# Proper connection numbers of complementary graphs* 

Fei Huang, Xueliang Li, Shujing Wang ${ }^{\dagger}$<br>Center for Combinatorics and LPMC<br>Nankai University, Tianjin 300071, China<br>Email: huangfei06@126.com; lxl@nankai.edu.cn; wang06021@126.com


#### Abstract

A path $P$ in an edge-colored graph $G$ is called a proper path if no two adjacent edges of $P$ are colored the same, and $G$ is proper connected if every two vertices of $G$ are connected by a proper path in $G$. The proper connection number of a connected graph $G$, denoted by $p c(G)$, is the minimum number of colors that are needed to make $G$ proper connected. In this paper, we investigate the proper connection number of the complement of a graph $G$ according to some constraints of $G$ itself. Also, we characterize the graphs on $n$ vertices that have proper connection number $n-2$. Using this result, we give a Nordhaus-Gaddum-type theorem for the proper connection number. We prove that if $G$ and $\bar{G}$ are both connected, then $4 \leq p c(G)+p c(\bar{G}) \leq n$, and the upper bound holds if and only if $G$ or $\bar{G}$ is the $n$-vertex tree with maximum degree $n-2$.


Keywords: proper path, proper connection number, complement graph, diameter, Nordhaus-Gaddum-type
AMS subject classification 2010: 05C50, 15A18, 92E10

## 1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow the terminology and the notation of Bondy and Murty [2]. The distance between t-

[^0]wo vertices $u$ and $v$ in a connected graph $G$, denoted by $\operatorname{dist}(u, v)$, is the length of a shortest path between them in $G$. The eccentricity of a vertex $v$ in $G$ is defined as $\operatorname{ecc}_{G}(v)=\max \{\operatorname{dist}(x, v): x \in V(G)\}$, and the diameter of $G$ denoted by $\operatorname{diam}(G)$ is defined as $\operatorname{diam}(G)=\max \left\{\operatorname{ecc}_{G}(v): x \in V(G)\right\}$.

An edge coloring of a graph $G$ is an assignment $c$ of colors to the edges of $G$, one color to each edge of $G$. If adjacent edges of $G$ are assigned different colors by $c$, then $c$ is a proper (edge) coloring. The minimum number of colors needed in a proper coloring of $G$ is referred to as the chromatic index of $G$ and denoted by $\chi^{\prime}(G)$. A path in an edge-colored graph with no two edges sharing the same color is called a rainbow path. An edge-colored graph $G$ is said to be rainbow connected if every pair of distinct vertices of $G$ is connected by at least one rainbow path in $G$. Such a coloring is called a rainbow coloring of the graph. The minimum number of colors in a rainbow coloring of $G$ is referred to as the rainbow connection number of $G$ and denoted by $r c(G)$. The concept of rainbow coloring was first introduced by Chartrand et al. in [5]. In recent years, the rainbow coloring has been extensively studied and has gotten a variety of nice results, see [4, 6, 11, 12, 14] for examples. For more details we refer to a survey paper (15] and a book [16].

Inspired by rainbow colorings and proper colorings in graphs, Andrews et al. [1] introduce the concept of proper-path colorings. Let $G$ be an edge-colored graph, where adjacent edges may be colored the same. A path $P$ in $G$ is called a proper path if no two adjacent edges of $P$ are colored the same. An edge-coloring $c$ is a proper-path coloring of a connected graph $G$ if every pair of distinct vertices $u, v$ of $G$ is connected by a proper $u-v$ path in $G$. A graph with a proper-path coloring is said to be proper connected. If $k$ colors are used, then $c$ is referred to as a proper-path $k$-coloring. The minimum number of colors needed to produce a proper-path coloring of $G$ is called the proper connection number of $G$, denoted by $p c(G)$.

Let $G$ be a nontrivial connected graph of order $n$ and size $m$. Then the proper connection number of $G$ has the following bounds:

$$
1 \leq p c(G) \leq \min \left\{\chi^{\prime}(G), r c(G)\right\} \leq m .
$$

Furthermore, $p c(G)=1$ if and only if $G=K_{n}$ and $p c(G)=m$ if and only if $G=K_{1, m}$ is a star of size $m$.

Among many interesting problems of determining the proper connection numbers of graphs, it is worth while to study the proper connection number of $G$ according to some constraints of the complementary graph. In [17], the authors considered this kind of question for the rainbow connection number $r c(G)$.

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or prod-
uct of the values of a parameter for a graph and its complement. The name "Nordhaus-Gaddum-type" is given because Nordhaus and Gaddum [18] first established the type of inequalities for the chromatic number of graphs in 1956. They proved that if $G$ and $\bar{G}$ are complementary graphs on $n$ vertices whose chromatic numbers are $\chi(G)$ and $\chi(\bar{G})$, respectively, then $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$. Since then, many analogous inequalities of other graph parameters have been considered, such as diameter [9], domination number [10], rainbow connection number [7, 8], generalized edge-connectivity [13], and so on.

The rest of this paper is organized as follows: In Section 2, we list some important known results on proper connection number. In Section 3, we investigate the proper connection number of the complement of a graph $\bar{G}$ according to some constraints of $G$. In Section 4, we first characterize the graphs on $n$ vertices that have proper connection number $n-2$. Using this result, we give a Nordhaus-Gaddum-type theorem for the proper connection number. We prove that if $G$ and $\bar{G}$ are both connected, then $4 \leq$ $p c(G)+p c(\bar{G}) \leq n$, and the upper bound holds if and only if $G$ or $\bar{G}$ is the $n$-vertex tree with maximum degree $n-2$.

## 2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path colorings which can be found in [1].

Lemma 2.1. [1] If $G$ is a connected graph and $H$ is a connected spanning subgraph of $G$, then $p c(G) \leq p c(H)$. In particular, $p c(G) \leq p c(T)$ for every spanning tree $T$ of $G$.
Lemma 2.2. [1] Let $G$ be a connected graph that contains bridges. If $b$ is the maximum number of bridges incident to a single vertex in $G$, then $p c(G) \geq b$.

Lemma 2.3. [1] If $T$ is a tree with at least two vertices, then $p c(T)=\chi^{\prime}(T)=\Delta(T)$.
Given a colored path $P=v_{1} v_{2} \ldots v_{s-1} v_{s}$ between any two vertices $v_{1}$ and $v_{s}$, we denote by $\operatorname{start}(P)$ the color of the first edge in the path, i.e. $c\left(v_{1} v_{2}\right)$, and by $\operatorname{end}(P)$ the last color, i.e. $c\left(v_{s-1} v_{s}\right)$. If $P$ is just the edge $v_{1} v_{s}$ then $\operatorname{start}(P)=\operatorname{end}(P)=c\left(v_{1} v_{s}\right)$.

Definition 2.1. Let c be an edge-coloring of $G$ that makes $G$ proper connected. We say $G$ has the strong property if for any pair of vertices $u$ and $v \in V(G)$, there exist two proper paths $P_{1}$ and $P_{2}$ between them (not necessarily disjoint) such that $\operatorname{start}\left(P_{1}\right) \neq \operatorname{start}\left(P_{2}\right)$ and $\operatorname{end}\left(P_{1}\right) \neq \operatorname{end}\left(P_{2}\right)$.

In [3], the authors studied proper-connection numbers in bipartite graphs. Also, they presented a result which improve the upper bound $\Delta(G)$ of $p c(G)$ and this result is best possible whenever the graph $G$ is bipartite and 2-connected.
Lemma 2.4. [3] Let $G$ be a graph. If a graph $G$ is bipartite and 2 -connected then $p c(G)=$ 2 and there exists a 2-edge-coloring of $G$ such that $G$ has the strong property.

Every complete $k$-partite graph $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ contains a spanning bipartite subgraph $H=K_{n_{1}+n_{2}+\ldots n_{k-1}, n_{k}}$. We know that $H$ is 2 -connected if $n_{k} \geq 2$ and $k \geq 3$. Therefore, we have the following result.

Corollary 2.5. Every complete $k$-partite graph $G(k \geq 3)$ except for the complete graph $K_{k}$ has proper connection number two, and there exists a 2 -edge-coloring $c$ of $G$ such that $G$ has the strong property.

For general 2-connected graphs, Borozan et al. [3] gave a tight upper bound for the proper connection number.
Lemma 2.6. [3] Let $G$ be a graph. If a graph $G$ is 2 -connected then $p c(G) \leq 3$ and there exists a 3-edge-coloring $c$ of $G$ such that $G$ has the strong property.

Lemma 2.7. Let $H=G \cup\left\{v_{1}\right\} \cup\left\{v_{2}\right\}$ such that $H$ is connected. If there is a proper-path $k$-coloring $c$ of $G$ such that $G$ has the strong property, then $p c(H) \leq k$.

Proof. Let $\{1,2, \ldots, k\}$ be the color set of $c$. If $v_{1} v_{2} \in E(H)$, since $H$ is connected, then there is a vertex $u \in V(G)$ such that $u$ is adjacent to either $v_{1}$ or $v_{2}$. Without loss of generality, suppose that $u v_{1} \in E(H)$. We extend the coloring $c$ of $G$ to the whole graph $H$ by assigning color 1 to $u v_{1}$, and 2 to $v_{1} v_{2}$. To show that $H$ is proper connected, we only need to find a proper path between $v_{1}$ and $w$ for any $w \in V(G)$. Since $G$ has the strong property, there exist two proper paths $P_{1}, P_{2}$ between $w$ and $u$ (not necessarily disjoint) such that $\operatorname{start}\left(P_{1}\right) \neq \operatorname{start}\left(P_{2}\right)$ and $\operatorname{end}\left(P_{1}\right) \neq \operatorname{end}\left(P_{2}\right)$. We can get that at least one of $w P_{1} u v_{1}$ and $w P_{2} u v_{1}$ is a proper path. Then we know that $p c(H) \leq k$. Thus, we may assume that $v_{1} v_{2} \notin E(H)$. Let $u_{1} \in N_{H}\left(v_{1}\right)$ and $u_{2} \in N_{H}\left(v_{2}\right)$. If $u_{1}=u_{2}$, we assign color 1 to $u_{1} v_{1}$, and 2 to $u_{2} v_{2}$. Otherwise, we have that $u_{1} \neq u_{2}$. Since $G$ is proper connected, there exists a proper path $P$ of $G$ connecting $u_{1}$ and $u_{2}$. We assign a color of $c$ being distinct from $\operatorname{start}(P)$ to $u_{1} v_{1}$, and a color of $c$ being distinct from end $(P)$ to $u_{2} v_{2}$. It can be easily checked that $H$ is proper connected. Hence $p c(H) \leq k$ follows correspondingly.

$G$

$\bar{G}$

Figure 1: $G$ and $\bar{G}$ with $\operatorname{diam}(G) \geq 4$

## 3 Proper connection number of the complementary graph

We first investigate the proper connection number of $\bar{G}$ if graph $G$ has diameter at least 4.

Theorem 3.1. If $G$ is a connected graph with $\operatorname{diam}(G) \geq 4$, then $p c(\bar{G})=2$.

Proof. First of all, we see that $\bar{G}$ is connected since otherwise $\operatorname{diam}(G) \leq 2$, contradicting the condition $\operatorname{diam}(G) \geq 4$. We choose a vertex $x$ with $\operatorname{ecc}_{G}(x)=\operatorname{diam}(G)$. Let $N_{i}(x)=$ $\{v: \operatorname{dist}(x, v)=i\}$ where $0 \leq i \leq 3$ and $N_{4}(x)=\{v: \operatorname{dist}(x, v) \geq 4\}$. So $N_{0}=\{x\}$ and $N_{1}=N_{G}(x)$. In the rest of our paper, we use $N_{i}$ instead of $N_{i}(x)$ for convenience. By the definition of $N_{i}$, we know that $u v \in E(\bar{G})$ for any $u \in N_{i}, v \in N_{j}$ with $|i-j| \geq 2$. Now we give $\bar{G}$ an edge-coloring as follows: we first assign the color 1 to the edges $x u$ for $u \in N_{3}$, and to all edges between $N_{1}$ and $N_{4}$; next we give the color 2 to all the remaining edges.

We prove that there is a proper path between any two vertices $u$ and $v$ in $\bar{G}$. It is trivial when $u v \in E(\bar{G})$. Thus we only need to consider the pairs $u, v \in N_{i}$ or $u \in N_{i}, v \in N_{i+1}$. As $P=x x_{3} x_{1} x_{4} x_{2}$ is a proper path where $x_{i} \in N_{i}$, one can see that $u$ and $v$ are connected by a proper path for any $u \in N_{i}, v \in N_{i+1}$. So it suffices to show that for any $u, v \in N_{i}$, there is a proper path connecting them in $\bar{G}$. For $i=1$, let $P=u x_{3} x x_{4} v$ where $x_{3} \in N_{3}$ and $x_{4} \in N_{4}$. Clearly, $P$ is a proper path. Similarly, there is a proper path connecting any two vertices $u, v \in N_{3}$ or $N_{4}$. For $i=2$, let $Q=u x x_{3} x_{1} x_{4} v$, where $x_{1} \in N_{1}, x_{3} \in N_{3}$ and $x_{4} \in N_{4}$. One can see that $Q$ is a proper path. Thus $\bar{G}$ is proper connected. Hence we have $p c(\bar{G})=2$.


Figure 2: $G$ and $\bar{G}$ with $\operatorname{diam}(G)=3$

Theorem 3.2. For a connected noncomplete graph $G$, if $\bar{G}$ does not belong to the following two cases: (i) $\operatorname{diam}(\bar{G})=2,3$, (ii) $\bar{G}$ contains exactly two components and one of them is trivial, then $p c(G)=2$.

Proof. If $\bar{G}$ is connected, we know that $\operatorname{diam}(\bar{G}) \geq 4$. Hence $p c(G)=2$ clearly holds by Theorem 3.1. Now we may assume that $\bar{G}$ is disconnected. Suppose that $\bar{G}_{i}(1 \leq i \leq h)$ are the components of $\bar{G}$ with $t_{i}=\left|V\left(\bar{G}_{i}\right)\right|$. Then $G$ contains a spanning subgraph $K_{t_{1}, t_{2}, \ldots, t_{h}}$. By the assumption, $\bar{G}$ has either at least three components or exactly two nontrivial components. Then we have $p c(G)=2$ from Lemma 2.4 and Corollary 2.5.

If $\operatorname{diam}(G)=3$, we have the following theorem for the proper connection number of $\bar{G}$.

Theorem 3.3. Let $G$ be a connected graph with $\operatorname{diam}(G)=3$ and $x$ the vertex of $G$ such that $\operatorname{ecc}_{G}(x)=3$ (see Fig. 2). Denote by $n_{i}$ the number of vertices that has distance $i$ to $x$ for $i=1,2,3$. We have $p c(\bar{G})=2$ for the two cases (i) $n_{1}=n_{2}=n_{3}=1$, (ii) $n_{2}=1, n_{3} \geq 2$. For the remaining cases, if $G$ is triangle-free, then $p c(\bar{G})=2$.

Proof. If $n_{1}=n_{2}=n_{3}=1$. Then $G$ is a 4-path $P_{4}$, and so $p c(\bar{G})=p c\left(P_{4}\right)=2$. Then we consider the case that $n_{2}=1, n_{3} \geq 2$. One can see that $\bar{G}\left[N_{0} \cup N_{1} \cup N_{3}\right]$ contains a spanning subgraph $K_{1+n_{1}, n_{3}}$. By Lemmas 2.1 and [2.4, we know that $p c\left(\bar{G}\left[N_{0} \cup N_{1} \cup N_{3}\right]\right)=2$. Hence, we can get that $p c(\bar{G})=2$ from Lemma [2.7. The remaining cases are: (1) $n_{1}>1, n_{2}=n_{3}=1$, and (2) $n_{2} \geq 2$.

If $G$ is triangle-free, then $N_{1}$ is an independent set in $G$, and so a clique in $\bar{G}$. We give $\bar{G}$ an edge-coloring as follows: assign color 1 to $x x_{2}$ and $x_{1} x_{3}$ for any $x_{1} \in N_{1}, x_{2} \in$ $N_{2}, x_{3} \in N_{3}$ and assign color 2 to all the other edges in $\bar{G}$. Now we prove that this is a proper-path 2-coloring of $\bar{G}$.

For any $u \in N_{i}$ and $v \in N_{j}$ with $|i-j| \geq 2$ or $u, v \in N_{1}$, one have that $u v \in \bar{G}$. Since $P=x_{2} x x_{3} x_{1}$ is a proper path for any $x_{i} \in N_{i}$ for $i=1,2,3$, one can see that $u$ and $v$ are connected by a proper path for any $u \in N_{i}, v \in N_{i+1}$. So we only need to consider the case that for any $u, v \in N_{2}$ or $N_{3}$ with $u v \notin E(\bar{G})$, there is a proper path between them. In fact, as $G$ is triangle-free, if $u v \in E(G)$, one can see that there is a vertex $w \in N_{1}$ such that $w u \in E(G)$ and $w v \notin E(G)$. Thus $P=u x x_{3} w v$ is a proper path connecting $u$ and $v$ in $\bar{G}$ where $x_{3} \in N_{3}$. Similarly, we can see that for any $u, v \in N_{3}$, there is a proper path between them. Thus we have that this coloring is a proper-path 2-coloring. So $p c(\bar{G})=2$.

Remark: If $n_{2}=n_{3}=1$ and $n_{1}>1$, let $N_{3}=\left\{x_{3}\right\}$, and $n_{1}^{\prime}=\mid\left\{v \in N_{1}: N_{\bar{G}}(v) \cap N_{1}=\right.$ $\emptyset\} \mid$. One can see that there are $n_{1}^{\prime}$ cut edges in $\bar{G}$ that is adjacent to $x_{3}$. By Lemma 2.2, we have that $p c(\bar{G}) \geq n_{1}^{\prime}$. If $n_{2} \geq 2$, let $n_{2}^{\prime}=\left|\left\{v \in N_{2}: d_{\bar{G}}(v)=1\right\}\right|$. One can see that there are $n_{2}^{\prime}$ cut edges in $\bar{G}$ that is adjacent to $x$. By Lemma 2.2, we have that $p c(\bar{G}) \geq n_{2}^{\prime}$. Hence, the condition " $G$ is triangle-free" is necessary to determine the proper connection number of $\bar{G}$ in the theorem.

The following corollary clearly holds.
Corollary 3.4. For any tree $T$ that is not a star, one has that $p c(\bar{T})=2$.
Theorem 3.5. Let $G$ be a triangle-free graph with $\operatorname{diam}(G)=2$. If $\bar{G}$ is connected, then $p c(\bar{G})=2$.

Proof. We choose a vertex $x$ with $\operatorname{ecc}_{G}(x)=2$, and $N_{i}=\{v: \operatorname{dist}(x, v)=i\}$ for $i=0,1,2$. One can see that $N_{0}=\{x\}, N_{1}=N_{G}(x)$, and $N_{2}=V \backslash\left(N_{1} \cup N_{0}\right)$. As $G$ is triangle-free, it is obvious that $N_{1}$ is a clique in $\bar{G}$. Since $\bar{G}$ is connected, then we have that $\left|N_{1}\right|>1$ and there is at least one edge $u v \in E(\bar{G})$ such that $u \in N_{1}$ and $v \in N_{2}$.

We give $\bar{G}$ an edge-coloring as follows: assign color 1 to the edges between $N_{1}$ and $N_{2}$, and assign color 2 to all the other edges in $\bar{G}$. Now we prove that this is a proper-path coloring of $\bar{G}$. For any $z \in N_{1}$, we know that $P=x v u z$ ( $u$ and $z$ may coincide) is a proper path. So there are proper paths between $x$ and any other vertices, and there are proper paths between $v$ and vertices in $N_{1}$. For any $y \in N_{2} \backslash\{v\}$ and $z \in N_{1}$, if $N_{\bar{G}}(y) \cap N_{1} \neq \emptyset$, let $w \in N_{\bar{G}}(y) \cap N_{1}$. Then $y w z$ is a proper path between $y$ and $z$. Otherwise, $N_{\bar{G}}(y) \cap N_{1}=\emptyset$. We claim that $y$ is adjacent to all the other vertices of $N_{2}$ in $\bar{G}$. In fact, for any vertex $w \in N_{2} \backslash y$, there exists a vertex $w^{\prime} \in N_{1}$ such that $w w^{\prime} \in E(G)$. Since $y w^{\prime} \in E(G)$, we know that $y w \in E(\bar{G})$. Especially, we know that $y v \in E(\bar{G})$. Then $y v u z$ is a proper path between $y$ and $z$. Next consider $x_{2}, x_{2}^{\prime} \in N_{2}$ such that $x_{2} x_{2}^{\prime} \notin E(\bar{G})$. Since $x_{2}, x_{2}^{\prime} \in N_{2}$,
there are $x_{1}, x_{1}^{\prime} \in N_{1}$ such that $x_{1} x_{2}, x_{1}^{\prime} x_{2}^{\prime} \in E(G)$. As $G$ is triangle-free, one can see that $x_{1} \neq x_{1}^{\prime}$ and $x_{1} x_{2}^{\prime}, x_{2} x_{1}^{\prime} \in E(\bar{G})$. So we have that $x_{2} x_{1}^{\prime} x_{1} x_{2}^{\prime}$ is a proper path connecting $x_{1}$ and $x_{1}^{\prime}$. Hence we have that $p c(\bar{G})=2$.

Proposition 3.6. If $G$ is triangle-free and contains two components one of which is trivial, then $p c(\bar{G})=2$.

Proof. Let $G_{1}$ and $G_{2}$ be the two components of $G$ such that $V\left(G_{1}\right)=\{v\}$. Then $\bar{G}=\overline{G_{1}} \vee \overline{G_{2}}$, where " $\vee$ " is the join of two graphs, that is, vertex $v$ is adjacent to all the other vertices in $\bar{G}$. If $\overline{G_{2}}$ is connected, then $p c\left(\overline{G_{2}}\right)=2$ from Theorem 3.1, Theorem 3.3 and Theorem 3.5. Hence, we can get that $p c(\bar{G})=2$. Otherwise, $\overline{G_{2}}$ is disconnected. Since $G$ is triangle-free, we know that $\overline{G_{2}}$ has two components, and both of them are cliques of $\overline{G_{2}}$. Suppose that $H_{1}$ and $H_{2}$ are the two component of $\overline{G_{2}}$, we assign color 1 to all the edges between $v$ and $H_{1}$ and assign color 2 to the remaining edges. As $P=x_{1} v x_{2}$ is a proper path connecting $x_{1}$ and $x_{2}$ for any $x_{1} \in H_{1}$ and $x_{2} \in H_{2}$. So we have that $\bar{G}$ is proper connected. Hence $p c(\bar{G})=2$.

In conclusion, we can get the following result.
Theorem 3.7. For a connected noncomplete graph $G$, if $\bar{G}$ is triangle-free, then pc $(G)=$ 2.

Proof. We consider two cases:
Case 1. $\bar{G}$ is connected. The result holds for the case $\operatorname{diam}(\bar{G}) \leq 4$ from Theorem 3.1, the case $\operatorname{diam}(\bar{G})=3$ from Theorem 3.3 and the case $\operatorname{diam}(\bar{G})=2$ from Theorem 3.5 .

Case 2. $\bar{G}$ is disconnected. The result holds for the case that $\bar{G}$ contains two components with one of them trivial from Proposition 3.6, and holds for the remaining case from Lemma 2.4 and Corollary 2.5.

## 4 Nordhaus-Gaddum-Type theorem for proper connection number of graphs

Firstly, we characterize the graphs on $n$ vertices that have proper connection number $n-2$. This result is crucial to investigate the Nordhaus-Gaddum-type result for the proper connection number of $G$. We use $C_{n}, S_{n}$ to denote the cycle and the star graph on $n$ vertices, respectively, and use $T(a, b)$ to denote the double star that is obtained by adding an edge between the center vertices of $S_{a}$ and $S_{b}$. For a nontrivial graph $G$ such
that $G+u v \cong G+x y$ for every two pairs $\{u, v\},\{x, y\}$ of nonadjacent vertices of $G$, we use $G+e$ to denote the graph obtained from $G$ by joining two nonadjacent vertices of $G$.

Theorem 4.1. Let $G$ be a connected graph on $n$ vertices. Then $p c(G)=n-2$ if and only if $G$ is one of the following 6 graphs: $T(2, n-2), C_{3}, C_{4}, C_{4}+e, S_{4}+e$, and $S_{5}+e$.

Proof. If $G$ is one of the above 6 graphs, we can easily check that $p c(G)=n-2$. So it remains to verify the converse of the theorem. Suppose that $p c(G)=n-2$. If $G$ is acyclic, from Lemma [2.3, we know that $G \cong T(2, n-2)$. So we may assume that $G$ contains cycles. Let $G^{*}$ be a spanning unicycle subgraph of $G$ such that the cycle $C$ in $G^{*}$ is the longest cycle in $G$. Without loss of generality, suppose that $C=v_{1} v_{2} \ldots v_{k} v_{1}$ and $d_{G^{*}}\left(v_{1}\right) \geq d_{G^{*}}\left(v_{i}\right)$ for $i=2,3, \ldots, k$. Note that $p c(C)=2$ for all $k \geq 4$. Giving $C$ a proper-path 2-coloring and assigning $n-k$ new colors to the remaining $n-k$ edges of $G^{*}$, we get a proper-path coloring of $G^{*}$. It follows that $p c\left(G^{*}\right) \leq 2+n-k$. From Lemma 2.1. we know that $p c(G) \leq p c\left(G^{*}\right) \leq 2+n-k$. Thus we can get that $p c(G)<n-2$ if $k>4$, contradicting with the fact that $p c(G)=n-2$. So we only need to consider that $k=3$ or $k=4$.

If $k=4$, let $G_{1}=G^{*}-v_{1} v_{2}$. One can see that $G_{1}$ is a spanning tree of $G$. If $n=4$, then $G^{*} \cong C_{4}$. We can get that $G \cong C_{4}$ or $G \cong C_{4}+e$ since the longest cycle of $G$ is of length 4 . So we consider that $n \geq 5$. Since $d_{G^{*}}\left(v_{1}\right) \geq d_{G^{*}}\left(v_{i}\right)$ for $i=2,3, \ldots, k$ and $G^{*}$ is unicycle, we see that $\Delta\left(G_{1}\right) \leq n-3$. So by Lemma 2.1, $p c(G) \leq p c\left(G_{1}\right) \leq n-3$, contradicting the fact that $p c(G)=n-2$.

Now we consider the case $k=3$. Let $c$ be an edge coloring of $G^{*}$ such that the cut edges are colored by $n-3$ distinct colors. If $n \geq 6$, that is, $G^{*}$ has more than three cut edges, choose three colors that have been used on the cut edges, say $1,2,3$. Let $c\left(v_{1} v_{2}\right)=1, c\left(v_{2} v_{3}\right)=2$, and $c\left(v_{3} v_{1}\right)=3$. We know that $G^{*}$ is proper connected under edge-coloring $c$. Hence $p c(G) \leq p c\left(G^{*}\right) \leq n-3$, contradicting the fact that $p c(G)=n-2$. So we may assume that $n \leq 5$. If $n=5$, one can see that $G \cong S_{5}+e$ since otherwise there is a spanning $P_{5}$ in $G$, then $p c(G) \leq p c\left(P_{5}\right)=2$, a contradiction. If $n=4$, one can see that $G \cong S_{4}+e$ since otherwise there exists a cycle of length 4 in $G$ which contradicts the assumption $k=3$. If $n=3$, we know that $G \cong C_{3}$ as $p c(G)=1$ if and only if $G$ is complete graph. Hence we have that $G \cong C_{3}$, or $G \cong S_{4}+e$, or $G \cong S_{5}+e$ when $k=3$.

We know that if $G$ is a connected graph with $n$ vertices, then the number of edges in $G$ must be at least $n-1$. If both $G$ and $\bar{G}$ are connected, then $n$ is at least 4 , and $\Delta(G) \leq n-2$. Therefore we know that $2 \leq p c(G) \leq n-2$. Similarly, $2 \leq p c(\bar{G}) \leq n-2$. Hence we can obtain that $4 \leq p c(G)+p c(\bar{G}) \leq 2(n-2)$. For $n=4$, we can easily get
that $p c(G)+p c(\bar{G})=4$ if $G$ and $\bar{G}$ are connected. In the rest of the paper, we always assume that all graphs have at least 5 vertices, and both $G$ and $\bar{G}$ are connected.

Lemma 4.2. Let $G$ be a graphs with 5 vertices. If both $G$ and $\bar{G}$ are connected, one has that

$$
p c(G)+p c(\bar{G})= \begin{cases}5 & \text { if } G \cong T(2,3) \text { or } \bar{G} \cong T(2,3) \\ 4 & \text { otherwise }\end{cases}
$$

Proof. If $G \cong T(2,3)$ or $\bar{G} \cong T(2,3)$, then it can be easily checked that $p c(G)+p c(\bar{G})=5$. From Theorem 4.1, we know that $T(2,3)$ is the only graph on 5 vertices that has proper connection number 3 . Since $2 \leq p c(G) \leq n-2=3$ and $2 \leq p c(\bar{G}) \leq n-2=3$, then all the other graphs considered here on 5 vertices has proper connection number 2. Hence $p c(G)+p c(\bar{G})=4$ if $G \not \equiv T(2,3)$ and $\bar{G} \not \equiv T(2,3)$.

Theorem 4.3. $p c(G)+p c(\bar{G}) \leq n$ for $n \geq 5$, and the equality holds if and only if $G \cong T(2, n-2)$ or $\bar{G} \cong T(2, n-2)$.

Proof. By Lemma 4.2, we can see that the result holds if $n=5$. So we consider $n \geq 6$. If $G \cong T(2, n-2), \bar{G}$ contains a spanning subgraph $H$ that is obtained by attaching a pendent edge to the complete bipartite graph $K_{2, n-3}$. Then $p c(\bar{G})=2$ by Lemma 2.4 and Lemma 2.7. The result clearly holds. Similarly, we can also get $p c(G)+p c(\bar{G})=n$ if $\bar{G} \cong T(2, n-2)$. To prove our conclusion, we only need to show that $p c(G)+p c(\bar{G})<n$ if $G \nsubseteq T(2, n-2)$ and $\bar{G} \nsubseteq T(2, n-2)$. Under this assumption, we know that $2 \leq p c(G) \leq$ $n-3$ and $2 \leq p c(\bar{G}) \leq n-3$ by Theorem 4.1.

Suppose first that both $G$ and $\bar{G}$ are 2-connected. For $n=6$, we claim that $p c(G)=2$. Assume that the circumference of $G$ is $k$. If $k=6$, one has that $p c(G) \leq p c\left(C_{6}\right)=2$. If $k=4$, one can see that $G$ contains a spanning $K_{2,4}$, contradicting the assumption that $\bar{G}$ is 2 -connected. Assume that $G$ contains a 5 -cycle $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$, we know that the vertex $v_{6}$ is adjacent to two vertices that is nonadjacent in $C$, say $v_{1}, v_{3}$. Then $P=v_{6} v_{1} v_{2} v_{3} v_{4} v_{5}$ is a hamilton path of $G$. Hence $p c(G) \leq p c(P)=2$. So we have that $p c(G)+p c(\bar{G}) \leq 2+n-3<n$. For $n \geq 7$, by Lemma 2.6, we know that $p c(G) \leq 3$ and $p c(\bar{G}) \leq 3$, and so $p c(G)+p c(\bar{G}) \leq 6$, and therefore $p c(G)+p c(\bar{G})<n$ clearly holds.

Now we consider the case that at least one of $G$ and $\bar{G}$ has cut vertices. Without loss of generality, suppose that $G$ has cut vertices. We distinguish the following three cases.

Case 1. $G$ has a cut vertex $u$ such that $G-u$ has at least three components. Let $G_{1}, G_{2}, \ldots, G_{k}(k \geq 3)$ be the components of $G-u$ and let $n_{i}$ be the number of vertices of $G_{i}$ for $1 \leq i \leq k$ with $n_{1} \leq n_{2} \leq \ldots \leq n_{k}$. From the definition of $\bar{G}$, we know that $\bar{G}-u$ contains a spanning complete $k$-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$. Since $\Delta(\bar{G}) \leq n-2$, then
$n_{k} \geq 2$. From Corollary 2.5, $p c(\bar{G}-u)=2$, and there exists a 2-edge-coloring $c$ of $\bar{G}-u$ that makes it proper connected with the strong property. Hence $p c(\bar{G}) \leq 2$ by Lemma 2.7. Together with the fact that $p c(G) \leq n-3$, we can get the result $p c(G)+p c(\bar{G})<n$.

Case 2. Each cut vertex $u$ of $G$ satisfies that $G-u$ has only two components. Let $G_{1}, G_{2}$ be the two components of $G-u$, and let $n_{i}$ be the number of vertices of $G_{i}$ for $i=1,2$ with $n_{1} \leq n_{2}$.
subcase 2.1. $n_{1} \geq 2$, then $\bar{G}-u$ contains a spanning 2 -connected bipartite graph $K_{n_{1}, n_{2}}$. From Lemma 2.4, we know that $p c(\bar{G}-u)=2$ and there exists a 2-edge-coloring $c$ of $\bar{G}-u$ that makes it proper connected with the strong property. So by Lemma 2.7, $p c(\bar{G}) \leq 2$. We can get the result that $p c(G)+p c(\bar{G})<n$.
subcase 2.2. $n_{1}=1$, that is, each cut vertex is incident with a pendent edge. Let $u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{l} v_{l}$ be the pendent edges of $G$ such that $v_{i}$ is the pendent vertices for $1 \leq i \leq l$. The pendent edges are pairwise disjoint. Let $H$ be the graph obtained from $G$ by deleting all the pendent vertices. Then $H$ must be 2 -connected. By Lemma 2.6, we know that $p c(H) \leq 3$ and there exists a 3-edge-coloring $c$ of $H$ that makes it proper connected with the strong property.

If $l \geq 2$, we know that $\bar{G}-\left\{u_{1}, u_{2}\right\}$ contains a spanning bipartite subgraph $K_{2, n-4}$ with two parts $X=\left\{v_{1}, v_{2}\right\}$ and $Y=V(G) \backslash\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$. Since $v_{1} u_{2}, v_{2} u_{1} \notin E(G)$, we know that $v_{1} u_{2}, v_{2} u_{1} \in E(\bar{G})$. Then by Lemma 2.4 and Lemma 2.7, we have that $p c(\bar{G}) \leq 2$. By using the fact that $p c(G) \leq n-3$, we have that $p c(G)+p c(\bar{G})<n$.

If $l=1$, by Lemma 2.6 and Lemma 2.7, one has that $p c(G) \leq p c(H) \leq 3$. Therefore we have $p c(G)+p c(\bar{G}) \leq n$. Now we prove that the equality cannot be attained. Note that $d_{\bar{G}}\left(v_{1}\right)=n-2$. We know that $\bar{G}$ contains $T_{0}$ as a proper spanning subgraph. Set $N_{\bar{G}}\left(v_{1}\right)=\left\{x_{1}, \cdots, x_{n-2}\right\}=V(G) \backslash\left\{u_{1}, v_{1}\right\}$. Without loss of generality, assume that $x_{1} u_{1} \notin E(G)$. So $x_{1} u_{1} \in E(\bar{G})$. If there is a vertex $x_{j}(2 \leq j \leq n-2)$ that is adjacent to $x_{1}$ in $\bar{G}$, assume without loss of generality that $x_{1} x_{2} \in E(\bar{G})$. Let $c\left(v_{1} x_{1}\right)=1, c\left(x_{1} x_{2}\right)=$ $2, c\left(v_{1} x_{2}\right)=c\left(x_{1} u_{1}\right)=3$ and $c\left(v_{1} x_{i}\right)=i-2$ for $i=3,4 \cdots, n-2$. One can see that $\bar{G}$ is proper connected. If there is a vertex $x_{j}(2 \leq j \leq n-2)$ that is adjacent to $u_{1}$ in $\bar{G}$, assume without loss of generality that $x_{2} u_{2} \in E(\bar{G})$. Let $c\left(v_{1} x_{i}\right)=i-2$ for $i=3,4 \cdots, n-2$ and $c\left(v_{1} x_{1}\right)=c\left(u_{1} x_{2}\right)=1, c\left(v_{1} x_{2}\right)=c\left(x_{1} u_{1}\right)=2$. One can also see that $\bar{G}$ is proper connected. If there are two vertex $x_{j}, x_{k}(2 \leq j<k \leq n-2)$ such that $x_{j} x_{k} \in E(\bar{G})$, without loss of generality, assume that $x_{2} x_{3} \in E(\bar{G})$. Let $c\left(v_{1} x_{i}\right)=i-2$ for $i=4, \cdots, n-2, c\left(v_{1} x_{1}\right)=c\left(v_{1} x_{2}\right)=1, c\left(v_{1} x_{3}\right)=c\left(x_{1} u_{1}\right)=2$ and $c\left(x_{2} x_{3}\right)=3$. We can check that $\bar{G}$ is proper connected. Hence we have that $p c(\bar{G}) \leq \max \{3, n-4\}$. For $n \geq 7$, we can get that $p c(G)+p c(\bar{G}) \leq 3+n-4=n-1<n$. For $n=6$, as $H$ is a 2 -connected graph with 5 vertices, one can see that $H$ contains a spanning
$C_{5}$ or a spanning $K_{2,3}$. Hence we can easily get that $p c(G) \leq p c(H)=2$. So we have $p c(G)+p c(\bar{G}) \leq 2+3=5<6$.

## References

[1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput, to appear.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Monteroa, Z. Tuza, Proper connection of graphs, Discrete Math. 312 (17) (2012), 2550-2560.
[4] L. Chandran, A. Das, D. Rajendraprasad, N. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), 206-218.
[5] G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, Rainbow connection in graphs, Math Bohemica 133 (1) (2008), 5-98.
[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2) (2009),75-81.
[7] L. Chen, X. Li, H. Lian, Nordhaus-Gaddum-type theorem for rainbow connection number of graphs, Graphs \& Combin. 29 (5) (2013), 1235-1247.
[8] L. Chen, X. Li, M. Liu, Nordhaus-Gaddum-type bounds for rainbow vertexconnection number of a graph, Utilitas Math. 86 (2011), 335-340.
[9] F. Harary, R.W. Robinson, The diameter of a graph and its complement, Amer. Math. Monthly 92 (1985), 211-212.
[10] F. Harary, T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155 (1996), 99-105.
[11] M. Kriveleich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 71 (2012), 206-218.
[12] H. Li, X. Li, S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math. 312 (2012), 1453-1457.
[13] X. Li, Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs, Discrete Appl. Math. 185 (2015), 102-112.
[14] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs \& Combin. 29 (5) (2013), 1471-1475.
[15] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs \& Combin. 29 (2013), 1-38.
[16] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[17] X. Li, Y. Sun, Rainbow connection numbers of complementary graphs, Util. Math. 86 (2011), 23-31.
[18] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175-177.


[^0]:    *Supported by NSFC No. 11371205 and 11531011, and PCSIRT.
    ${ }^{\dagger}$ Corresponding author

