Proper connection numbers of complementary graphs^{*}

Fei Huang, Xueliang Li, Shujing Wang[†] Center for Combinatorics and LPMC Nankai University, Tianjin 300071, China Email: huangfei06@126.com; lxl@nankai.edu.cn; wang06021@126.com

Abstract

A path P in an edge-colored graph G is called a proper path if no two adjacent edges of P are colored the same, and G is proper connected if every two vertices of G are connected by a proper path in G. The proper connection number of a connected graph G, denoted by pc(G), is the minimum number of colors that are needed to make G proper connected. In this paper, we investigate the proper connection number of the complement of a graph G according to some constraints of Gitself. Also, we characterize the graphs on n vertices that have proper connection number n-2. Using this result, we give a Nordhaus-Gaddum-type theorem for the proper connection number. We prove that if G and \overline{G} are both connected, then $4 \leq pc(G) + pc(\overline{G}) \leq n$, and the upper bound holds if and only if G or \overline{G} is the n-vertex tree with maximum degree n-2.

Keywords: proper path, proper connection number, complement graph, diameter, Nordhaus-Gaddum-type

AMS subject classification 2010: 05C50, 15A18, 92E10

1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow the terminology and the notation of Bondy and Murty [2]. The distance between t-

^{*}Supported by NSFC No.11371205 and 11531011, and PCSIRT.

[†]Corresponding author

wo vertices u and v in a connected graph G, denoted by dist(u, v), is the length of a shortest path between them in G. The eccentricity of a vertex v in G is defined as $ecc_G(v) = \max\{dist(x, v) : x \in V(G)\}$, and the diameter of G denoted by diam(G) is defined as $diam(G) = \max\{ecc_G(v) : x \in V(G)\}$.

An edge coloring of a graph G is an assignment c of colors to the edges of G, one color to each edge of G. If adjacent edges of G are assigned different colors by c, then c is a *proper (edge) coloring.* The minimum number of colors needed in a proper coloring of G is referred to as the *chromatic index* of G and denoted by $\chi'(G)$. A path in an edge-colored graph with no two edges sharing the same color is called a *rainbow path*. An edge-colored graph G is said to be *rainbow connected* if every pair of distinct vertices of G is connected by at least one rainbow path in G. Such a coloring is called a *rainbow coloring* of the graph. The minimum number of colors in a rainbow coloring of G is referred to as the *rainbow connection number* of G and denoted by rc(G). The concept of rainbow coloring was first introduced by Chartrand et al. in [5]. In recent years, the rainbow coloring has been extensively studied and has gotten a variety of nice results, see [4, 6, 11, 12, 14] for examples. For more details we refer to a survey paper [15] and a book [16].

Inspired by rainbow colorings and proper colorings in graphs, Andrews et al. [1] introduce the concept of proper-path colorings. Let G be an edge-colored graph, where adjacent edges may be colored the same. A path P in G is called a *proper path* if no two adjacent edges of P are colored the same. An edge-coloring c is a *proper-path coloring* of a connected graph G if every pair of distinct vertices u, v of G is connected by a proper u-v path in G. A graph with a proper-path coloring is said to be *proper connected*. If kcolors are used, then c is referred to as a *proper-path k-coloring*. The minimum number of colors needed to produce a proper-path coloring of G is called the *proper connection number* of G, denoted by pc(G).

Let G be a nontrivial connected graph of order n and size m. Then the proper connection number of G has the following bounds:

$$1 \le pc(G) \le \min\{\chi'(G), rc(G)\} \le m.$$

Furthermore, pc(G) = 1 if and only if $G = K_n$ and pc(G) = m if and only if $G = K_{1,m}$ is a star of size m.

Among many interesting problems of determining the proper connection numbers of graphs, it is worth while to study the proper connection number of G according to some constraints of the complementary graph. In [17], the authors considered this kind of question for the rainbow connection number rc(G).

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or prod-

uct of the values of a parameter for a graph and its complement. The name "Nordhaus-Gaddum-type" is given because Nordhaus and Gaddum [18] first established the type of inequalities for the chromatic number of graphs in 1956. They proved that if G and \overline{G} are complementary graphs on n vertices whose chromatic numbers are $\chi(G)$ and $\chi(\overline{G})$, respectively, then $2\sqrt{n} \leq \chi(G) + \chi(\overline{G}) \leq n + 1$. Since then, many analogous inequalities of other graph parameters have been considered, such as diameter [9], domination number [10], rainbow connection number [7, 8], generalized edge-connectivity [13], and so on.

The rest of this paper is organized as follows: In Section 2, we list some important known results on proper connection number. In Section 3, we investigate the proper connection number of the complement of a graph \overline{G} according to some constraints of G. In Section 4, we first characterize the graphs on n vertices that have proper connection number n-2. Using this result, we give a Nordhaus-Gaddum-type theorem for the proper connection number. We prove that if G and \overline{G} are both connected, then $4 \leq pc(G) + pc(\overline{G}) \leq n$, and the upper bound holds if and only if G or \overline{G} is the n-vertex tree with maximum degree n-2.

2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path colorings which can be found in [1].

Lemma 2.1. [1] If G is a connected graph and H is a connected spanning subgraph of G, then $pc(G) \leq pc(H)$. In particular, $pc(G) \leq pc(T)$ for every spanning tree T of G.

Lemma 2.2. [1] Let G be a connected graph that contains bridges. If b is the maximum number of bridges incident to a single vertex in G, then $pc(G) \ge b$.

Lemma 2.3. [1] If T is a tree with at least two vertices, then $pc(T) = \chi'(T) = \Delta(T)$.

Given a colored path $P = v_1 v_2 \dots v_{s-1} v_s$ between any two vertices v_1 and v_s , we denote by start(P) the color of the first edge in the path, i.e. $c(v_1v_2)$, and by end(P) the last color, i.e. $c(v_{s-1}v_s)$. If P is just the edge v_1v_s then $start(P) = end(P) = c(v_1v_s)$.

Definition 2.1. Let c be an edge-coloring of G that makes G proper connected. We say G has the strong property if for any pair of vertices u and $v \in V(G)$, there exist two proper paths P_1 and P_2 between them (not necessarily disjoint) such that $start(P_1) \neq start(P_2)$ and $end(P_1) \neq end(P_2)$.

In [3], the authors studied proper-connection numbers in bipartite graphs. Also, they presented a result which improve the upper bound $\Delta(G)$ of pc(G) and this result is best possible whenever the graph G is bipartite and 2-connected.

Lemma 2.4. [3] Let G be a graph. If a graph G is bipartite and 2-connected then pc(G) = 2 and there exists a 2-edge-coloring of G such that G has the strong property.

Every complete k-partite graph $G = K_{n_1,n_2,...,n_k}$ contains a spanning bipartite subgraph $H = K_{n_1+n_2+...n_{k-1},n_k}$. We know that H is 2-connected if $n_k \ge 2$ and $k \ge 3$. Therefore, we have the following result.

Corollary 2.5. Every complete k-partite graph G ($k \ge 3$) except for the complete graph K_k has proper connection number two, and there exists a 2-edge-coloring c of G such that G has the strong property.

For general 2-connected graphs, Borozan et al. [3] gave a tight upper bound for the proper connection number.

Lemma 2.6. [3] Let G be a graph. If a graph G is 2-connected then $pc(G) \leq 3$ and there exists a 3-edge-coloring c of G such that G has the strong property.

Lemma 2.7. Let $H = G \cup \{v_1\} \cup \{v_2\}$ such that H is connected. If there is a proper-path k-coloring c of G such that G has the strong property, then $pc(H) \leq k$.

Proof. Let $\{1, 2, ..., k\}$ be the color set of c. If $v_1v_2 \in E(H)$, since H is connected, then there is a vertex $u \in V(G)$ such that u is adjacent to either v_1 or v_2 . Without loss of generality, suppose that $uv_1 \in E(H)$. We extend the coloring c of G to the whole graph H by assigning color 1 to uv_1 , and 2 to v_1v_2 . To show that H is proper connected, we only need to find a proper path between v_1 and w for any $w \in V(G)$. Since G has the strong property, there exist two proper paths P_1 , P_2 between w and u (not necessarily disjoint) such that $start(P_1) \neq start(P_2)$ and $end(P_1) \neq end(P_2)$. We can get that at least one of wP_1uv_1 and wP_2uv_1 is a proper path. Then we know that $pc(H) \leq k$. Thus, we may assume that $v_1v_2 \notin E(H)$. Let $u_1 \in N_H(v_1)$ and $u_2 \in N_H(v_2)$. If $u_1 = u_2$, we assign color 1 to u_1v_1 , and 2 to u_2v_2 . Otherwise, we have that $u_1 \neq u_2$. Since G is proper connected, there exists a proper path P of G connecting u_1 and u_2 . We assign a color of c being distinct from start(P) to u_1v_1 , and a color of c being distinct from end(P)to u_2v_2 . It can be easily checked that H is proper connected. Hence $pc(H) \leq k$ follows correspondingly.

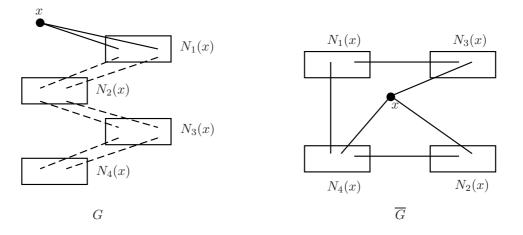


Figure 1: G and \overline{G} with $diam(G) \ge 4$

3 Proper connection number of the complementary graph

We first investigate the proper connection number of \overline{G} if graph G has diameter at least 4.

Theorem 3.1. If G is a connected graph with $diam(G) \ge 4$, then $pc(\overline{G}) = 2$.

Proof. First of all, we see that \overline{G} is connected since otherwise $diam(G) \leq 2$, contradicting the condition $diam(G) \geq 4$. We choose a vertex x with $ecc_G(x) = diam(G)$. Let $N_i(x) =$ $\{v : dist(x, v) = i\}$ where $0 \leq i \leq 3$ and $N_4(x) = \{v : dist(x, v) \geq 4\}$. So $N_0 = \{x\}$ and $N_1 = N_G(x)$. In the rest of our paper, we use N_i instead of $N_i(x)$ for convenience. By the definition of N_i , we know that $uv \in E(\overline{G})$ for any $u \in N_i, v \in N_j$ with $|i-j| \geq 2$. Now we give \overline{G} an edge-coloring as follows: we first assign the color 1 to the edges xu for $u \in N_3$, and to all edges between N_1 and N_4 ; next we give the color 2 to all the remaining edges.

We prove that there is a proper path between any two vertices u and v in G. It is trivial when $uv \in E(\overline{G})$. Thus we only need to consider the pairs $u, v \in N_i$ or $u \in N_i, v \in N_{i+1}$. As $P = xx_3x_1x_4x_2$ is a proper path where $x_i \in N_i$, one can see that u and v are connected by a proper path for any $u \in N_i, v \in N_{i+1}$. So it suffices to show that for any $u, v \in N_i$, there is a proper path connecting them in \overline{G} . For i = 1, let $P = ux_3xx_4v$ where $x_3 \in N_3$ and $x_4 \in N_4$. Clearly, P is a proper path. Similarly, there is a proper path connecting any two vertices $u, v \in N_3$ or N_4 . For i = 2, let $Q = uxx_3x_1x_4v$, where $x_1 \in N_1, x_3 \in N_3$ and $x_4 \in N_4$. One can see that Q is a proper path. Thus \overline{G} is proper connected. Hence we have $pc(\overline{G}) = 2$.

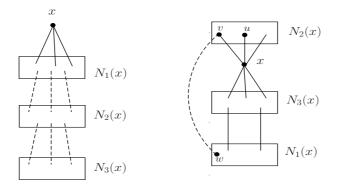


Figure 2: G and \overline{G} with diam(G) = 3

Theorem 3.2. For a connected noncomplete graph G, if \overline{G} does not belong to the following two cases: (i) diam(\overline{G}) = 2, 3, (ii) \overline{G} contains exactly two components and one of them is trivial, then pc(G) = 2.

Proof. If \overline{G} is connected, we know that $diam(\overline{G}) \geq 4$. Hence pc(G) = 2 clearly holds by Theorem 3.1. Now we may assume that \overline{G} is disconnected. Suppose that \overline{G}_i $(1 \leq i \leq h)$ are the components of \overline{G} with $t_i = |V(\overline{G}_i)|$. Then G contains a spanning subgraph K_{t_1,t_2,\ldots,t_h} . By the assumption, \overline{G} has either at least three components or exactly two nontrivial components. Then we have pc(G) = 2 from Lemma 2.4 and Corollary 2.5.

If diam(G) = 3, we have the following theorem for the proper connection number of \overline{G} .

Theorem 3.3. Let G be a connected graph with diam(G) = 3 and x the vertex of G such that $ecc_G(x) = 3$ (see Fig. 2). Denote by n_i the number of vertices that has distance i to x for i = 1, 2, 3. We have $pc(\overline{G}) = 2$ for the two cases (i) $n_1 = n_2 = n_3 = 1$, (ii) $n_2 = 1, n_3 \ge 2$. For the remaining cases, if G is triangle-free, then $pc(\overline{G}) = 2$.

Proof. If $n_1 = n_2 = n_3 = 1$. Then G is a 4-path P_4 , and so $pc(\overline{G}) = pc(P_4) = 2$. Then we consider the case that $n_2 = 1, n_3 \ge 2$. One can see that $\overline{G}[N_0 \cup N_1 \cup N_3]$ contains a spanning subgraph K_{1+n_1,n_3} . By Lemmas 2.1 and 2.4, we know that $pc(\overline{G}[N_0 \cup N_1 \cup N_3]) = 2$. Hence, we can get that $pc(\overline{G}) = 2$ from Lemma 2.7. The remaining cases are: (1) $n_1 > 1, n_2 = n_3 = 1$, and (2) $n_2 \ge 2$.

If G is triangle-free, then N_1 is an independent set in G, and so a clique in \overline{G} . We give \overline{G} an edge-coloring as follows: assign color 1 to xx_2 and x_1x_3 for any $x_1 \in N_1, x_2 \in N_2, x_3 \in N_3$ and assign color 2 to all the other edges in \overline{G} . Now we prove that this is a proper-path 2-coloring of \overline{G} .

For any $u \in N_i$ and $v \in N_j$ with $|i - j| \ge 2$ or $u, v \in N_1$, one have that $uv \in \overline{G}$. Since $P = x_2 x x_3 x_1$ is a proper path for any $x_i \in N_i$ for i = 1, 2, 3, one can see that u and v are connected by a proper path for any $u \in N_i, v \in N_{i+1}$. So we only need to consider the case that for any $u, v \in N_2$ or N_3 with $uv \notin E(\overline{G})$, there is a proper path between them. In fact, as G is triangle-free, if $uv \in E(G)$, one can see that there is a vertex $w \in N_1$ such that $wu \in E(G)$ and $wv \notin E(G)$. Thus $P = uxx_3wv$ is a proper path connecting u and v in \overline{G} where $x_3 \in N_3$. Similarly, we can see that for any $u, v \in N_3$, there is a proper path between them. Thus we have that this coloring is a proper-path 2-coloring. So $pc(\overline{G}) = 2$.

Remark: If $n_2 = n_3 = 1$ and $n_1 > 1$, let $N_3 = \{x_3\}$, and $n'_1 = |\{v \in N_1 : N_{\overline{G}}(v) \cap N_1 = \emptyset\}|$. One can see that there are n'_1 cut edges in \overline{G} that is adjacent to x_3 . By Lemma 2.2, we have that $pc(\overline{G}) \ge n'_1$. If $n_2 \ge 2$, let $n'_2 = |\{v \in N_2 : d_{\overline{G}}(v) = 1\}|$. One can see that there are n'_2 cut edges in \overline{G} that is adjacent to x. By Lemma 2.2, we have that $pc(\overline{G}) \ge n'_1$. Hence, the condition "G is triangle-free" is necessary to determine the proper connection number of \overline{G} in the theorem.

The following corollary clearly holds.

Corollary 3.4. For any tree T that is not a star, one has that $pc(\overline{T}) = 2$.

Theorem 3.5. Let G be a triangle-free graph with diam(G) = 2. If \overline{G} is connected, then $pc(\overline{G}) = 2$.

Proof. We choose a vertex x with $ecc_G(x) = 2$, and $N_i = \{v : dist(x, v) = i\}$ for i = 0, 1, 2. One can see that $N_0 = \{x\}, N_1 = N_G(x)$, and $N_2 = V \setminus (N_1 \cup N_0)$. As G is triangle-free, it is obvious that N_1 is a clique in \overline{G} . Since \overline{G} is connected, then we have that $|N_1| > 1$ and there is at least one edge $uv \in E(\overline{G})$ such that $u \in N_1$ and $v \in N_2$.

We give \overline{G} an edge-coloring as follows: assign color 1 to the edges between N_1 and N_2 , and assign color 2 to all the other edges in \overline{G} . Now we prove that this is a proper-path coloring of \overline{G} . For any $z \in N_1$, we know that P = xvuz (u and z may coincide) is a proper path. So there are proper paths between x and any other vertices, and there are proper paths between v and vertices in N_1 . For any $y \in N_2 \setminus \{v\}$ and $z \in N_1$, if $N_{\overline{G}}(y) \cap N_1 \neq \emptyset$, let $w \in N_{\overline{G}}(y) \cap N_1$. Then ywz is a proper path between y and z. Otherwise, $N_{\overline{G}}(y) \cap N_1 = \emptyset$. We claim that y is adjacent to all the other vertices of N_2 in \overline{G} . In fact, for any vertex $w \in N_2 \setminus y$, there exists a vertex $w' \in N_1$ such that $ww' \in E(G)$. Since $yw' \in E(G)$, we know that $yw \in E(\overline{G})$. Especially, we know that $yv \in E(\overline{G})$. Then yvuz is a proper path between y and z. Next consider $x_2, x'_2 \in N_2$ such that $x_2x'_2 \notin E(\overline{G})$. Since $x_2, x'_2 \in N_2$, there are $x_1, x'_1 \in N_1$ such that $x_1x_2, x'_1x'_2 \in E(G)$. As G is triangle-free, one can see that $x_1 \neq x'_1$ and $x_1x'_2, x_2x'_1 \in E(\overline{G})$. So we have that $x_2x'_1x_1x'_2$ is a proper path connecting x_1 and x'_1 . Hence we have that $pc(\overline{G}) = 2$.

Proposition 3.6. If G is triangle-free and contains two components one of which is trivial, then $pc(\overline{G}) = 2$.

Proof. Let G_1 and G_2 be the two components of G such that $V(G_1) = \{v\}$. Then $\overline{G} = \overline{G_1} \vee \overline{G_2}$, where " \vee " is the join of two graphs, that is, vertex v is adjacent to all the other vertices in \overline{G} . If $\overline{G_2}$ is connected, then $pc(\overline{G_2}) = 2$ from Theorem 3.1, Theorem 3.3 and Theorem 3.5. Hence, we can get that $pc(\overline{G}) = 2$. Otherwise, $\overline{G_2}$ is disconnected. Since G is triangle-free, we know that $\overline{G_2}$ has two components, and both of them are cliques of $\overline{G_2}$. Suppose that H_1 and H_2 are the two component of $\overline{G_2}$, we assign color 1 to all the edges between v and H_1 and assign color 2 to the remaining edges. As $P = x_1vx_2$ is a proper path connecting x_1 and x_2 for any $x_1 \in H_1$ and $x_2 \in H_2$. So we have that \overline{G} is proper connected. Hence $pc(\overline{G}) = 2$.

In conclusion, we can get the following result.

Theorem 3.7. For a connected noncomplete graph G, if \overline{G} is triangle-free, then pc(G) = 2.

Proof. We consider two cases:

Case 1. \overline{G} is connected. The result holds for the case $diam(\overline{G}) \leq 4$ from Theorem 3.1, the case $diam(\overline{G}) = 3$ from Theorem 3.3 and the case $diam(\overline{G}) = 2$ from Theorem 3.5.

Case 2. \overline{G} is disconnected. The result holds for the case that \overline{G} contains two components with one of them trivial from Proposition 3.6, and holds for the remaining case from Lemma 2.4 and Corollary 2.5.

4 Nordhaus-Gaddum-Type theorem for proper connection number of graphs

Firstly, we characterize the graphs on n vertices that have proper connection number n-2. This result is crucial to investigate the Nordhaus-Gaddum-type result for the proper connection number of G. We use C_n, S_n to denote the cycle and the star graph on n vertices, respectively, and use T(a, b) to denote the double star that is obtained by adding an edge between the center vertices of S_a and S_b . For a nontrivial graph G such

that $G + uv \cong G + xy$ for every two pairs $\{u, v\}$, $\{x, y\}$ of nonadjacent vertices of G, we use G + e to denote the graph obtained from G by joining two nonadjacent vertices of G.

Theorem 4.1. Let G be a connected graph on n vertices. Then pc(G) = n - 2 if and only if G is one of the following 6 graphs: $T(2, n - 2), C_3, C_4, C_4 + e, S_4 + e, and S_5 + e$.

Proof. If G is one of the above 6 graphs, we can easily check that pc(G) = n - 2. So it remains to verify the converse of the theorem. Suppose that pc(G) = n - 2. If G is acyclic, from Lemma 2.3, we know that $G \cong T(2, n - 2)$. So we may assume that G contains cycles. Let G^* be a spanning unicycle subgraph of G such that the cycle C in G^* is the longest cycle in G. Without loss of generality, suppose that $C = v_1 v_2 \dots v_k v_1$ and $d_{G^*}(v_1) \ge d_{G^*}(v_i)$ for $i = 2, 3, \dots, k$. Note that pc(C) = 2 for all $k \ge 4$. Giving C a proper-path 2-coloring and assigning n - k new colors to the remaining n - k edges of G^* , we get a proper-path coloring of G^* . It follows that $pc(G^*) \le 2 + n - k$. From Lemma 2.1, we know that $pc(G) \le pc(G^*) \le 2 + n - k$. Thus we can get that pc(G) < n - 2 if k > 4, contradicting with the fact that pc(G) = n - 2. So we only need to consider that k = 3 or k = 4.

If k = 4, let $G_1 = G^* - v_1 v_2$. One can see that G_1 is a spanning tree of G. If n = 4, then $G^* \cong C_4$. We can get that $G \cong C_4$ or $G \cong C_4 + e$ since the longest cycle of G is of length 4. So we consider that $n \ge 5$. Since $d_{G^*}(v_1) \ge d_{G^*}(v_i)$ for $i = 2, 3, \ldots, k$ and G^* is unicycle, we see that $\Delta(G_1) \le n - 3$. So by Lemma 2.1, $pc(G) \le pc(G_1) \le n - 3$, contradicting the fact that pc(G) = n - 2.

Now we consider the case k = 3. Let c be an edge coloring of G^* such that the cut edges are colored by n - 3 distinct colors. If $n \ge 6$, that is, G^* has more than three cut edges, choose three colors that have been used on the cut edges, say 1,2,3. Let $c(v_1v_2) = 1$, $c(v_2v_3) = 2$, and $c(v_3v_1) = 3$. We know that G^* is proper connected under edge-coloring c. Hence $pc(G) \le pc(G^*) \le n-3$, contradicting the fact that pc(G) = n-2. So we may assume that $n \le 5$. If n = 5, one can see that $G \cong S_5 + e$ since otherwise there is a spanning P_5 in G, then $pc(G) \le pc(P_5) = 2$, a contradiction. If n = 4, one can see that $G \cong S_4 + e$ since otherwise there exists a cycle of length 4 in G which contradicts the assumption k = 3. If n = 3, we know that $G \cong C_3$ as pc(G) = 1 if and only if G is complete graph. Hence we have that $G \cong C_3$, or $G \cong S_4 + e$, or $G \cong S_5 + e$ when k = 3.

We know that if G is a connected graph with n vertices, then the number of edges in G must be at least n-1. If both G and \overline{G} are connected, then n is at least 4, and $\Delta(G) \leq n-2$. Therefore we know that $2 \leq pc(G) \leq n-2$. Similarly, $2 \leq pc(\overline{G}) \leq n-2$. Hence we can obtain that $4 \leq pc(G) + pc(\overline{G}) \leq 2(n-2)$. For n = 4, we can easily get that $pc(G) + pc(\overline{G}) = 4$ if G and \overline{G} are connected. In the rest of the paper, we always assume that all graphs have at least 5 vertices, and both G and \overline{G} are connected.

Lemma 4.2. Let G be a graphs with 5 vertices. If both G and \overline{G} are connected, one has that

$$pc(G) + pc(\overline{G}) = \begin{cases} 5 & \text{if } G \cong T(2,3) \text{ or } \overline{G} \cong T(2,3), \\ 4 & \text{otherwise.} \end{cases}$$

Proof. If $G \cong T(2,3)$ or $\overline{G} \cong T(2,3)$, then it can be easily checked that $pc(G) + pc(\overline{G}) = 5$. From Theorem 4.1, we know that T(2,3) is the only graph on 5 vertices that has proper connection number 3. Since $2 \leq pc(G) \leq n-2 = 3$ and $2 \leq pc(\overline{G}) \leq n-2 = 3$, then all the other graphs considered here on 5 vertices has proper connection number 2. Hence $pc(G) + pc(\overline{G}) = 4$ if $G \ncong T(2,3)$ and $\overline{G} \ncong T(2,3)$.

Theorem 4.3. $pc(\overline{G}) + pc(\overline{G}) \leq n$ for $n \geq 5$, and the equality holds if and only if $G \cong T(2, n-2)$ or $\overline{G} \cong T(2, n-2)$.

Proof. By Lemma 4.2, we can see that the result holds if n = 5. So we consider $n \ge 6$. If $G \cong T(2, n - 2)$, \overline{G} contains a spanning subgraph H that is obtained by attaching a pendent edge to the complete bipartite graph $K_{2,n-3}$. Then $pc(\overline{G}) = 2$ by Lemma 2.4 and Lemma 2.7. The result clearly holds. Similarly, we can also get $pc(G) + pc(\overline{G}) = n$ if $\overline{G} \cong T(2, n-2)$. To prove our conclusion, we only need to show that $pc(G) + pc(\overline{G}) < n$ if $G \ncong T(2, n-2)$ and $\overline{G} \ncong T(2, n-2)$. Under this assumption, we know that $2 \le pc(G) \le n-3$ and $2 \le pc(\overline{G}) \le n-3$ by Theorem 4.1.

Suppose first that both G and \overline{G} are 2-connected. For n = 6, we claim that pc(G) = 2. Assume that the circumference of G is k. If k = 6, one has that $pc(G) \leq pc(C_6) = 2$. If k = 4, one can see that G contains a spanning $K_{2,4}$, contradicting the assumption that \overline{G} is 2-connected. Assume that G contains a 5-cycle $C = v_1v_2v_3v_4v_5v_1$, we know that the vertex v_6 is adjacent to two vertices that is nonadjacent in C, say v_1, v_3 . Then $P = v_6v_1v_2v_3v_4v_5$ is a hamilton path of G. Hence $pc(G) \leq pc(P) = 2$. So we have that $pc(\overline{G}) \leq 2 + n - 3 < n$. For $n \geq 7$, by Lemma 2.6, we know that $pc(G) \leq 3$ and $pc(\overline{G}) \leq 3$, and so $pc(G) + pc(\overline{G}) \leq 6$, and therefore $pc(G) + pc(\overline{G}) < n$ clearly holds.

Now we consider the case that at least one of G and \overline{G} has cut vertices. Without loss of generality, suppose that G has cut vertices. We distinguish the following three cases.

Case 1. G has a cut vertex u such that G - u has at least three components. Let G_1, G_2, \ldots, G_k $(k \ge 3)$ be the components of G - u and let n_i be the number of vertices of G_i for $1 \le i \le k$ with $n_1 \le n_2 \le \ldots \le n_k$. From the definition of \overline{G} , we know that $\overline{G} - u$ contains a spanning complete k-partite graph K_{n_1,n_2,\ldots,n_k} . Since $\Delta(\overline{G}) \le n-2$, then

 $n_k \geq 2$. From Corollary 2.5, $pc(\overline{G} - u) = 2$, and there exists a 2-edge-coloring c of $\overline{G} - u$ that makes it proper connected with the strong property. Hence $pc(\overline{G}) \leq 2$ by Lemma 2.7. Together with the fact that $pc(G) \leq n-3$, we can get the result $pc(G) + pc(\overline{G}) < n$.

Case 2. Each cut vertex u of G satisfies that G - u has only two components. Let G_1, G_2 be the two components of G - u, and let n_i be the number of vertices of G_i for i = 1, 2 with $n_1 \leq n_2$.

subcase 2.1. $n_1 \ge 2$, then $\overline{G} - u$ contains a spanning 2-connected bipartite graph K_{n_1,n_2} . From Lemma 2.4, we know that $pc(\overline{G} - u) = 2$ and there exists a 2-edge-coloring c of $\overline{G} - u$ that makes it proper connected with the strong property. So by Lemma 2.7, $pc(\overline{G}) \le 2$. We can get the result that $pc(G) + pc(\overline{G}) < n$.

subcase 2.2. $n_1 = 1$, that is, each cut vertex is incident with a pendent edge. Let $u_1v_1, u_2v_2, \ldots, u_lv_l$ be the pendent edges of G such that v_i is the pendent vertices for $1 \leq i \leq l$. The pendent edges are pairwise disjoint. Let H be the graph obtained from G by deleting all the pendent vertices. Then H must be 2-connected. By Lemma 2.6, we know that $pc(H) \leq 3$ and there exists a 3-edge-coloring c of H that makes it proper connected with the strong property.

If $l \geq 2$, we know that $\overline{G} - \{u_1, u_2\}$ contains a spanning bipartite subgraph $K_{2,n-4}$ with two parts $X = \{v_1, v_2\}$ and $Y = V(G) \setminus \{u_1, v_1, u_2, v_2\}$. Since $v_1u_2, v_2u_1 \notin E(G)$, we know that $v_1u_2, v_2u_1 \in E(\overline{G})$. Then by Lemma 2.4 and Lemma 2.7, we have that $pc(\overline{G}) \leq 2$. By using the fact that $pc(G) \leq n-3$, we have that $pc(\overline{G}) < n$.

If l = 1, by Lemma 2.6 and Lemma 2.7, one has that $pc(G) \leq pc(H) \leq 3$. Therefore we have $pc(\overline{G}) + pc(\overline{G}) \leq n$. Now we prove that the equality cannot be attained. Note that $d_{\overline{G}}(v_1) = n - 2$. We know that \overline{G} contains T_0 as a proper spanning subgraph. Set $N_{\overline{G}}(v_1) = \{x_1, \cdots, x_{n-2}\} = V(G) \setminus \{u_1, v_1\}$. Without loss of generality, assume that $x_1u_1 \notin E(G)$. So $x_1u_1 \in E(\overline{G})$. If there is a vertex x_j $(2 \le j \le n-2)$ that is adjacent to x_1 in \overline{G} , assume without loss of generality that $x_1x_2 \in E(\overline{G})$. Let $c(v_1x_1) = 1, c(x_1x_2) =$ $2, c(v_1x_2) = c(x_1u_1) = 3$ and $c(v_1x_i) = i - 2$ for $i = 3, 4 \cdots, n - 2$. One can see that \overline{G} is proper connected. If there is a vertex x_j $(2 \leq j \leq n-2)$ that is adjacent to u_1 in \overline{G} , assume without loss of generality that $x_2u_2 \in E(\overline{G})$. Let $c(v_1x_i) = i-2$ for $i = 3, 4 \cdots, n-2$ and $c(v_1 x_1) = c(u_1 x_2) = 1, c(v_1 x_2) = c(x_1 u_1) = 2$. One can also see that \overline{G} is proper connected. If there are two vertex $x_j, x_k \ (2 \le j < k \le n-2)$ such that $x_i x_k \in E(\overline{G})$, without loss of generality, assume that $x_2 x_3 \in E(\overline{G})$. Let $c(v_1 x_i) = i - 2$ for $i = 4, \dots, n-2$, $c(v_1x_1) = c(v_1x_2) = 1$, $c(v_1x_3) = c(x_1u_1) = 2$ and $c(x_2x_3) = 3$. We can check that \overline{G} is proper connected. Hence we have that $pc(\overline{G}) \leq \max\{3, n-4\}$. For $n \geq 7$, we can get that $pc(G) + pc(\overline{G}) \leq 3 + n - 4 = n - 1 < n$. For n = 6, as H is a 2-connected graph with 5 vertices, one can see that H contains a spanning

 C_5 or a spanning $K_{2,3}$. Hence we can easily get that $pc(G) \leq pc(H) = 2$. So we have $pc(G) + pc(\overline{G}) \leq 2 + 3 = 5 < 6$.

References

- [1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput, to appear.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
- [3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Monteroa, Z. Tuza, Proper connection of graphs, Discrete Math. 312 (17) (2012), 2550-2560.
- [4] L. Chandran, A. Das, D. Rajendraprasad, N. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), 206-218.
- [5] G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, Rainbow connection in graphs, Math Bohemica 133 (1) (2008), 5-98.
- [6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2) (2009),75-81.
- [7] L. Chen, X. Li, H. Lian, Nordhaus-Gaddum-type theorem for rainbow connection number of graphs, Graphs & Combin. 29 (5) (2013), 1235-1247.
- [8] L. Chen, X. Li, M. Liu, Nordhaus-Gaddum-type bounds for rainbow vertexconnection number of a graph, Utilitas Math. 86 (2011), 335-340.
- [9] F. Harary, R.W. Robinson, The diameter of a graph and its complement, Amer. Math. Monthly 92 (1985), 211-212.
- [10] F. Harary, T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155 (1996), 99-105.
- [11] M. Kriveleich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 71 (2012), 206-218.
- [12] H. Li, X. Li, S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math. 312 (2012), 1453-1457.

- [13] X. Li, Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs, Discrete Appl. Math. 185 (2015), 102-112.
- [14] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs & Combin. 29 (5) (2013), 1471-1475.
- [15] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs & Combin. 29 (2013), 1-38.
- [16] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
- [17] X. Li, Y. Sun, Rainbow connection numbers of complementary graphs, Util. Math. 86 (2011), 23-31.
- [18] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175-177.