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Abstract

The equivalence of group connectivity for non-homogeneous groups with a same or-
der has been concerned since Jaeger, Linial, Payan and Tarsi introduced this concept
in [J. Combin. Theory Ser. B, 56 (1992) 165-182]. Husek, Mohelnikova and Sémal in
[J. Graph Theory, 93 (2020) 317-327] showed that Zs-connectivity and Z3-connectivity
are not equivalent by finding counterexamples with a computer-assisted proof, and
they asked whether one can find a proof that does not use computers. Langhede and
Thomassen [European J. Combin., (2023) 103816] provide a computer-free proof to
show that there exist 3-edge-connected, Zg—connected, and non-Z4-connected graphs.
In this paper, we construct 3-edge-connected graphs which are Z4-connected but not
Zg—connected in which we prove those properties without any involvement of comput-
ers. These two results together answer the question proposed by Husek et al. about
computer-free proofs on the non-equivalence of Z4-connectivity and Zg—connectivity.
In addition, by using both theoretical reductions and computer searching we find the
smallest graph whose Z4-connectivity varies from Zg—connectivity. This smallest graph

(in terms of order and size) is unique, which has 10 vertices and 14 edges.
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1 Introduction

Finitely generated Abelian (additive) groups and finite loopless graphs which may contain
parallel edges are considered in this study. Denote by I" an Abelian group with order |T'| > 3
and denote by 0 the additive identity of I" throughout the paper. We follow [1] for undefined

terms.



Let G be a graph and D an orientation of G. The set of arcs in D with tail (head, resp.)
as v is denoted by E}(v) (Ep(v), resp.). For any mapping f : E(G) — T, define

Opfv)= > fle)= > fle)
e€EL(v) e€E, (v)
for any vertex v in V(G). The pair (D, f) is called a I'-flow (or flow) of G if dp f(v) =0
for each v € V(G). We sometimes abbreviate (D, f) and dp f as f and df for convenience,
if the orientation D is understood in context. If I' = Z, then a I'-flow is called an integer
flow. Furthermore, if an integer flow (D, f) satisfies |f(e)| < k for each edge e in E(G),
then it is called a k-flow. A flow (D, f) is nowhere-zero if f(e) # 0 for any e € E(G).

In 1992, Jaeger, Linial, Payan and Tarsi [7] extended the concept of I'-flow to I'-
connectivity. Let G be a graph. We call 8 : V(G) — T' a zero-sum boundary of G on
Lif 3 ey () B(v) = 0. Denote Z(G,T) the collection of all zero-sum boundaries of G' on
I'. A flow with f : E(G) — I' — {0} such that 0f = 3 is called a (I, 5)-flow of G. If for any
B € Z(G,T), there is a (I', f)-flow of G, then G is called I'-connected.

Tutte [16] proved that the existence of I'-flow only depends on the order of I', that is,
a graph G has a nowhere-zero I'-flow with |I'| = k if and only if G has a nowhere-zero
k-flow. Jaeger et al. [7] asked if there is a similar property for I'-connectivity, i.e. whether
G is I'1-connected if and only if G is I's-connected for any two Abelian groups I'1, s with
IT'1| = |T'g|. They further remarked that it was even unknown for groups with order 4,
which is the smallest number for the existence of non-homogeneous groups with a same
order. In 2020, Husek, Mohelnikové and Sdmal [6] proved that Zj-connectivity does not

imply Z3-connectivity, neither vice versa, using a computer-aided method.

Theorem 1.1 [6] There exists a graph that is Z3-connected but not Zs-connected. In

addition, there exists a Z4-connected but not Z%-connected graph.

Actually, Jaeger et al. [7] proved that every 3-edge-connected graph is I'-connected if
IT'| > 6. So the equivalence of group connectivity for 3-edge-connected graphs only leaves
the case in which the order of group is 4. This question is asked in [10] that whether
the equivalence of the Z4-connectivity and the Z%—connectivity holds for 3-edge-connected
graphs. The authors in this paper, together with Han in [5], gave a negative answer to this

question as follows.

Theorem 1.2 [5] There exists a 3-edge-connected graph which is 73-connected but not
Zy4-connected. Furthermore, there exists a 3-edge-connected graph which is Z4-connected but

not 73-connected.



Both Theorem 1.1 and Theorem 1.2 are proved with involvements of computers, which
are based on the computer-checked examples found in [6]. Husek, Mohelnfkova and Sémal [6]

asked whether one can find computer-free proofs for those results.

Problem 1.3 [6] Could we use a computer-free approach to prove that Z4-connectivity

does not imply Z%—connectim’ty and neither vice versa?

Langhede and Thomassen [13] studied the group connectivity and group coloring of pla-
nar graphs, and they were able to prove that Z%—connectivity does not imply Z4-connectivity

that does not use computers.

Theorem 1.4 [13] There are infinitely many 3-edge-connected planar graphs which are

73-connected, but not Zy-connected. Moreover, this result is verified by hand.

In fact, Langhede and Thomassen [13] also proved that there are infinitely many 3-
edge-connected planar graphs which are Z4-connected, but not Z%—connected. However,
that proof is still based on the computer-checked examples found in [6] and uses another
property about group coloring criticality that needs to be checked by computers.

In this paper, without any involvement of computers, we prove that Z4-connectivity

does not imply Z3-connectivity.

Theorem 1.5 There are infinitely many 3-edge-connected graphs which are Z4-connected,

but not Z3-connected. Furthermore, we are able to verify this result by hand.

Theorem 1.5 is mainly based on some special graphs we constructed in Figure 4, and
its proof applies some reductions on certain properties of the 4-cycles and the so-called
collapsible graphs in the study of spanning Eulerian subgraph problem.

Note that Theorems 1.4 and 1.5 together answers Problem 1.3 completely. These results
together provide also alternative proofs to Theorems 1.1 and 1.2 without any involvement
of computers.

Given that Z4-connectivity and Z%—connectivity are distinct concepts, one might wonder
what is the smallest graph whose Z4-connectivity differs from Z%—connectivity. The graphs
constructed in [6] are small, and the minimal one has 11 vertices and 15 edges. However,
we found the unique smallest graph whose Z4-connectivity varies from Z%—connec‘civity in
this paper has 10 vertices and 14 edges, denoted @ (see Figure 1). We prove the minimality

and uniqueness through theoretical deductions and computer-assisted proofs.



Figure 1: Q: The smallest Z4-connected and non-Z3-connected graph

Theorem 1.6 The graph Q is the unique smallest graph whose Z4-connectivity varies from

7.3 -connectivity.

The organization of the rest of this paper is as follows. We provide some preliminaries in
section 2, and then we present the computer-free proof of Theorem 1.5 and the computer-
aided proof of Theorem 1.6 in sections 3 and 4, respectively. Finally, we conclude this paper

with a few remarks in section 5.

2 Preliminaries

2.1 Properties of group connectivity

The following lemma, due to Jaeger et al. [7], provides an equivalent definition of T'-

connectivity.

Lemma 2.1 [7] Let G be a graph and D an orientation of G. The following statements
are equivalent:

(1) G is T'-connected.

(2) For any mapping f from E(G) to T, there is a T-flow (D, f) of G such that f(e) #
f(e) for each e € E(G).

A cycle with k vertices is referred to a k-cycle, written as Cy. Denote G/H the graph
obtained from G by contracting edges in H. We refer readers to [10] for a survey about

group connectivity. Some basic properties related to I'-connected graphs are shown below.

Lemma 2.2 [9] Let G be a graph and let H be a subgraph of G.
(1) If both H and G/H are I'-connected, then G is I'-connected.
(2) If G is I'-connected and e € G, then G/e is I'-connected.
(3) The k-cycle Cy, is T'-connected for any Abelian group T with size |I'| > k + 1.



Let G; and Gy be two graphs with ujv; € E(G1) and ug,ve € V(G2). The graph
obtained from G; and Ga by deleting ujv;, identifying u; with us as a new vertex u, and
identifying v; with vy as a new vertex v is called the 2-sum of G1 and G2 on uivy and us, vo,
denoted G1(ujv1) @ Ga(usg,v2) and written simply as G € Gs.

Lemma 2.3 [5] Let Gi and G2 be two graphs which are not I'-connected. Then G1 P G2

1s not I'-connected.

2.2 Group connectivity of some special graphs

We introduce Z4-connectivity and Z3-connectivity for some special graphs in this subsection,
which will be used later.

The degree of a vertex v in the graph G is denoted by dg(v). A graph is trivial if it has
just one vertex, otherwise it is called nontrivial. A graph G is collapsible if for any subset S
of V(G) with |S| even, there is a spanning connected subgraph Hg of G such that for any
vertex v € V(Hg), drg(v) is odd if and only if v € S. A relationship between collapsible

graphs and T'-connectivity is shown in the following lemma, due to Lai [8] in 1999.
Lemma 2.4 [8] Every collapsible graph is both Z4-connected and Z3-connected.

The concept of collapsible graphs was first introduced by Catlin [2] in 1988 as a reduction
method to find spanning Eulerian subgraphs. For more properties of collapsible graphs, we
refer to [3,12].

Lemma 2.5 [4] The graph shown in Figure 2a, denoted Fs, is collapsible, thus Z4-connected

and Z3-connected.
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(a) F2 (b) F3 = FQ/U3U7
Figure 2: The graph F5 and the graph F5/vsvy

In fact, Lemma 2.5 can be proved by using the so-called m-reduction applied on 4-cycles

in the reduction theory of collapsible graphs. Similarly, using w-reduction, we can also verify



that the graph P/e, obtained from the Petersen graph P by contracting an arbitrary edge
e, is collapsible, and thus both Zs-connected and Z3-connected (see [4,12]). On the other
hand, it is well-known that the Petersen graph has no nowhere-zero 4-flow, since Tutte [17]
proved that a cubic graph G has a nowhere-zero 4-flow if and only if G is 3-edge-colorable.
Thus we can deduce the following lemma, which is also contained in a special case of Lemma

4.4 in the next section.

Lemma 2.6 The Petersen graph P is neither Z4-connected nor Z%-connected, whereas P/e

is both Zy-connected and Z3-connected for any e € E(P).

3 Proof of Theorem 1.5 avoiding computers

In this section, we present a Zj-connected, but non-Z3-connected planar graph avoiding
computer-aids, shown in Figure 4, named J;. In addition, we extended J; to a family with
infinitely many graphs, see Definition 3.5. Furthermore, we construct a 3-edge-connected
graph M which is Z4-connected, but not Z%—connected. The related proofs in this section
are all computer-free.

We use Eg(v) to denote the set of edges incident to vertex v in graph G and refer to a

vertex of degree k as a k-vertexr. Firstly, we introduce several observations as follows.

Observation 3.1 Let G be a Z3-connected graph and (D, f) be a (Z3,3)-flow of G. The
following statements hold.

(1) For a 3-vertex v € V(G) with Eg(v) = {e1,ea,es}, if B(v) = (0,0), then f(e1),
f(e2), f(es) are pairwise distinct, i.e. {f(e1), f(e2), f(e3)} = {(0,1),(1,0),(1,1)}.

(2) If v is a 2-vertex adjacent to u and w in G, then f(vu) # B(v) and f(vw) # B(v).

1 3 2
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Figure 3: The bad boundaries of Cy

Let v1, va, ..., v be the vertices of Cf, in a cyclic order. We use [aq, a9, ..., ax] to denote the
mapping v; — a;, where i € {1,2,...,k}. Denote by () = (8(v1), B(v2), ..., B(vx)) the set of



s ‘ o ‘ B+a

[1,1,1,1] | [0,2,0,2] | [1,3,1,3]
[1,1,1,1] | [0,3,2,3] | [1,0,3,0]
3,3,3,3] | [0,1,2,1] | [3,0,1,0]
3,3,3,3] | [0,2,0,2] | [3,1,3,1]
[1,2,3,2] | [0,2,0,2] | [1,0,3,0]
[1,2,3,2] | [0,1,2,1] | [1,3,1,3]
2,3,2,1] | [0,3,2,3] | [2,2,0,0]
2,3,2,1] | [0,1,2,1] | [2,0,0,2]
3,2,1,2 | [0,3,2,3] | [3,1,3,1]
3,2,1,2] | [0,2,0,2] | [3,0,1,0]
2,1,2,3] | [0,3,2,3] | [2,0,0,2]
2,1,2,3] | [0,1,2,1] | [2,2,0,0]

Table 1: Details for Observation 3.3 (3)-(5)

all cyclic sequences of [3(v1), B(v2), ..., B(vg)]; for example, (1,2,3,4) = {[1,2,3,4],[2,3,4,1],
[3,4,1,2],[4,1,2,3]}. Denote by (81) + (52) the set of all 8] + 3} for every 8] € (81) and
By € (B2). We say (B) € Z(Cy,T') if g € Z(C,T"). Obviously, if g € Z(Cy,T"), then every
mapping in () is in Z(Cy,T"). We have following observations.

Observation 3.2 Define ,31,52,<,83> € Z(C4,Z4) as: [ = [1,1,1,1], By = [3,3,3,3],

(B3) = (1,2,3,2), see Figure 3. Then Cy has a (Z4, B)-flow if and only if B & {P1, B2} U{(Bs).
Each mapping in {f1, P2} U (Bs) is referred to as a ‘ bad boundary’ of Cy.

Observation 3.3 Let 5 be a bad boundary of Cy. Then each of the following holds.

(1) Any mapping in (B) + (2,2,0,0) is not a bad boundary of Cy.

(2) Any mapping in () + (1,0,3,0) is not a bad boundary of Cy.

(3) At least one of the two sets (5) +1[0,1,2,1] and () +[0,2,0,2] does not produce bad
boundaries of Cy.

(4) At least one of the two sets (5) +1[0,1,2,1] and () + [0, 3,2, 3] does not produce bad
boundaries of Cy.

(5) At least one of the two sets (5) +1[0,2,0,2] and () + [0, 3,2, 3] does not produce bad

boundaries of Cy.

We refer to Table 1 for checking the details of Observation 3.3 (3)-(5). For example, when



(B) = (1,2,3,2) we have (8) +[0,1,2,1] = {[1,3,1,3],(2,0,0,2],[3,0,1,0],[2,2,0,0]} and
(B)+]0,2,0,2] = {[1,0,3,0],[3,2,1,2]}, and so the set (3)+]0, 1,2, 1] contains no bad bound-
ary. Furthermore, we can also check this fact similarly when g = [1,1,1,1] or [3,3,3, 3],
and hence Observation 3.3(3) holds in this case.

Let D be a digraph. The set of arcs of D is written as A(D), and we say u dominates
v if uv € A(D).

Observation 3.4 Let G = Ky, where u,v are the t-vertices of G and x1, 2, ...,z are the
2-vertices of G. Suppose D is an orientation of G, where u dominates x;, and x; dominates
v for any integer i € {1,...,t}. If t > 3, then for any mapping f : E(G) — Z4 — {0}, there
is a mapping ' : E(G) — Z4 — {0} such that

of (w) = of(w) +2, ifw=u,uv; )

If (w), if weV(G) — {w,v}.

Proof. If there exists an integer i € {1,...,t} such that f(uz;) # 2 and f(z;v) # 2,
then the observation follows from defining f(uz;) = f(ux;) + 2, f'(z;v) = f(z;v) + 2, and
f'(e) = f(e) for any other edge e. Otherwise, it follows that f(uz;) = 2 or f(z;v) = 2
for every i € {1,2,...,t}. Then there exists y; € {1,3} such that f(uz;) + y; # 0 and
f(xv) +yi # 0 for any i € {1,2,...,t}. Hence, there exists y; € {0,1,3} for j = 1,2,3
satisfying f(uz;) +y; # 0, f(zj0) +y; # 0 and y) +y5 +ys = 2. Let f'(ux;) = f(uz;) +yj,
f'(zjv) = f(zjv) +y;, where 1 < j <3, and f'(e) = f(e) for others. Then (1) follows. B

A b2
a v q a c h ¢ d1» (2> q3

(a) J1 (b) J2

Figure 4: The graph J; and Jo

Definition 3.5 We construct a graph family J as follows.

(1) J1 € J (see Figure 4b).

(2) For a graph G € J, if G’ is a graph obtained from G by adding 2-vertices adjacent
to ¢ and h; or adjacent to x and y (see Figure 5), then G' € J.



Theorem 3.6 Fach graph in J is Z4-connected, but not Z%—connected.
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Figure 5: An oriented graph in J, where H and H' denote subgraphs induced by dashed

lines and thick solid lines, respectively

We would prove Theorem 3.6 by the following two lemmas.
Lemma 3.7 Any graph in J is not Z3-connected.

Proof. We first claim that J; is not Z%—connected. Suppose, by contradiction, that Jj is
Z3-connected. Define 8 € Z(Jy,73) as:

(0,0), ifv="0b,zh;
0,1), fv=y,q
Bv) =
(1,0), ifv=a,d;
(171)7 ifU:C,pl,pQ,pg.

Then there is a (Z3, §)-flow of J;, written as (D, f). Because the additive inverse of every ele-
ment in Z3 is itself, it follows that df (v) = > wen) f(uv) = B(v) for each v € V(G). Thus,
we may omit the orientation D. Since p; is a 2-vertex and 3(p;) = (1, 1), by Observation 3.1,
we have f(cp;) € {(0,1),(1,0)} for i =1,2,3. Therefore, >, 53 f(cpi) € {(0,1),(1,0)},
and thus f(bc) + f(ed) = B(c) — D195 fepi) € {(0,1),(1,0)}. By Observation 3.1, we
also have f(ab) € {(0,1),(1,1)}. We shall discuss this two cases.

(I). If f(ab) = (1,1), then f(ad) = (0,1). Furthermore, this implies f(bc), f(cd) €
{(0,1),(1,0)} by considering 8(b) and B(d). But this contradicts f(bc)+f(cd) € {(0,1),(1,0)}.
Hence, f(ab) # (1,1).

(II). If f(ab) = (0,1), then f(ad) = (1,1). By Observation 3.1, we have f(bc) €
{(1,1),(1,0)}, f(cd) € {(1,1),(1,0)}, f(zq) # (0,1) and f(bx) # (0,1). So we must have



f(be) + fled) = (0,1), >0y 05 f(epi) = (1,0) and f(xzh) = (0,1). Since >,y 53hpi =
Dizi23 i+ (1,1)+(1,1)+ (1,1) = (0,1), we have f(hy) = B(h) — f(zh) = > ;_1 93 hpi =
(0,0), a contradiction.

In conclusion, f(ab) ¢ {(0,1),(1,1)}, a contradiction. So .J; is not Z3-connected.

Let G(k1, k2) be an arbitrary graph in J with k; 2-vertices adjacent to ¢ and h, named
pi(1 < i < ky); and ko 2-vertices adjacent to « and y, named ¢;(1 < j < ko), where k; > 3
and ky > 1. Now we are going to prove that G(ki, k2) is not Z2-connected by induction on
k1 + ko.

Define 8 € Z(G(k1, ko), Z3) as:

¢

(1,1), ifv=mp; forie{l,2, ..k}
(0,1), if v=g;for j € {1,2,.... k2 };
Y a<s<iy (0,1), if v = h;

B (v) = Y a<s<hn (1,1), if v =u;

(0,1) + Z2§s§k2(17 0), ifv=y;
(L,1) + 2 s, (1,0), ifv=g¢

L B(v), otherwise.

First of all, G(3,1) = J; has no (Z3,3')-flow by the argument above. By method
of induction, we assume G(ki,ko) has no (Z3,')-flow. Then we use this fact to show
that G(k; + 1, k2) has no (Z3, 8')-flow and G(ki, ke + 1) has no (Z3, 8')-flow. Suppose, by
contradiction, that G(k; + 1, k2) has a (Z3, 8')-flow f. If f(cp;) = (1,0) for some 4, then
we have f(p;h) = (0,1), and by deleting cp; and p;h, we obtain a (Z3, 5')-flow of G (k1, k2),
a contradiction. Therefore, we get f(cp;) = (0,1) and f(p;h) = (1,0) for each i with
1 <4 < kp + 1. Then, the following mapping f' : E(G(k1, k2)) — Z3 — {0} is a (Z3, B')-flow
of G(k1, kz), where [’ is defined as follows.

fle)+(1,1), ifee {cp1, pih};
f(e), if e € E(G(k1,k2)) — {cp1, ph}.

f'(e) =

This contradicts the assumption that G(kq, ko) has no (Z3, f/)-flow. Hence we have proved
that G(ki + 1,ks) has no (Z3,3')-flow. Using the same argument, it will also lead to
a contradiction that G(ky, ko) has a (Z3,3") flow if we assume that G(ky, ko + 1) has a
(72, 3")-flow. Thus for any ky > 3 and kg > 1, G(k1, k2) is not Z3-connected, i.e., any graph

in J is not Z%—connected. [ |
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Lemma 3.8 Fvery graph in J is Z4-connected.

Proof. Suppose G € J and D is an orientation of G as shown in Figure 5. Let H =
Koy, (t1 > 3) and H' = Ky, (t2 > 3) denote subgraphs of G indicated by dashed lines
and thick solid lines, respectively, in Figure 5. Let Cy be the subgraph of G induced by
{a,b,c,d} and let F; = G/Cy4. Denote by w the vertex contracted by Cy in Fy. We first

claim that Fj is Z4-connected.
Claim 1 The graph Fy s Z4-connected.

Proof. By Lemma 2.5, the graph F, (Figure 2a) is Z4-connected. Denote F3 = Fy/(vsvy),
shown in Figure 2b. Then F3 is Z4-connected by Lemma 2.2 (2). One may observe that
F3 is a subgraph of F} and Fy/F3 is Z4-connected. By Lemma 2.2 (1), it follows that F} is

also Z4-connected. M

Let g € Z(G,Z4). Define B’ € Z(F1,7Z4) as follows:

Bla) + B(b) + B(c) + B(d), if v =w;
B(v), ifveV(F)—{w}.

B'(v) =

By Claim 1, Fy is Zs-connected, and thus there is a (Z4, 8')-flow (D|p,, f1) of Fy such that
fi: E(F1) = Zs — {0} and 0f; = . Let vy,...,vy, be 2-vertices of H. Let 1 = f1(bx),
n2 = fi(zh), 1 = fi(dy), v2 = fi(hy) and § = 32, ;o fi(cv;). Define 8" € Z(Cy,Zy4) as:

@™

a), if v=a;

™

b) —m, ifv="0
c)+¢& ifuo=g
d) — v, ifv=d.

=

(
5w ="
(
(

@™

Claim 2 If 8" is not a bad boundary of Cy, then G has a (Zy4, B)-flow.

Proof. If 8" is not a bad boundary of Cjy, then there is a (Z4, 8”)-flow (D|¢c,, f2) of Cy4
by Observation 3.2, where D|¢, is the restriction of D on Cy4. Therefore, (D, fi U fa2) is a
(Z4, B)-flow of G as required. Il

Thus we may assume that 8” is a bad boundary of Cy. We are going to apply Observation
3.4 to modify the values of n1,12,71,72,& to obtain a new (Z4, 8')-flow of F} so that the

new 3" on Cj is not a bad boundary anymore.

11



CASE A. Assume that either 11,70 # 2 or 71,79 # 2. We first replace £ with £ + 2 by
way of Observation 3.4. Now we consider the following two cases. If 1, m2 # 2, then replace
N1, M2 with 1 +2,m2 + 2. Otherwise, v1,v2 # 2, then replace 71, v2 by v1 +2,v2 +2. In both
cases, the new fj is still a (Z4, f')-flow of F;, and by Observation 3.3 (1), any mapping in
(B") +(2,2,0,0) is not a bad boundary of Cy, i.e., the new 3" is not a bad boundary of Cj
anymore. Hence, G has a (Zy4, 8”)-flow by Claim 2.

CASE B. Assume that at least one of 11,79 is 2, and at least one of vy, y2 is 2.

(b1). If {m,m2} # {71,72} or {m,me} = {m,72} = {2,2} , then replace n1,m2, 71,72
with 71 +q1, 72 +q1, 71+ 2, 72 + g2, where {q1, g2} = {1, 3} such that q1 +n1, ¢1 +92, g2+ 1,
g2 + 72 are nonzero. Then we have obtained a new (Zg4, 8')-flow of Fy. Moreover, the new
boundary of Cy is in (8" (a), 8”(b), 8"(c), ”(d)) + (1,0, 3,0), thus is not a bad boundary of
C4 by Observation 3.3 (2).

(b2). Otherwise, we have {n1,m2} = {7,72} # {2,2}, and we provide a list of the spe-
cific cases. Table 2 shows the corresponding changes on 711,12, 7v1, 72, H, H and the bound-
ary [8"(a), B”(8), B"(¢), B"(d)], where A(m1, 72, 11,72) and A[8"(a), ”(8), B”(c), "(d)] indi-
cate the changes of (11,712,7v1,72) and [5”(a), 8”(b), 8" (c), 8" (d)], and ‘Yes’ means we need
to adjust the graph H or H’' by Observation 3.4. For example, when (n1,72,71,72) =
(1,2,1,2), we replace (11,m2,71,72) With (91,72, 71,7%2) + A, m2,71,7%2) = (1,2,1,2) +
(1,3,1,3) = (2,1,2,1), and in the same time we adjust the graph H’ by Observation 3.4.
Then the new boundary of Cy is [8”(a), 8”(b), 8" (c), 8" (d)]+ A[B" (a), 8" (b), 8" (c), " (d)] =
8" (a),B"(b),8"(c), 8"(d)] + [0, 1,0,3], which is not a bad boundary of Cy by Observation
3.3 (2). Similarly, when (n1,72,71,72) = (1,2,2,1), we may either change (11, 72,71,72) to
(n1,m2,71,72) + (1,1,1,1) or change it to (n1,72,71,72) + (2,0,0,2), and along the same
line we also modify H or H' by Observation 3.4 whenever needed. Then the boundary of
Cy is either [3"(a), 8"(b), 8”(c), B"(d)] + [0,1,2,1] or [8"(a), 3" (b), B"(c), B"(d)] + [2,0,0,2],
in which at least one of the two sets is not a bad boundary of Cy by Observation 3.3 (3).
Note that all the remaining cases are listed in Table 2. In the cases of (91,72,71,72) €
{(1,2,2,1),(2,1,1,2),(3,2,2,3),(2,3,3,2)}, we shall need two rounds of modification simi-
larly as shown above.

According to Observation 3.3, the new 3" is not a bad boundary of C4y anymore whatever
the case is in Table 2. Moreover, f is still a (Zy, 8')-flow of Fj.

Combining Claim 2, we could get a (Z4, §)-flow of G in both CASE A and CASE B.
Hence, every graph G in J is Zs-connected by the definition of Z4-connectivity . Il

Let P; denote the Petersen graph with a fixed edge e; for ¢ = 1,2, 3,4. Denote by M the
graph obtained from the 2-sums of Jo(Figure 4) and Py, P>, P3, Py on pi1,p2; p2,ps; a,qi;
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(71,712, 711,72) | AGm,m2.71,72) | AIB"(a), (), 8"(c), 8"(d)] | H | B

(1,2,1,2) (1,3,1,3) 0,1,0,3] No | Yes
(2,1,2,1) (3,1,3,1) [0,3,0,1] No | Yes
(1,2,2,1) (1,1,1,1) 0,1,2,1] Yes | No
(1,2,2,1) (2,0,0,2) 0,2,0,2] No | Yes
(2,1,1,2) (1,1,1,1) 0,1,2,1] Yes | No
(2,1,1,2) (3,1,1,3) 0,3,2,3] Yes | Yes
(2,3,2,3) (1,3,1,3) 0,1,0,3] No | Yes
(3,2,3,2) (3,1,3,1) [0,3,0,1] No | Yes
(3,2,2,3) (3,3,3,3) 0,3,2,3] Yes | No
(3,2,2,3) (2,0,0,2) 0,2,0,2] No | Yes
(2,3,3,2) (3,3,3,3) 0,3,2,3] Yes | No
(2,3,3,2) (1,3,3,1) [0,1,2,1] Yes | Yes

Table 2: CASE B (b2) {n1,m2} = {71,72} # {2,2}

q2,q3 and e1, es, e3, ey, respectively. Clearly, by using Lemma 2.3, similar constructions

could generate infinitely many such graphs.

Theorem 3.9 The graph M is a 3-edge-connected Zi-connected and non-Z3-connected

graph.

Proof. The graph M is obviously 3-edge-connected. By Lemma 2.6 and Theorem 3.6,
neither the Petersen graph nor the graph Jp is Z3-connected. So M is not Z3-connected
by Lemma 2.3. By Lemmas 2.2 and 2.6, M/Jy is Z4-connected; combining Lemma 2.2
and Theorem 3.6, we conclude that M is Z4-connected. Hence, M is a 3-edge-connected

Z4-connected and non-Z2-connected graph. l

Note that all the proofs above are done by hand, including all the lemmas we used in

the above sections.

4 The smallest Z,-connected and non-Zg-connected graph

In this section, we shall explore the smallest graph whose Z4-connectivity varies from Z%—
connectivity. We will use both theoretical reductions and a search assisted by computers.

Due to the huge number of graphs and the complexity of testing group connectivity, we
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shall apply a few lemmas below to screen out the majority of the graphs, which avoids the

brute force search and makes the computation possible.

Lemma 4.1 [15] Let I' be an Abelian group with size |I'| = k > 4 and let G be a graph
with v,w € V(G). Assume that G' is a graph obtained from G by adding a (k — 1)-path, say
UgU1...Uk_1, by identifying ug with v, and up_1 with w. Then G is I'-connected if and only
if G’ is T'-connected.

Lemma 4.2 [14] Let m > 3 be an integer, and let G be a graph. If G is Zy,-connected, then
(m—2)G has m—1 edge-disjoint spanning trees, where (m —2)G is the graph obtained from
G by replacing each edge of G with m — 2 multi-edges. In particular, if G is Z4-connected,
then

BG) = S(V(@)| - 1).

Lemma 4.3 [15] If G is Z3-connected and |V(G)| > 4, then |E(G)| > 3|V (G)|.

Lemma 4.4 [4] Let G be a connected graph containing no nontrivial collapsible subgraph.
If V(@) < 11 and |E(G)| > 2|V(G)| — 5, then G belongs to a well-characterized graph
family F.

Some graphs in F are shown in Figure 6 and more details are shown in Definition 4.5
and Lemma 4.6. Let m and n be two positive integers. The complete graph with n vertices
is denoted by K,. The complete bipartite graph G[X,Y]| with parts of size |X| = m and

|Y| = n is written as K, .

Definition 4.5 The Petersen graph is denoted by P. Let s1,s3,5s3,m,l,t be natural num-
bers with m,l > 1 and t > 2. Let Ki3 be the complete bipartite graph, with the 3-vertex
named a and three 1-vertices named a1, az, a3 respectively. Define K 3(s1,52,53) to be the
graph obtained from Ki3 by adding s; vertices adjacent to a; and a;y1, where i = 1,2,3
(mod 3). Let Ka(u,u’) be a Koy with u,u’ being the nonadjacent vertices of degree t. Let
K (u, v, u”) be the graph obtained from a Kai(u,u’) by adding a new vertex u” that joins
to u' only. Let Ky (u,u’',u") be the graph obtained from a Kz i(u,u’) by adding a new
vertez u” that joins to a 2-vertex of Koy We shall use Ky, and Ky, for a Kj (u,u,u")
and a Ky, (u,u',u"), respectively. Let S(m,l) be the graph obtained from a Koy (u,u’) and
a K (w,w', w") by identifying u with w, and w” with u'; let J(m,l) denote the graph ob-
tained from a Kz pmi1 and a Ky j(w,w',w") by identifying w,w” with the two ends of an
edge in Ko i1, respectively; let J'(m,l) denote the graph obtained from a Kamio and a

K (w,w',w"”) by identifying w,w” with two 2-vertices in Ko p12, respectively.
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Deﬁne F = {K17K27K2,t7Ké,taKé/,taKl,fi(Sl;sQa 33)7S(mal)7 J(mvl)a Jl(mal)vp}f where

t, s1, So, 83, m, m,l are natural numbers.

ay a2

u u// u/l

asz

(a) K1,3(s1,S2,53) (b) K3, (c) K34

w”(u’)
V1 w’
V2

U1
Vg

w b Ut

(d) S(m,1) (e) J(m,1)
Figure 6: Part of the graphs in F

We further present the properties of graphs in F in the following lemma, whose proof

is shown in Appendices.
Lemma 4.6 Each nontrivial graph in F is neither Zy-connected nor Z3-connected.

Recalling Theorem 1.6, we state it in another way as follows.

Theorem 1.6' Let G be a graph with |V (G)| < 10. If G = Q, then it is Zy-connected but
not Z%—connected. If G2 Q, then G is Z4-connected if and only if G is Z%—connected.

Proof. Suppose G is one of the the smallest graph for which Z4-connectivity is not equiv-
alent to Z2-connectivity on |V(G)|. We claim that G has neither adjacent 2-vertices nor

nontrivial collapsible subgraph.
Claim 3 The graph G has no adjacent 2-vertices.

Proof. Suppose, by way of contradiction, G has a pair of adjacent 2-vertices, u and wv.
Let G' = G — {u,v}. By Lemma 4.1, G is I'-connected if and only if G’ is I'-connected for
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any Abelian group with |I'| = 4. Obviously, |V (G")| < |V(G)| contradicts the choice of G.
y group Y,

Therefore, G' has no adjacent 2-vertices. l

Claim 4 The graph G contains no nontrivial collapsible subgraph.

Proof. Without loss of generality, suppose G is Z4-connected and non—Z%—connected (an
analogous argument for G is Z%—, but non-Z4-connected). By contradiction, assume H is a
nontrivial collapsible subgraph of G. Then H is Z4-connected as well as Z%—connected by
Lemma 2.4. Therefore, G/H is Zs-connected. Because G is the smallest graph for which
the Z4-connectivity and Z3-connectivity is not equivalent, G/H is Z3-connected. Hence, G

is Z3-connected by Lemma 2.2, a contradiction. H

Claim 5 (1) G contains no triangle.
(2) G contains no vertex whose neighbors are all 2-vertices.
(8) Let Vi be the set of all 2-vertices of G. Then G — V3 is connected.

Proof. As a triangle is collapsible, (1) follows from Claim 4. If G contains a vertex x whose
neighbor set Ng(z) consists of 2-vertices, then we contract V(G)— X UNg(x) in G to obtain
a complete bipartite graph Ky, where t = |[Ng(x)|. Since Ky is neither Z4-connected nor
Z3-connected, we conclude by Lemma 2.2 that G is neither Z4-connected nor Z3-connected,
a contradiction. Hence (2) is true. For (3), it is similar to (2). Suppose that G — V5 has at
least two components, and let H be a component of G — V5. We contract H into a vertex
and contract V(G) — Vo — V(H) into another vertex, then we obtain a K, which implies
that G is neither Z4-connected nor Z%—connected, contradicting our assumption. Therefore,
(3) holds. W

Combining Claim 4, Lemmas 4.4 and 4.6, we have |E(G)| < 2|V(G)| —5. Together with
Lemmas 4.2 and 4.3, we have

min{%!V(G)l, ;(IV(G)! -1} < [E(G)] <2[V(G)| - 6.

As |V(G)] < 10, the only two solutions of the inequality above are: (1) |[V(G)| = 9 and
|E(G)| =12; (2) [V(G)] =10 and |E(GQ)| = 14.

Denote by nj the number of k-vertices of G. By Claims 3 and 5, we have no < 4 when
[V(G)] = 9; ng <5 when |[V(G)| = 10. Now we are able to determine all possible degree

sequences of GG as follows.
(1) [V(G)|=9 and |E(G)| = 12.
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(11) ng = 4, n3 = 4,77,4 = 1;
(1.2) ng = 3,n3 = 6.

(2) [V(G)| = 10 and |E(G)| = 14.

n2:5,n3:3,n4:1,n5:1;

n2:5,n3:2,n4:3;

ng =4,n3 = 5,n5 = 1;

)

)

) no=4,n3=4,n4 =2;
)

) ng =3,n3 =6,n4 =1;
)

n2:2,n3:8.

Table 3: The degree sequence and number of corresponding connected graphs

Cases ‘ Degree Sequence ‘ Total ‘ Z4&Z§ ‘ non-Z4&non-Zg ‘ Z4&non-Z§ ‘ Zg&non-Z4
V(G) =9 (1.1) 227 76 151 0 0
|E(G)| = 12 (1.2) 63 21 42 0 0
(2.1) 1625 896 729 0 0
(2.2) 1183 652 531 0 0
V(@) =10 (2.3) 2187 | 1408 778 1 0
|E(G)| =14 (2.4) 664 404 260 0 0
(2.5) 915 662 253 0 0
(2.6) 113 88 25 0 0

Constructing all graphs corresponding to these degree sequences, we check the group
connectivity of each graph by the pseudocode presented in Appendices. Then one may
obtain Table 3, which shows the number of connected graphs with corresponding degree
sequence. The unique Zj-connected and non-Z3-connected graph with degree sequence
(2.3) : ng = 4,n3 = 4,n4 = 2 is shown in Figure 1. Thus, the graph @ is the unique

smallest graph whose Z4-connectivity varies from Z3-connectivity. Il

5 Conclusions and Remarks

In this paper, we found the unique smallest graph ), whose Z4-connectivity varies from Z%—

connectivity. Since @) is a planar graph, the group connectivity of () and the group coloring
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of the dual graph of @ (which has order 6) are equivalent. Let D be an orientation of graph
G. If for any mapping ¢ : E(G) — I, there is a vertex coloring ¢ : V(G) — T' such that
o(u) — p(v) # @(uw) for any uv € A(D), then we say G is I'-(group) colorable. Tt is proved
in [7] that a connected plane graph is I'-colorable if and only if its dual graph is I'-connected.
Since ) and Jo are planar graphs, there are similar consequences of Theorems 1.6 and 3.6
on group coloring. However, both @) and J2 have 2-edge-cuts, thus their dual graphs are not
simple. Langhede and Thomassen [13] studied the group connectivity of 3-edge-connected
planar graphs, whose dual graphs are simple graphs. Other than Theorem 1.4, they also
showed that there exists an infinite family of 3-edge-connected planar graphs, which are
Z4-connected, but not Z%—connected, where its proof involves the help of computers. For
more results on group connectivity of other groups, we refer the readers to [11,13].
Theorems 3.6, 3.9, and 1.4 together provide a computer-free proof to Theorems 1.1 and
1.2, which solves the problem proposed by Husek et al. [6]. However, the computer-free
proof for the existence of 3-edge-connected planar graphs, which are Z4-connected, but not
Z%-connected, remains open. Another open problem is to find the smallest Z%—connected
and non-Z4-connected graph, which may or may not need the help of computer. Due to the
absence of efficient reduction methods and the exponential growth of the number of graphs
as their order increases, this problem is beyond our scope. Note that there is a Z3-connected

and non-Zs-connected graph with 15 vertices and 21 edges found in [6].
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Appendices

A The proof of Lemma 4.6

Lemma 4.6 FEach nontrivial graph in F is neither Zy-connected nor Zg—connected.

Proof. Suppose G € F. If G = P, then it follows that G is neither Z4-connected nor Zg—connected
from Lemma 4.6. Since it is necessary to be 2-edge-connected for a graph admitting nowhere-
zero 4-flows, G is neither Zy-connected nor Z3-connected if G = Ko, Ky, Koy 1f G = S(m, 1),
then G/w"w" = Ka,. So if Ky, is neither Z4-connected nor Zg—connected, then by Lemma 2.2,
G = S(m,1) is neither Z-connected nor Z2-connected. Thus, it suffices to prove Lemma 4.6 for
graph in {Ks 4, K1 3(s1, 82, 83), J(m, 1), J'(m,1)}. We will first prove by way of contradiction that G
is not Z4-connected. Suppose G is Z4-connected. Let D be an orientation of G. By Lemma 2.1, for
any f : E(G) — Zy, there is a Zy-flow (D, f) of G such that f(e) # f(e) for each e € E(G). We
denoted by [k1, ko] the set of integers ¢ with k1 < i < ko. The labels on graphs that we discussed in
the succeeding proofs are indicated in Figure 6.
Assume G = Ky;. Let u and u' be two distinct ¢-vertices of G and {vy,va, ..., v} be the set
of 2-vertices of G. Let D be an orientation of G such that u dominates v; and v; dominates u’ for
€ [1,t]. Define f : E(G) — Zy4 as: f(uvy) = 2, f(u'v1) =0, f(uv;) = 1, f(uv;) = 3 for i € [2,1].
Since df(v;) = 0 for i € [1,t] and f(e) # f(e) for e € E(G), we have f(uv;) is odd and f(uv;) is
even for i € [2,t]. Therefore, df(v) = >, f(uv;) is odd which contradicts 0f(v) = 0. Hence,
G = Ky, is not Z4-connected. o
Assume G = Kj 3(s1,82,3). Let u;, v, wy be the 2-vertices adjacent to as,aq; as,as; ai,as,
respectively, where integers i € [1,s1], j € [1, 2] and k € [1, s3]. Let D be an orientation of G such
that a; dominates u;; u; dominates as; ap dominates v;; v; dominates az; az dominates wy; wy

dominates a1; a dominates a1, as and a3. Suppose

0, e=aai,aas,aas;
fle) =41, ee{auyagvj,aswy | i € [1,51], j€[l,s2], k €[l,s3]};

3, e€{asu;,azvj,arwy | i €[1,s1], j€[1,s2], k€ [l,s3]}.

Then for any 2-vertex v € V(G) incident with el and €2, one may obtain that f(el) = f(e2) is

even. So f(aay), f(aaz), f(aas) is even by df(a1) = 0f(az) = 0f(as) = 0. Furthermore, f(aa;) =
f(aaz) = f(aaz) = 2 as f(aa1) = f(aaz) = f(aaz) = 0. But this contradicts df(a) = 0. It follows
that G = K; 3(s1, s2, $3) is not Zs-connected.

Assume G 22 J(m,1). Denote by v1, v, ..., Uy, and uq, usg, ..., us all the 2-vertices adjacent to u, w”

and w, w’, respectively. Let D be an orientation of G such that u dominates v; and w; v; dominates
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w”; w dominates u; and w”; w” and u; dominates w’, where ¢ € [1,m] and j € [1,1]. Let

1, eef{vw’ uyjw |1<i<m, 1<j<lIl}
fle)=143, ec{uv,wu; |[1<i<m, 1<j<I}

0, eé€ {uw,ww”, ww'}.

Then f(uv;) = f(v;w”) and f(wu;) = f(u;w’) are even. By df(u) = 0f(w') = of(w") = 0, we
also have f(uw), f(ww”) and f(w”w') are even. Since f(e) # f(e) for each e € E(G), there is
fluw) = f(ww”) = f(w"w") = 2. Therefore, 2 = df(u) — f(uw) = If(w) + f(uw) — f(ww”) =0, a
contradiction. Hence, G = J(m,!) is not Z4-connected.

Assume G = J'(m,l). Let vi,ve,...,0y and uj,us,...,u; denote all the 2-vertices adjacent to
z,x’ and w,w’, respectively. Let D be the orientation of G such that x, 2’ and w’ dominates w”; x
dominates v;; v; dominates z’; w’ dominates u;; x,2’, u; dominates w, for i € [1,m] and j € [1,1].
Define f as:

0, ee€{zv,wurl;

|
—_

, e € {zv, wujzw,aw” | 2<i<m, 2 <5 <lI};
e € {via’,uw'};

2,
3, ee{vir/,ujw,w'vw 2w Fw|2<i<m, 2<j<I}

Then f(zv1) = f(viz’) and f(wu1) = f(uiw’) are odd, and f(zv;) = f(viz’) and f(wu;) = f(u;w’)
are even for ¢ € [2,m] and j € [2,]]. Thus, f(w'w”) is odd, furthermore, f(w'w”) = 1 because

f(w'w"”) = 3. Moreover,

flzw) + f(aw”) = f(z'w) + f(2"w"),
flaw”) + f(@'w"”) =3, (2)
flzw) + f(2'w) = 1.

One may obtain that f(zw”)+ f(zw) is even by (2). Therefore, 8f(z) = f(zw”)+ f(zw)+ f(av1)+
Y o<i<m f(xv;) is odd, contradicting 0 f(x) = 0. Thus, G = J'(m, 1) is not Zy-connected.

_In_conclusion, any nontrivial graph in F is not Z4-connected. The proof of non—Zg—connectivity
on G has a similar flavor, so we only present the key ingredient. By contradiction, suppose G is
Zg—connected. Let D be an orientation of G as above in the corresponding case. By Lemma 2.1, for
any f : E(G) — Z2, there is a Z2-flow (D, f) of G such that f(e) # f(e) for each e € E(G). Refer
to Figure 6 for symbols of vertices. And define f as follows:

(a). If G = Ky, then f(uvy) = (1,1), f(viu') = (0,0), f(uv;) = (1,0) and f(v;u') = (0,1), for
each integer 7 € [1,t];

(b). If G = K 3(s1, 82, 83), then f(aa1) = f(aaz) = (1,1), f(aas) = (0,0), f(aru;) = f(azv;) =
flazwy) = (1,0) and f(u;a2) = f(vjas) = f(wrar) = (0,1), where integers i € [1,s1], j € [1, s2] and
k€ [1, s3];
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(¢). If G = J(m,l), then f(uw) = flww”) = f(w"w') = (0,0), f(uv;) = f(wu;) = (0,1) and
fv;w") = f(u;w’) = (1,0), where integers i € [1,m] and j € [1,];

(d). If G f
flwuy) = (1,0), f(via") = f(wa') = f(uw’) = (0,1), for i € [1,m] and j € [1,1].

One may check that there is no Z3-flow (D, f) of G such that f(e) # f(e) for each e € E(G), for
any G € {Ka,, K13(s1,s2,83),J(m,l),J' (m,l)}, which derives contradictions. Thus, as asserted,

each nontrivial graph in F is neither Zs-connected nor Zg—connected. |

N

1

J'(m, 1), then f(a'w") = (0,0), f(w"w') = f(zw") = (1,1), flxv;) = f(wz) =

B Program used in Theorem 1.6

The implementation for checking whether a graph is Z4-connected or Z3-connected is referring to [6]
R. Husek, et al. (https://gitlab.kam.mff.cuni.cz/radek/group-connectivity-pub). And the pseudo-
code! of checking the group connectivity of all graphs with given degree sequences is as follows,

where f(G) is designed to check if G is Z4-connected and non-Z3-connected.

Algorithm 1: Programm for Theorem 1.6

1 from groupConnectivity import *
2 from sage.graphs.connectivity import edge_connectivity

3 def f(G)

4 for v in G.verter_iterator() do

5 if not testGroupConnectivity(G, “Z2_27, useSubgraphs = False) and
testGroup Connectivity(G, “Z4”, useSubgraphs = False) then

6 L return True
7 else
8 t return False

9 for seq in Table 3 do
10 print [g.graph6_string() for g in graphs(|V(G)|, degree_sequence = seq) if

g.is_connected() and f(g)]

1The pseudo-code is based on Python with Sage libraries.
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