there exists a cycle of length 4 in G which contradicts

the assumption k = 3. If n = 3, we know that G ∼= C3 as pc(G) = 1 if and only if G is

complete graph. Hence we have that G ∼= C3, or G ∼= S4 + e, or G ∼= S5 + e when k = 3.

We know that if G is a connected graph with n vertices, then the number of edges

in G must be at least n − 1. If both G and G are connected, then n is at least 4, and

∆(G) ≤ n− 2. Therefore we know that 2 ≤ pc(G) ≤ n− 2. Similarly, 2 ≤ pc(G) ≤ n− 2.

Hence we can obtain that 4 ≤ pc(G) + pc(G) ≤ 2(n − 2). For n = 4, we can easily get
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that pc(G) + pc(G) = 4 if G and G are connected. In the rest of the paper, we always

assume that all graphs have at least 5 vertices, and both G and G are connected.

Lemma 4.2. Let G be a graphs with 5 vertices. If both G and G are connected, one has

that

pc(G) + pc(G) =

{

5 if G ∼= T (2, 3) or G ∼= T (2, 3),

4 otherwise.

Proof. If G ∼= T (2, 3) or G ∼= T (2, 3), then it can be easily checked that pc(G)+pc(G) = 5.

From Theorem 4.1, we know that T (2, 3) is the only graph on 5 vertices that has proper

connection number 3. Since 2 ≤ pc(G) ≤ n− 2 = 3 and 2 ≤ pc(G) ≤ n− 2 = 3, then all

the other graphs considered here on 5 vertices has proper connection number 2. Hence

pc(G) + pc(G) = 4 if G ≇ T (2, 3) and G ≇ T (2, 3).

Theorem 4.3. pc(G) + pc(G) ≤ n for n ≥ 5, and the equality holds if and only if

G ∼= T (2, n− 2) or G ∼= T (2, n− 2).

Proof. By Lemma 4.2, we can see that the result holds if n = 5. So we consider n ≥ 6.

If G ∼= T (2, n − 2), G contains a spanning subgraph H that is obtained by attaching a

pendent edge to the complete bipartite graph K2,n−3. Then pc(G) = 2 by Lemma 2.4 and

Lemma 2.7. The result clearly holds. Similarly, we can also get pc(G) + pc(G) = n if

G ∼= T (2, n−2). To prove our conclusion, we only need to show that pc(G)+pc(G) < n if

G ≇ T (2, n− 2) and G ≇ T (2, n− 2). Under this assumption, we know that 2 ≤ pc(G) ≤
n− 3 and 2 ≤ pc(G) ≤ n− 3 by Theorem 4.1.

Suppose first that both G and G are 2-connected. For n = 6, we claim that pc(G) = 2.

Assume that the circumference of G is k. If k = 6, one has that pc(G) ≤ pc(C6) = 2.

If k = 4, one can see that G contains a spanning K2,4, contradicting the assumption

that G is 2-connected. Assume that G contains a 5-cycle C = v1v2v3v4v5v1, we know

that the vertex v6 is adjacent to two vertices that is nonadjacent in C, say v1, v3. Then

P = v6v1v2v3v4v5 is a hamilton path of G. Hence pc(G) ≤ pc(P ) = 2. So we have that

pc(G) + pc(G) ≤ 2 + n− 3 < n. For n ≥ 7, by Lemma 2.6, we know that pc(G) ≤ 3 and

pc(G) ≤ 3, and so pc(G) + pc(G) ≤ 6, and therefore pc(G) + pc(G) < n clearly holds.

Now we consider the case that at least one of G and G has cut vertices. Without loss

of generality, suppose that G has cut vertices. We distinguish the following three cases.

Case 1. G has a cut vertex u such that G − u has at least three components. Let

G1, G2, . . . , Gk (k ≥ 3) be the components of G− u and let ni be the number of vertices

of Gi for 1 ≤ i ≤ k with n1 ≤ n2 ≤ . . . ≤ nk. From the definition of G, we know that

G−u contains a spanning complete k-partite graph Kn1,n2,...,nk
. Since ∆(G) ≤ n−2, then
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nk ≥ 2. From Corollary 2.5, pc(G− u) = 2, and there exists a 2-edge-coloring c of G− u

that makes it proper connected with the strong property. Hence pc(G) ≤ 2 by Lemma

2.7. Together with the fact that pc(G) ≤ n− 3, we can get the result pc(G) + pc(G) < n.

Case 2. Each cut vertex u of G satisfies that G − u has only two components. Let

G1, G2 be the two components of G − u, and let ni be the number of vertices of Gi for

i = 1, 2 with n1 ≤ n2.

subcase 2.1. n1 ≥ 2, then G − u contains a spanning 2-connected bipartite graph

Kn1,n2
. From Lemma 2.4, we know that pc(G− u) = 2 and there exists a 2-edge-coloring

c of G − u that makes it proper connected with the strong property. So by Lemma 2.7,

pc(G) ≤ 2. We can get the result that pc(G) + pc(G) < n.

subcase 2.2. n1 = 1, that is, each cut vertex is incident with a pendent edge. Let

u1v1, u2v2, . . . , ulvl be the pendent edges of G such that vi is the pendent vertices for

1 ≤ i ≤ l. The pendent edges are pairwise disjoint. Let H be the graph obtained from

G by deleting all the pendent vertices. Then H must be 2-connected. By Lemma 2.6,

we know that pc(H) ≤ 3 and there exists a 3-edge-coloring c of H that makes it proper

connected with the strong property.

If l ≥ 2, we know that G − {u1, u2} contains a spanning bipartite subgraph K2,n−4

with two parts X = {v1, v2} and Y = V (G) \ {u1, v1, u2, v2}. Since v1u2, v2u1 /∈ E(G),

we know that v1u2, v2u1 ∈ E(G). Then by Lemma 2.4 and Lemma 2.7, we have that

pc(G) ≤ 2. By using the fact that pc(G) ≤ n− 3, we have that pc(G) + pc(G) < n.

If l = 1, by Lemma 2.6 and Lemma 2.7, one has that pc(G) ≤ pc(H) ≤ 3. Therefore

we have pc(G) + pc(G) ≤ n. Now we prove that the equality cannot be attained. Note

that dG(v1) = n − 2. We know that G contains T0 as a proper spanning subgraph. Set

NG(v1) = {x1, · · · , xn−2} = V (G) \ {u1, v1}. Without loss of generality, assume that

x1u1 6∈ E(G). So x1u1 ∈ E(G). If there is a vertex xj (2 ≤ j ≤ n− 2) that is adjacent to

x1 in G, assume without loss of generality that x1x2 ∈ E(G). Let c(v1x1) = 1, c(x1x2) =

2, c(v1x2) = c(x1u1) = 3 and c(v1xi) = i − 2 for i = 3, 4 · · · , n − 2. One can see that

G is proper connected. If there is a vertex xj (2 ≤ j ≤ n − 2) that is adjacent to

u1 in G, assume without loss of generality that x2u2 ∈ E(G). Let c(v1xi) = i − 2 for

i = 3, 4 · · · , n − 2 and c(v1x1) = c(u1x2) = 1, c(v1x2) = c(x1u1) = 2. One can also see

that G is proper connected. If there are two vertex xj , xk (2 ≤ j < k ≤ n− 2) such that

xjxk ∈ E(G), without loss of generality, assume that x2x3 ∈ E(G). Let c(v1xi) = i − 2

for i = 4, · · · , n − 2, c(v1x1) = c(v1x2) = 1, c(v1x3) = c(x1u1) = 2 and c(x2x3) = 3.

We can check that G is proper connected. Hence we have that pc(G) ≤ max{3, n − 4}.
For n ≥ 7, we can get that pc(G) + pc(G) ≤ 3 + n − 4 = n − 1 < n. For n = 6,

as H is a 2-connected graph with 5 vertices, one can see that H contains a spanning
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C5 or a spanning K2,3. Hence we can easily get that pc(G) ≤ pc(H) = 2. So we have

pc(G) + pc(G) ≤ 2 + 3 = 5 < 6.
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