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Abstract

The equivalence of group connectivity for non-homogeneous groups with a same or-

der has been concerned since Jaeger, Linial, Payan and Tarsi introduced this concept

in [J. Combin. Theory Ser. B, 56 (1992) 165-182]. Hušek, Mohelńıková and Šámal in

[J. Graph Theory, 93 (2020) 317-327] showed that Z4-connectivity and Z2
2-connectivity

are not equivalent by finding counterexamples with a computer-assisted proof, and

they asked whether one can find a proof that does not use computers. Langhede and

Thomassen [European J. Combin., (2023) 103816] provide a computer-free proof to

show that there exist 3-edge-connected, Z2
2-connected, and non-Z4-connected graphs.

In this paper, we construct 3-edge-connected graphs which are Z4-connected but not

Z2
2-connected in which we prove those properties without any involvement of comput-

ers. These two results together answer the question proposed by Hušek et al. about

computer-free proofs on the non-equivalence of Z4-connectivity and Z2
2-connectivity.

In addition, by using both theoretical reductions and computer searching we find the

smallest graph whose Z4-connectivity varies from Z2
2-connectivity. This smallest graph

(in terms of order and size) is unique, which has 10 vertices and 14 edges.

Keywords: group connectivity, group flows, nowhere-zero flows

1 Introduction

Finitely generated Abelian (additive) groups and finite loopless graphs which may contain

parallel edges are considered in this study. Denote by Γ an Abelian group with order |Γ| ≥ 3

and denote by 0 the additive identity of Γ throughout the paper. We follow [1] for undefined

terms.
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Let G be a graph and D an orientation of G. The set of arcs in D with tail (head, resp.)

as v is denoted by E+
D(v) (E

−
D(v), resp.). For any mapping f : E(G) → Γ, define

∂Df(v) =
∑

e∈E+
D(v)

f(e)−
∑

e∈E−
D(v)

f(e)

for any vertex v in V (G). The pair (D, f) is called a Γ-flow (or flow) of G if ∂Df(v) = 0

for each v ∈ V (G). We sometimes abbreviate (D, f) and ∂Df as f and ∂f for convenience,

if the orientation D is understood in context. If Γ = Z, then a Γ-flow is called an integer

flow. Furthermore, if an integer flow (D, f) satisfies |f(e)| ≤ k for each edge e in E(G),

then it is called a k-flow. A flow (D, f) is nowhere-zero if f(e) ̸= 0 for any e ∈ E(G).

In 1992, Jaeger, Linial, Payan and Tarsi [7] extended the concept of Γ-flow to Γ-

connectivity. Let G be a graph. We call β : V (G) → Γ a zero-sum boundary of G on

Γ if
∑

v∈V (G) β(v) = 0. Denote Z(G,Γ) the collection of all zero-sum boundaries of G on

Γ. A flow with f : E(G) → Γ−{0} such that ∂f = β is called a (Γ, β)-flow of G. If for any

β ∈ Z(G,Γ), there is a (Γ, β)-flow of G, then G is called Γ-connected.

Tutte [16] proved that the existence of Γ-flow only depends on the order of Γ, that is,

a graph G has a nowhere-zero Γ-flow with |Γ| = k if and only if G has a nowhere-zero

k-flow. Jaeger et al. [7] asked if there is a similar property for Γ-connectivity, i.e. whether

G is Γ1-connected if and only if G is Γ2-connected for any two Abelian groups Γ1,Γ2 with

|Γ1| = |Γ2|. They further remarked that it was even unknown for groups with order 4,

which is the smallest number for the existence of non-homogeneous groups with a same

order. In 2020, Hušek, Mohelńıková and Šámal [6] proved that Z4-connectivity does not

imply Z2
2-connectivity, neither vice versa, using a computer-aided method.

Theorem 1.1 [6] There exists a graph that is Z2
2-connected but not Z4-connected. In

addition, there exists a Z4-connected but not Z2
2-connected graph.

Actually, Jaeger et al. [7] proved that every 3-edge-connected graph is Γ-connected if

|Γ| ≥ 6. So the equivalence of group connectivity for 3-edge-connected graphs only leaves

the case in which the order of group is 4. This question is asked in [10] that whether

the equivalence of the Z4-connectivity and the Z2
2-connectivity holds for 3-edge-connected

graphs. The authors in this paper, together with Han in [5], gave a negative answer to this

question as follows.

Theorem 1.2 [5] There exists a 3-edge-connected graph which is Z2
2-connected but not

Z4-connected. Furthermore, there exists a 3-edge-connected graph which is Z4-connected but

not Z2
2-connected.
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Both Theorem 1.1 and Theorem 1.2 are proved with involvements of computers, which

are based on the computer-checked examples found in [6]. Hušek, Mohelńıková and Šámal [6]

asked whether one can find computer-free proofs for those results.

Problem 1.3 [6] Could we use a computer-free approach to prove that Z4-connectivity

does not imply Z2
2-connectivity and neither vice versa?

Langhede and Thomassen [13] studied the group connectivity and group coloring of pla-

nar graphs, and they were able to prove that Z2
2-connectivity does not imply Z4-connectivity

that does not use computers.

Theorem 1.4 [13] There are infinitely many 3-edge-connected planar graphs which are

Z2
2-connected, but not Z4-connected. Moreover, this result is verified by hand.

In fact, Langhede and Thomassen [13] also proved that there are infinitely many 3-

edge-connected planar graphs which are Z4-connected, but not Z2
2-connected. However,

that proof is still based on the computer-checked examples found in [6] and uses another

property about group coloring criticality that needs to be checked by computers.

In this paper, without any involvement of computers, we prove that Z4-connectivity

does not imply Z2
2-connectivity.

Theorem 1.5 There are infinitely many 3-edge-connected graphs which are Z4-connected,

but not Z2
2-connected. Furthermore, we are able to verify this result by hand.

Theorem 1.5 is mainly based on some special graphs we constructed in Figure 4, and

its proof applies some reductions on certain properties of the 4-cycles and the so-called

collapsible graphs in the study of spanning Eulerian subgraph problem.

Note that Theorems 1.4 and 1.5 together answers Problem 1.3 completely. These results

together provide also alternative proofs to Theorems 1.1 and 1.2 without any involvement

of computers.

Given that Z4-connectivity and Z2
2-connectivity are distinct concepts, one might wonder

what is the smallest graph whose Z4-connectivity differs from Z2
2-connectivity. The graphs

constructed in [6] are small, and the minimal one has 11 vertices and 15 edges. However,

we found the unique smallest graph whose Z4-connectivity varies from Z2
2-connectivity in

this paper has 10 vertices and 14 edges, denoted Q (see Figure 1). We prove the minimality

and uniqueness through theoretical deductions and computer-assisted proofs.
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Figure 1: Q: The smallest Z4-connected and non-Z2
2-connected graph

Theorem 1.6 The graph Q is the unique smallest graph whose Z4-connectivity varies from

Z2
2-connectivity.

The organization of the rest of this paper is as follows. We provide some preliminaries in

section 2, and then we present the computer-free proof of Theorem 1.5 and the computer-

aided proof of Theorem 1.6 in sections 3 and 4, respectively. Finally, we conclude this paper

with a few remarks in section 5.

2 Preliminaries

2.1 Properties of group connectivity

The following lemma, due to Jaeger et al. [7], provides an equivalent definition of Γ-

connectivity.

Lemma 2.1 [7] Let G be a graph and D an orientation of G. The following statements

are equivalent:

(1) G is Γ-connected.

(2) For any mapping f̄ from E(G) to Γ, there is a Γ-flow (D, f) of G such that f(e) ̸=
f̄(e) for each e ∈ E(G).

A cycle with k vertices is referred to a k-cycle, written as Ck. Denote G/H the graph

obtained from G by contracting edges in H. We refer readers to [10] for a survey about

group connectivity. Some basic properties related to Γ-connected graphs are shown below.

Lemma 2.2 [9] Let G be a graph and let H be a subgraph of G.

(1) If both H and G/H are Γ-connected, then G is Γ-connected.

(2) If G is Γ-connected and e ∈ G, then G/e is Γ-connected.

(3) The k-cycle Ck is Γ-connected for any Abelian group Γ with size |Γ| ≥ k + 1.
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Let G1 and G2 be two graphs with u1v1 ∈ E(G1) and u2, v2 ∈ V (G2). The graph

obtained from G1 and G2 by deleting u1v1, identifying u1 with u2 as a new vertex u, and

identifying v1 with v2 as a new vertex v is called the 2-sum of G1 and G2 on u1v1 and u2, v2,

denoted G1(u1v1)
⊕

G2(u2, v2) and written simply as G1
⊕

G2.

Lemma 2.3 [5] Let G1 and G2 be two graphs which are not Γ-connected. Then G1
⊕

G2

is not Γ-connected.

2.2 Group connectivity of some special graphs

We introduce Z4-connectivity and Z2
2-connectivity for some special graphs in this subsection,

which will be used later.

The degree of a vertex v in the graph G is denoted by dG(v). A graph is trivial if it has

just one vertex, otherwise it is called nontrivial. A graph G is collapsible if for any subset S

of V (G) with |S| even, there is a spanning connected subgraph HS of G such that for any

vertex v ∈ V (HS), dHS
(v) is odd if and only if v ∈ S. A relationship between collapsible

graphs and Γ-connectivity is shown in the following lemma, due to Lai [8] in 1999.

Lemma 2.4 [8] Every collapsible graph is both Z4-connected and Z2
2-connected.

The concept of collapsible graphs was first introduced by Catlin [2] in 1988 as a reduction

method to find spanning Eulerian subgraphs. For more properties of collapsible graphs, we

refer to [3, 12].

Lemma 2.5 [4] The graph shown in Figure 2a, denoted F2, is collapsible, thus Z4-connected

and Z2
2-connected.

v1

v4

v2

v5

v3

v6

v7

(a) F2

v1

v2

v5

v4

v6
v3(v7)

(b) F3
∼= F2/v3v7

Figure 2: The graph F2 and the graph F2/v3v7

In fact, Lemma 2.5 can be proved by using the so-called π-reduction applied on 4-cycles

in the reduction theory of collapsible graphs. Similarly, using π-reduction, we can also verify
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that the graph P/e, obtained from the Petersen graph P by contracting an arbitrary edge

e, is collapsible, and thus both Z4-connected and Z2
2-connected (see [4, 12]). On the other

hand, it is well-known that the Petersen graph has no nowhere-zero 4-flow, since Tutte [17]

proved that a cubic graph G has a nowhere-zero 4-flow if and only if G is 3-edge-colorable.

Thus we can deduce the following lemma, which is also contained in a special case of Lemma

4.4 in the next section.

Lemma 2.6 The Petersen graph P is neither Z4-connected nor Z2
2-connected, whereas P/e

is both Z4-connected and Z2
2-connected for any e ∈ E(P ).

3 Proof of Theorem 1.5 avoiding computers

In this section, we present a Z4-connected, but non-Z2
2-connected planar graph avoiding

computer-aids, shown in Figure 4, named J1. In addition, we extended J1 to a family with

infinitely many graphs, see Definition 3.5. Furthermore, we construct a 3-edge-connected

graph M which is Z4-connected, but not Z2
2-connected. The related proofs in this section

are all computer-free.

We use EG(v) to denote the set of edges incident to vertex v in graph G and refer to a

vertex of degree k as a k-vertex. Firstly, we introduce several observations as follows.

Observation 3.1 Let G be a Z2
2-connected graph and (D, f) be a (Z2

2, β)-flow of G. The

following statements hold.

(1) For a 3-vertex v ∈ V (G) with EG(v) = {e1, e2, e3}, if β(v) = (0, 0), then f(e1),

f(e2), f(e3) are pairwise distinct, i.e. {f(e1), f(e2), f(e3)} = {(0, 1), (1, 0), (1, 1)}.
(2) If v is a 2-vertex adjacent to u and w in G, then f(vu) ̸= β(v) and f(vw) ̸= β(v).

1

1

1

1

(a) β1

3

3

3

3

(b) β2

1

2

3

2

(c) β3

Figure 3: The bad boundaries of C4

Let v1, v2, ..., vk be the vertices of Ck in a cyclic order. We use [a1, a2, ..., ak] to denote the

mapping vi 7→ ai, where i ∈ {1, 2, ..., k}. Denote by ⟨β⟩ = ⟨β(v1), β(v2), ..., β(vk)⟩ the set of
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β α β + α

[1, 1, 1, 1] [0, 2, 0, 2] [1, 3, 1, 3]

[1, 1, 1, 1] [0, 3, 2, 3] [1, 0, 3, 0]

[3, 3, 3, 3] [0, 1, 2, 1] [3, 0, 1, 0]

[3, 3, 3, 3] [0, 2, 0, 2] [3, 1, 3, 1]

[1, 2, 3, 2] [0, 2, 0, 2] [1, 0, 3, 0]

[1, 2, 3, 2] [0, 1, 2, 1] [1, 3, 1, 3]

[2, 3, 2, 1] [0, 3, 2, 3] [2, 2, 0, 0]

[2, 3, 2, 1] [0, 1, 2, 1] [2, 0, 0, 2]

[3, 2, 1, 2 [0, 3, 2, 3] [3, 1, 3, 1]

[3, 2, 1, 2] [0, 2, 0, 2] [3, 0, 1, 0]

[2, 1, 2, 3] [0, 3, 2, 3] [2, 0, 0, 2]

[2, 1, 2, 3] [0, 1, 2, 1] [2, 2, 0, 0]

Table 1: Details for Observation 3.3 (3)-(5)

all cyclic sequences of [β(v1), β(v2), ..., β(vk)]; for example, ⟨1, 2, 3, 4⟩ = {[1, 2, 3, 4], [2, 3, 4, 1],
[3, 4, 1, 2], [4, 1, 2, 3]}. Denote by ⟨β1⟩ + ⟨β2⟩ the set of all β′

1 + β′
2 for every β′

1 ∈ ⟨β1⟩ and

β′
2 ∈ ⟨β2⟩. We say ⟨β⟩ ∈ Z(Ck,Γ) if β ∈ Z(Ck,Γ). Obviously, if β ∈ Z(Ck,Γ), then every

mapping in ⟨β⟩ is in Z(Ck,Γ). We have following observations.

Observation 3.2 Define β1, β2, ⟨β3⟩ ∈ Z(C4,Z4) as: β1 = [1, 1, 1, 1], β2 = [3, 3, 3, 3],

⟨β3⟩ = ⟨1, 2, 3, 2⟩, see Figure 3. Then C4 has a (Z4, β)-flow if and only if β ̸∈ {β1, β2}∪⟨β3⟩.
Each mapping in {β1, β2} ∪ ⟨β3⟩ is referred to as a ‘ bad boundary’ of C4.

Observation 3.3 Let β be a bad boundary of C4. Then each of the following holds.

(1) Any mapping in ⟨β⟩+ ⟨2, 2, 0, 0⟩ is not a bad boundary of C4.

(2) Any mapping in ⟨β⟩+ ⟨1, 0, 3, 0⟩ is not a bad boundary of C4.

(3) At least one of the two sets ⟨β⟩+ [0, 1, 2, 1] and ⟨β⟩+ [0, 2, 0, 2] does not produce bad

boundaries of C4.

(4) At least one of the two sets ⟨β⟩+ [0, 1, 2, 1] and ⟨β⟩+ [0, 3, 2, 3] does not produce bad

boundaries of C4.

(5) At least one of the two sets ⟨β⟩+ [0, 2, 0, 2] and ⟨β⟩+ [0, 3, 2, 3] does not produce bad

boundaries of C4.

We refer to Table 1 for checking the details of Observation 3.3 (3)-(5). For example, when
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⟨β⟩ = ⟨1, 2, 3, 2⟩ we have ⟨β⟩ + [0, 1, 2, 1] = {[1, 3, 1, 3], [2, 0, 0, 2], [3, 0, 1, 0], [2, 2, 0, 0]} and

⟨β⟩+[0, 2, 0, 2] = {[1, 0, 3, 0], [3, 2, 1, 2]}, and so the set ⟨β⟩+[0, 1, 2, 1] contains no bad bound-

ary. Furthermore, we can also check this fact similarly when β = [1, 1, 1, 1] or [3, 3, 3, 3],

and hence Observation 3.3(3) holds in this case.

Let D be a digraph. The set of arcs of D is written as A(D), and we say u dominates

v if uv ∈ A(D).

Observation 3.4 Let G ∼= K2,t, where u, v are the t-vertices of G and x1, x2, ..., xt are the

2-vertices of G. Suppose D is an orientation of G, where u dominates xi, and xi dominates

v for any integer i ∈ {1, ..., t}. If t ≥ 3, then for any mapping f : E(G) → Z4 − {0}, there
is a mapping f ′ : E(G) → Z4 − {0} such that

∂f ′(w) =

∂f(w) + 2, if w = u, v;

∂f(w), if w ∈ V (G)− {w, v}.
(1)

Proof. If there exists an integer i ∈ {1, ..., t} such that f(uxi) ̸= 2 and f(xiv) ̸= 2,

then the observation follows from defining f ′(uxi) = f(uxi) + 2, f ′(xiv) = f(xiv) + 2, and

f ′(e) = f(e) for any other edge e. Otherwise, it follows that f(uxi) = 2 or f(xiv) = 2

for every i ∈ {1, 2, ..., t}. Then there exists yi ∈ {1, 3} such that f(uxi) + yi ̸= 0 and

f(xiv) + yi ̸= 0 for any i ∈ {1, 2, ..., t}. Hence, there exists y′j ∈ {0, 1, 3} for j = 1, 2, 3

satisfying f(uxj)+ y′j ̸= 0, f(xjv)+ y′j ̸= 0 and y′1+ y′2+ y′3 = 2. Let f ′(uxj) = f(uxj)+ y′j ,

f ′(xjv) = f(xjv) + y′j , where 1 ≤ j ≤ 3, and f ′(e) = f(e) for others. Then (1) follows.

a

b

c

d

h q

x

y

p2

p3

p1

(a) J1

a

b

c

d

h q1 q2 q3

x

y

p2

p3

p1

(b) J2

Figure 4: The graph J1 and J2

Definition 3.5 We construct a graph family J as follows.

(1) J1 ∈ J (see Figure 4b).

(2) For a graph G ∈ J , if G′ is a graph obtained from G by adding 2-vertices adjacent

to c and h; or adjacent to x and y (see Figure 5), then G′ ∈ J .
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Theorem 3.6 Each graph in J is Z4-connected, but not Z2
2-connected.

η1

γ1

η2

γ2

H H ′

a

b

c

d

h

x

y

Figure 5: An oriented graph in J , where H and H ′ denote subgraphs induced by dashed

lines and thick solid lines, respectively

We would prove Theorem 3.6 by the following two lemmas.

Lemma 3.7 Any graph in J is not Z2
2-connected.

Proof. We first claim that J1 is not Z2
2-connected. Suppose, by contradiction, that J1 is

Z2
2-connected. Define β ∈ Z(J1,Z2

2) as:

β(v) =



(0, 0), if v = b, x, h;

(0, 1), if v = y, q;

(1, 0), if v = a, d;

(1, 1), if v = c, p1, p2, p3.

Then there is a (Z2
2, β)-flow of J1, written as (D, f). Because the additive inverse of every ele-

ment in Z2
2 is itself, it follows that ∂f(v) =

∑
uv∈E(G) f(uv) = β(v) for each v ∈ V (G). Thus,

we may omit the orientation D. Since pi is a 2-vertex and β(pi) = (1, 1), by Observation 3.1,

we have f(cpi) ∈ {(0, 1), (1, 0)} for i = 1, 2, 3. Therefore,
∑

i=1,2,3 f(cpi) ∈ {(0, 1), (1, 0)},
and thus f(bc) + f(cd) = β(c) −

∑
i=1,2,3 f(cpi) ∈ {(0, 1), (1, 0)}. By Observation 3.1, we

also have f(ab) ∈ {(0, 1), (1, 1)}. We shall discuss this two cases.

(I). If f(ab) = (1, 1), then f(ad) = (0, 1). Furthermore, this implies f(bc), f(cd) ∈
{(0, 1), (1, 0)} by considering β(b) and β(d). But this contradicts f(bc)+f(cd) ∈ {(0, 1), (1, 0)}.
Hence, f(ab) ̸= (1, 1).

(II). If f(ab) = (0, 1), then f(ad) = (1, 1). By Observation 3.1, we have f(bc) ∈
{(1, 1), (1, 0)}, f(cd) ∈ {(1, 1), (1, 0)}, f(xq) ̸= (0, 1) and f(bx) ̸= (0, 1). So we must have
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f(bc) + f(cd) = (0, 1),
∑

i=1,2,3 f(cpi) = (1, 0) and f(xh) = (0, 1). Since
∑

i=1,2,3 hpi =∑
i=1,2,3 cpi +(1, 1)+ (1, 1)+ (1, 1) = (0, 1), we have f(hy) = β(h)− f(xh)−

∑
i=1,2,3 hpi =

(0, 0), a contradiction.

In conclusion, f(ab) /∈ {(0, 1), (1, 1)}, a contradiction. So J1 is not Z2
2-connected.

Let G(k1, k2) be an arbitrary graph in J with k1 2-vertices adjacent to c and h, named

pi(1 ≤ i ≤ k1); and k2 2-vertices adjacent to x and y, named qj(1 ≤ j ≤ k2), where k1 ≥ 3

and k2 ≥ 1. Now we are going to prove that G(k1, k2) is not Z2
2-connected by induction on

k1 + k2.

Define β′ ∈ Z(G(k1, k2),Z2
2) as:

β′(v) =



(1, 1), if v = pi for i ∈ {1, 2, ..., k1};

(0, 1), if v = qj for j ∈ {1, 2, ..., k2};∑
4≤s≤k1

(0, 1), if v = h;∑
2≤s≤k2

(1, 1), if v = x;

(0, 1) +
∑

2≤s≤k2
(1, 0), if v = y;

(1, 1) +
∑

4≤s≤k1
(1, 0), if v = c;

β(v), otherwise.

First of all, G(3, 1) = J1 has no (Z2
2, β

′)-flow by the argument above. By method

of induction, we assume G(k1, k2) has no (Z2
2, β

′)-flow. Then we use this fact to show

that G(k1 + 1, k2) has no (Z2
2, β

′)-flow and G(k1, k2 + 1) has no (Z2
2, β

′)-flow. Suppose, by

contradiction, that G(k1 + 1, k2) has a (Z2
2, β

′)-flow f . If f(cpi) = (1, 0) for some i, then

we have f(pih) = (0, 1), and by deleting cpi and pih, we obtain a (Z2
2, β

′)-flow of G(k1, k2),

a contradiction. Therefore, we get f(cpi) = (0, 1) and f(pih) = (1, 0) for each i with

1 ≤ i ≤ k1 +1. Then, the following mapping f ′ : E(G(k1, k2)) → Z2
2 −{0} is a (Z2

2, β
′)-flow

of G(k1, k2), where f ′ is defined as follows.

f ′(e) =

f(e) + (1, 1), if e ∈ {cp1, p1h};

f(e), if e ∈ E(G(k1, k2))− {cp1, p1h}.

This contradicts the assumption that G(k1, k2) has no (Z2
2, β

′)-flow. Hence we have proved

that G(k1 + 1, k2) has no (Z2
2, β

′)-flow. Using the same argument, it will also lead to

a contradiction that G(k1, k2) has a (Z2
2, β

′) flow if we assume that G(k1, k2 + 1) has a

(Z2
2, β

′)-flow. Thus for any k1 ≥ 3 and k2 ≥ 1, G(k1, k2) is not Z2
2-connected, i.e., any graph

in J is not Z2
2-connected.
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Lemma 3.8 Every graph in J is Z4-connected.

Proof. Suppose G ∈ J and D is an orientation of G as shown in Figure 5. Let H ∼=
K2,t1 (t1 ≥ 3) and H ′ ∼= K2,t2 (t2 ≥ 3) denote subgraphs of G indicated by dashed lines

and thick solid lines, respectively, in Figure 5. Let C4 be the subgraph of G induced by

{a, b, c, d} and let F1 = G/C4. Denote by w the vertex contracted by C4 in F1. We first

claim that F1 is Z4-connected.

Claim 1 The graph F1 is Z4-connected.

Proof. By Lemma 2.5, the graph F2 (Figure 2a) is Z4-connected. Denote F3 = F2/(v3v7),

shown in Figure 2b. Then F3 is Z4-connected by Lemma 2.2 (2). One may observe that

F3 is a subgraph of F1 and F1/F3 is Z4-connected. By Lemma 2.2 (1), it follows that F1 is

also Z4-connected.

Let β ∈ Z(G,Z4). Define β′ ∈ Z(F1,Z4) as follows:

β′(v) =

β(a) + β(b) + β(c) + β(d), if v = w;

β(v), if v ∈ V (F1)− {w}.

By Claim 1, F1 is Z4-connected, and thus there is a (Z4, β
′)-flow (D|F1 , f1) of F1 such that

f1 : E(F1) → Z4 − {0} and ∂f1 = β′. Let v1, ..., vt1 be 2-vertices of H. Let η1 = f1(bx),

η2 = f1(xh), γ1 = f1(dy), γ2 = f1(hy) and ξ =
∑

1≤i≤t1
f1(cvi). Define β′′ ∈ Z(C4,Z4) as:

β′′(v) =



β(a), if v = a;

β(b)− η1, if v = b;

β(c) + ξ, if v = c;

β(d)− γ1, if v = d.

Claim 2 If β′′ is not a bad boundary of C4, then G has a (Z4, β)-flow.

Proof. If β′′ is not a bad boundary of C4, then there is a (Z4, β
′′)-flow (D|C4 , f2) of C4

by Observation 3.2, where D|C4 is the restriction of D on C4. Therefore, (D, f1 ∪ f2) is a

(Z4, β)-flow of G as required.

Thus we may assume that β′′ is a bad boundary of C4. We are going to apply Observation

3.4 to modify the values of η1, η2, γ1, γ2, ξ to obtain a new (Z4, β
′)-flow of F1 so that the

new β′′ on C4 is not a bad boundary anymore.
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CASE A. Assume that either η1, η2 ̸= 2 or γ1, γ2 ̸= 2. We first replace ξ with ξ + 2 by

way of Observation 3.4. Now we consider the following two cases. If η1, η2 ̸= 2, then replace

η1, η2 with η1+2, η2+2. Otherwise, γ1, γ2 ̸= 2, then replace γ1, γ2 by γ1+2, γ2+2. In both

cases, the new f1 is still a (Z4, β
′)-flow of F1, and by Observation 3.3 (1), any mapping in

⟨β′′⟩+ ⟨2, 2, 0, 0⟩ is not a bad boundary of C4, i.e., the new β′′ is not a bad boundary of C4

anymore. Hence, G has a (Z4, β
′′)-flow by Claim 2.

CASE B. Assume that at least one of η1, η2 is 2, and at least one of γ1, γ2 is 2.

(b1). If {η1, η2} ̸= {γ1, γ2} or {η1, η2} = {γ1, γ2} = {2, 2} , then replace η1, η2, γ1, γ2

with η1+q1, η2+q1, γ1+q2, γ2+q2, where {q1, q2} = {1, 3} such that q1+η1, q1+η2, q2+γ1,

q2 + γ2 are nonzero. Then we have obtained a new (Z4, β
′)-flow of F1. Moreover, the new

boundary of C4 is in ⟨β′′(a), β′′(b), β′′(c), β′′(d)⟩+ ⟨1, 0, 3, 0⟩, thus is not a bad boundary of

C4 by Observation 3.3 (2).

(b2). Otherwise, we have {η1, η2} = {γ1, γ2} ̸= {2, 2}, and we provide a list of the spe-

cific cases. Table 2 shows the corresponding changes on η1, η2, γ1, γ2, H,H ′ and the bound-

ary [β′′(a), β′′(b), β′′(c), β′′(d)], where ∆(η1, η2, γ1, γ2) and ∆[β′′(a), β′′(b), β′′(c), β′′(d)] indi-

cate the changes of (η1, η2, γ1, γ2) and [β′′(a), β′′(b), β′′(c), β′′(d)], and ‘Yes’ means we need

to adjust the graph H or H ′ by Observation 3.4. For example, when (η1, η2, γ1, γ2) =

(1, 2, 1, 2), we replace (η1, η2, γ1, γ2) with (η1, η2, γ1, γ2) + ∆(η1, η2, γ1, γ2) = (1, 2, 1, 2) +

(1, 3, 1, 3) = (2, 1, 2, 1), and in the same time we adjust the graph H ′ by Observation 3.4.

Then the new boundary of C4 is [β′′(a), β′′(b), β′′(c), β′′(d)]+∆[β′′(a), β′′(b), β′′(c), β′′(d)] =

[β′′(a), β′′(b), β′′(c), β′′(d)] + [0, 1, 0, 3], which is not a bad boundary of C4 by Observation

3.3 (2). Similarly, when (η1, η2, γ1, γ2) = (1, 2, 2, 1), we may either change (η1, η2, γ1, γ2) to

(η1, η2, γ1, γ2) + (1, 1, 1, 1) or change it to (η1, η2, γ1, γ2) + (2, 0, 0, 2), and along the same

line we also modify H or H ′ by Observation 3.4 whenever needed. Then the boundary of

C4 is either [β′′(a), β′′(b), β′′(c), β′′(d)] + [0, 1, 2, 1] or [β′′(a), β′′(b), β′′(c), β′′(d)] + [2, 0, 0, 2],

in which at least one of the two sets is not a bad boundary of C4 by Observation 3.3 (3).

Note that all the remaining cases are listed in Table 2. In the cases of (η1, η2, γ1, γ2) ∈
{(1, 2, 2, 1), (2, 1, 1, 2), (3, 2, 2, 3), (2, 3, 3, 2)}, we shall need two rounds of modification simi-

larly as shown above.

According to Observation 3.3, the new β′′ is not a bad boundary of C4 anymore whatever

the case is in Table 2. Moreover, f1 is still a (Z4, β
′)-flow of F1.

Combining Claim 2, we could get a (Z4, β)-flow of G in both CASE A and CASE B.

Hence, every graph G in J is Z4-connected by the definition of Z4-connectivity .

Let Pi denote the Petersen graph with a fixed edge ei for i = 1, 2, 3, 4. Denote by M the

graph obtained from the 2-sums of J2(Figure 4) and P1, P2, P3, P4 on p1, p2; p2, p3; a, q1;
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(η1, η2, γ1, γ2) ∆(η1, η2, γ1, γ2) ∆[β′′(a), β′′(b), β′′(c), β′′(d)] H H ′

(1,2,1,2) (1,3,1,3) [0,1,0,3] No Yes

(2,1,2,1) (3,1,3,1) [0,3,0,1] No Yes

(1,2,2,1) (1,1,1,1) [0,1,2,1] Yes No

(1,2,2,1) (2,0,0,2) [0,2,0,2] No Yes

(2,1,1,2) (1,1,1,1) [0,1,2,1] Yes No

(2,1,1,2) (3,1,1,3) [0,3,2,3] Yes Yes

(2,3,2,3) (1,3,1,3) [0,1,0,3] No Yes

(3,2,3,2) (3,1,3,1) [0,3,0,1] No Yes

(3,2,2,3) (3,3,3,3) [0,3,2,3] Yes No

(3,2,2,3) (2,0,0,2) [0,2,0,2] No Yes

(2,3,3,2) (3,3,3,3) [0,3,2,3] Yes No

(2,3,3,2) (1,3,3,1) [0,1,2,1] Yes Yes

Table 2: CASE B (b2) {η1, η2} = {γ1, γ2} ≠ {2, 2}

q2, q3 and e1, e2, e3, e4, respectively. Clearly, by using Lemma 2.3, similar constructions

could generate infinitely many such graphs.

Theorem 3.9 The graph M is a 3-edge-connected Z4-connected and non-Z2
2-connected

graph.

Proof. The graph M is obviously 3-edge-connected. By Lemma 2.6 and Theorem 3.6,

neither the Petersen graph nor the graph J2 is Z2
2-connected. So M is not Z2

2-connected

by Lemma 2.3. By Lemmas 2.2 and 2.6, M/J2 is Z4-connected; combining Lemma 2.2

and Theorem 3.6, we conclude that M is Z4-connected. Hence, M is a 3-edge-connected

Z4-connected and non-Z2
2-connected graph.

Note that all the proofs above are done by hand, including all the lemmas we used in

the above sections.

4 The smallest Z4-connected and non-Z2
2-connected graph

In this section, we shall explore the smallest graph whose Z4-connectivity varies from Z2
2-

connectivity. We will use both theoretical reductions and a search assisted by computers.

Due to the huge number of graphs and the complexity of testing group connectivity, we
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shall apply a few lemmas below to screen out the majority of the graphs, which avoids the

brute force search and makes the computation possible.

Lemma 4.1 [15] Let Γ be an Abelian group with size |Γ| = k ≥ 4 and let G be a graph

with v, w ∈ V (G). Assume that G′ is a graph obtained from G by adding a (k−1)-path, say

u0u1...uk−1, by identifying u0 with v, and uk−1 with w. Then G is Γ-connected if and only

if G′ is Γ-connected.

Lemma 4.2 [14] Let m ≥ 3 be an integer, and let G be a graph. If G is Zm-connected, then

(m−2)G has m−1 edge-disjoint spanning trees, where (m−2)G is the graph obtained from

G by replacing each edge of G with m− 2 multi-edges. In particular, if G is Z4-connected,

then

|E(G)| ≥ 3

2
(|V (G)| − 1).

Lemma 4.3 [15] If G is Z2
2-connected and |V (G)| ≥ 4, then |E(G)| ≥ 4

3 |V (G)|.

Lemma 4.4 [4] Let G be a connected graph containing no nontrivial collapsible subgraph.

If |V (G)| ≤ 11 and |E(G)| ≥ 2|V (G)| − 5, then G belongs to a well-characterized graph

family F .

Some graphs in F are shown in Figure 6 and more details are shown in Definition 4.5

and Lemma 4.6. Let m and n be two positive integers. The complete graph with n vertices

is denoted by Kn. The complete bipartite graph G[X,Y ] with parts of size |X| = m and

|Y | = n is written as Km,n.

Definition 4.5 The Petersen graph is denoted by P . Let s1, s2, s3,m, l, t be natural num-

bers with m, l ≥ 1 and t ≥ 2. Let K1,3 be the complete bipartite graph, with the 3-vertex

named a and three 1-vertices named a1, a2, a3 respectively. Define K1,3(s1, s2, s3) to be the

graph obtained from K1,3 by adding si vertices adjacent to ai and ai+1, where i ≡ 1, 2, 3

(mod 3). Let K2,t(u, u
′) be a K2,t with u, u′ being the nonadjacent vertices of degree t. Let

K ′
2,t(u, u

′, u′′) be the graph obtained from a K2,t(u, u
′) by adding a new vertex u′′ that joins

to u′ only. Let K ′′
2,t(u, u

′, u′′) be the graph obtained from a K2,t(u, u
′) by adding a new

vertex u′′ that joins to a 2-vertex of K2,t. We shall use K ′
2,t and K ′′

2,t for a K ′
2,t(u, u

′, u′′)

and a K ′′
2,t(u, u

′, u′′), respectively. Let S(m, l) be the graph obtained from a K2,m(u, u′) and

a K ′
2,l(w,w

′, w′′) by identifying u with w, and w′′ with u′; let J(m, l) denote the graph ob-

tained from a K2,m+1 and a K ′
2,l(w,w

′, w′′) by identifying w,w′′ with the two ends of an

edge in K2,m+1, respectively; let J ′(m, l) denote the graph obtained from a K2,m+2 and a

K ′
2,l(w,w

′, w′′) by identifying w,w′′ with two 2-vertices in K2,m+2, respectively.
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Define F = {K1,K2,K2,t,K
′
2,t,K

′′
2,t,K1,3(s1, s2, s3), S(m, l), J(m, l), J ′(m, l), P}, where

t, s1, s2, s3,m,m, l are natural numbers.

a1 a2

a

a3

(a) K1,3(s1, s2, s3)

u u′

u′′

(b) K′
2,t

u u′

u′′

(c) K′′
2,t

w(u)

w′′(u′) w′

(d) S(m, l)

v1

u

v2

u2

w′′(u′)
w′

w
ut

vk
u1

(e) J(m, l)

ut

vk

v1

w′′

x

w′

w

x′

u1

(f) J ′(m, l)

Figure 6: Part of the graphs in F

We further present the properties of graphs in F in the following lemma, whose proof

is shown in Appendices.

Lemma 4.6 Each nontrivial graph in F is neither Z4-connected nor Z2
2-connected.

Recalling Theorem 1.6, we state it in another way as follows.

Theorem 1.6′ Let G be a graph with |V (G)| ≤ 10. If G ∼= Q, then it is Z4-connected but

not Z2
2-connected. If G ̸∼= Q, then G is Z4-connected if and only if G is Z2

2-connected.

Proof. Suppose G is one of the the smallest graph for which Z4-connectivity is not equiv-

alent to Z2
2-connectivity on |V (G)|. We claim that G has neither adjacent 2-vertices nor

nontrivial collapsible subgraph.

Claim 3 The graph G has no adjacent 2-vertices.

Proof. Suppose, by way of contradiction, G has a pair of adjacent 2-vertices, u and v.

Let G′ = G− {u, v}. By Lemma 4.1, G is Γ-connected if and only if G′ is Γ-connected for
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any Abelian group with |Γ| = 4. Obviously, |V (G′)| < |V (G)| contradicts the choice of G.

Therefore, G has no adjacent 2-vertices.

Claim 4 The graph G contains no nontrivial collapsible subgraph.

Proof. Without loss of generality, suppose G is Z4-connected and non-Z2
2-connected (an

analogous argument for G is Z2
2-, but non-Z4-connected). By contradiction, assume H is a

nontrivial collapsible subgraph of G. Then H is Z4-connected as well as Z2
2-connected by

Lemma 2.4. Therefore, G/H is Z4-connected. Because G is the smallest graph for which

the Z4-connectivity and Z2
2-connectivity is not equivalent, G/H is Z2

2-connected. Hence, G

is Z2
2-connected by Lemma 2.2, a contradiction.

Claim 5 (1) G contains no triangle.

(2) G contains no vertex whose neighbors are all 2-vertices.

(3) Let V2 be the set of all 2-vertices of G. Then G− V2 is connected.

Proof. As a triangle is collapsible, (1) follows from Claim 4. If G contains a vertex x whose

neighbor set NG(x) consists of 2-vertices, then we contract V (G)−X∪NG(x) in G to obtain

a complete bipartite graph K2,t, where t = |NG(x)|. Since K2,t is neither Z4-connected nor

Z2
2-connected, we conclude by Lemma 2.2 that G is neither Z4-connected nor Z2

2-connected,

a contradiction. Hence (2) is true. For (3), it is similar to (2). Suppose that G− V2 has at

least two components, and let H be a component of G− V2. We contract H into a vertex

and contract V (G)− V2 − V (H) into another vertex, then we obtain a K2,t, which implies

that G is neither Z4-connected nor Z2
2-connected, contradicting our assumption. Therefore,

(3) holds.

Combining Claim 4, Lemmas 4.4 and 4.6, we have |E(G)| < 2|V (G)|−5. Together with

Lemmas 4.2 and 4.3, we have

min{4
3
|V (G)|, 3

2
(|V (G)| − 1)} ≤ |E(G)| ≤ 2|V (G)| − 6.

As |V (G)| ≤ 10, the only two solutions of the inequality above are: (1) |V (G)| = 9 and

|E(G)| = 12; (2) |V (G)| = 10 and |E(G)| = 14.

Denote by nk the number of k-vertices of G. By Claims 3 and 5, we have n2 ≤ 4 when

|V (G)| = 9; n2 ≤ 5 when |V (G)| = 10. Now we are able to determine all possible degree

sequences of G as follows.

(1) |V (G)| = 9 and |E(G)| = 12.
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(1.1) n2 = 4, n3 = 4, n4 = 1;

(1.2) n2 = 3, n3 = 6.

(2) |V (G)| = 10 and |E(G)| = 14.

(2.1) n2 = 5, n3 = 3, n4 = 1, n5 = 1;

(2.2) n2 = 5, n3 = 2, n4 = 3;

(2.3) n2 = 4, n3 = 4, n4 = 2;

(2.4) n2 = 4, n3 = 5, n5 = 1;

(2.5) n2 = 3, n3 = 6, n4 = 1;

(2.6) n2 = 2, n3 = 8.

Table 3: The degree sequence and number of corresponding connected graphs

Cases Degree Sequence Total Z4&Z2
2 non-Z4&non-Z2

2 Z4&non-Z2
2 Z2

2&non-Z4

|V (G)| = 9 (1.1) 227 76 151 0 0

|E(G)| = 12 (1.2) 63 21 42 0 0

(2.1) 1625 896 729 0 0

(2.2) 1183 652 531 0 0

|V (G)| = 10 (2.3) 2187 1408 778 1 0

|E(G)| = 14 (2.4) 664 404 260 0 0

(2.5) 915 662 253 0 0

(2.6) 113 88 25 0 0

Constructing all graphs corresponding to these degree sequences, we check the group

connectivity of each graph by the pseudocode presented in Appendices. Then one may

obtain Table 3, which shows the number of connected graphs with corresponding degree

sequence. The unique Z4-connected and non-Z2
2-connected graph with degree sequence

(2.3) : n2 = 4, n3 = 4, n4 = 2 is shown in Figure 1. Thus, the graph Q is the unique

smallest graph whose Z4-connectivity varies from Z2
2-connectivity.

5 Conclusions and Remarks

In this paper, we found the unique smallest graph Q, whose Z4-connectivity varies from Z2
2-

connectivity. Since Q is a planar graph, the group connectivity of Q and the group coloring
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of the dual graph of Q (which has order 6) are equivalent. Let D be an orientation of graph

G. If for any mapping φ̄ : E(G) → Γ, there is a vertex coloring φ : V (G) → Γ such that

φ(u)− φ(v) ̸= φ̄(uv) for any uv ∈ A(D), then we say G is Γ-(group) colorable. It is proved

in [7] that a connected plane graph is Γ-colorable if and only if its dual graph is Γ-connected.

Since Q and J2 are planar graphs, there are similar consequences of Theorems 1.6 and 3.6

on group coloring. However, both Q and J2 have 2-edge-cuts, thus their dual graphs are not

simple. Langhede and Thomassen [13] studied the group connectivity of 3-edge-connected

planar graphs, whose dual graphs are simple graphs. Other than Theorem 1.4, they also

showed that there exists an infinite family of 3-edge-connected planar graphs, which are

Z4-connected, but not Z2
2-connected, where its proof involves the help of computers. For

more results on group connectivity of other groups, we refer the readers to [11,13].

Theorems 3.6, 3.9, and 1.4 together provide a computer-free proof to Theorems 1.1 and

1.2, which solves the problem proposed by Hušek et al. [6]. However, the computer-free

proof for the existence of 3-edge-connected planar graphs, which are Z4-connected, but not

Z2
2-connected, remains open. Another open problem is to find the smallest Z2

2-connected

and non-Z4-connected graph, which may or may not need the help of computer. Due to the

absence of efficient reduction methods and the exponential growth of the number of graphs

as their order increases, this problem is beyond our scope. Note that there is a Z2
2-connected

and non-Z4-connected graph with 15 vertices and 21 edges found in [6].
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Appendices

A The proof of Lemma 4.6

Lemma 4.6 Each nontrivial graph in F is neither Z4-connected nor Z2
2-connected.

Proof. Suppose G ∈ F . If G ∼= P , then it follows that G is neither Z4-connected nor Z2
2-connected

from Lemma 4.6. Since it is necessary to be 2-edge-connected for a graph admitting nowhere-

zero 4-flows, G is neither Z4-connected nor Z2
2-connected if G ∼= K2,K

′
2,t,K

′′
2,t. If G ∼= S(m, l),

then G/w′′w′ ∼= K2,t. So if K2,t is neither Z4-connected nor Z2
2-connected, then by Lemma 2.2,

G ∼= S(m, l) is neither Z4-connected nor Z2
2-connected. Thus, it suffices to prove Lemma 4.6 for

graph in {K2,t,K1,3(s1, s2, s3), J(m, l), J ′(m, l)}. We will first prove by way of contradiction that G

is not Z4-connected. Suppose G is Z4-connected. Let D be an orientation of G. By Lemma 2.1, for

any f̄ : E(G) → Z4, there is a Z4-flow (D, f) of G such that f(e) ̸= f̄(e) for each e ∈ E(G). We

denoted by [k1, k2] the set of integers i with k1 ≤ i ≤ k2. The labels on graphs that we discussed in

the succeeding proofs are indicated in Figure 6.

Assume G ∼= K2,t. Let u and u′ be two distinct t-vertices of G and {v1, v2, ..., vt} be the set

of 2-vertices of G. Let D be an orientation of G such that u dominates vi and vi dominates u′ for

i ∈ [1, t]. Define f̄ : E(G) → Z4 as: f̄(uv1) = 2, f̄(u′v1) = 0, f̄(uvi) = 1, f̄(uvi) = 3 for i ∈ [2, t].

Since ∂f(vi) = 0 for i ∈ [1, t] and f(e) ̸= f̄(e) for e ∈ E(G), we have f(uv1) is odd and f(uvi) is

even for i ∈ [2, t]. Therefore, ∂f(v) =
∑

1≤i≤t f(uvi) is odd which contradicts ∂f(v) = 0. Hence,

G ∼= K2,t is not Z4-connected.

Assume G ∼= K1,3(s1, s2, s3). Let ui, vj , wk be the 2-vertices adjacent to a1, a2; a2, a3; a1, a3,

respectively, where integers i ∈ [1, s1], j ∈ [1, s2] and k ∈ [1, s3]. Let D be an orientation of G such

that a1 dominates ui; ui dominates a2; a2 dominates vj ; vj dominates a3; a3 dominates wk; wk

dominates a1; a dominates a1, a2 and a3. Suppose

f̄(e) =


0, e = aa1, aa2, aa3;

1, e ∈ {a1ui, a2vj , a3wk | i ∈ [1, s1], j ∈ [1, s2], k ∈ [1, s3]};

3, e ∈ {a2ui, a3vj , a1wk | i ∈ [1, s1], j ∈ [1, s2], k ∈ [1, s3]}.

Then for any 2-vertex v ∈ V (G) incident with e1v and e2v, one may obtain that f(e1v) = f(e2v) is

even. So f(aa1), f(aa2), f(aa3) is even by ∂f(a1) = ∂f(a2) = ∂f(a3) = 0. Furthermore, f(aa1) =

f(aa2) = f(aa3) = 2 as f̄(aa1) = f̄(aa2) = f̄(aa3) = 0. But this contradicts ∂f(a) = 0. It follows

that G ∼= K1,3(s1, s2, s3) is not Z4-connected.

Assume G ∼= J(m, l). Denote by v1, v2, ..., vm and u1, u2, ..., ut all the 2-vertices adjacent to u,w′′

and w,w′, respectively. Let D be an orientation of G such that u dominates vi and w; vi dominates
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w′′; w dominates uj and w′′; w′′ and uj dominates w′, where i ∈ [1,m] and j ∈ [1, l]. Let

f̄(e) =


1, e ∈ {viw′′, ujw

′ | 1 ≤ i ≤ m, 1 ≤ j ≤ l};

3, e ∈ {uvi, wuj | 1 ≤ i ≤ m, 1 ≤ j ≤ l};

0, e ∈ {uw,ww′′, w′′w′}.

Then f(uvi) = f(viw
′′) and f(wuj) = f(ujw

′) are even. By ∂f(u) = ∂f(w′) = ∂f(w′′) = 0, we

also have f(uw), f(ww′′) and f(w′′w′) are even. Since f(e) ̸= f̄(e) for each e ∈ E(G), there is

f(uw) = f(ww′′) = f(w′′w′) = 2. Therefore, 2 = ∂f(u)− f(uw) = ∂f(w) + f(uw)− f(ww′′) = 0, a

contradiction. Hence, G ∼= J(m, l) is not Z4-connected.

Assume G ∼= J ′(m, l). Let v1, v2, ..., vm and u1, u2, ..., ul denote all the 2-vertices adjacent to

x, x′ and w,w′, respectively. Let D be the orientation of G such that x, x′ and w′ dominates w′′; x

dominates vi; vi dominates x′; w′ dominates uj ; x, x
′, uj dominates w, for i ∈ [1,m] and j ∈ [1, l].

Define f̄ as:

f̄(e) =



0, e ∈ {xv1, wu1};

1, e ∈ {xvi, w′uj , xw, xw
′′ | 2 ≤ i ≤ m, 2 ≤ j ≤ l};

2, e ∈ {v1x′, u1w
′};

3, e ∈ {vix′, ujw,w
′′w′, x′w′′, x′w | 2 ≤ i ≤ m, 2 ≤ j ≤ l}.

Then f(xv1) = f(v1x
′) and f(wu1) = f(u1w

′) are odd, and f(xvi) = f(vix
′) and f(wuj) = f(ujw

′)

are even for i ∈ [2,m] and j ∈ [2, l]. Thus, f(w′w′′) is odd, furthermore, f(w′w′′) = 1 because

f̄(w′w′′) = 3. Moreover, 
f(xw) + f(xw′′) = f(x′w) + f(x′w′′),

f(xw′′) + f(x′w′′) = 3,

f(xw) + f(x′w) = 1.

(2)

One may obtain that f(xw′′)+f(xw) is even by (2). Therefore, ∂f(x) = f(xw′′)+f(xw)+f(xv1)+∑
2≤i≤m f(xvi) is odd, contradicting ∂f(x) = 0. Thus, G ∼= J ′(m, l) is not Z4-connected.

In conclusion, any nontrivial graph in F is not Z4-connected. The proof of non-Z2
2-connectivity

on G has a similar flavor, so we only present the key ingredient. By contradiction, suppose G is

Z2
2-connected. Let D be an orientation of G as above in the corresponding case. By Lemma 2.1, for

any f̄ : E(G) → Z2
2, there is a Z2

2-flow (D, f) of G such that f(e) ̸= f̄(e) for each e ∈ E(G). Refer

to Figure 6 for symbols of vertices. And define f̄ as follows:

(a). If G ∼= K2,t, then f̄(uv1) = (1, 1), f̄(v1u
′) = (0, 0), f̄(uvi) = (1, 0) and f̄(viu

′) = (0, 1), for

each integer i ∈ [1, t];

(b). If G ∼= K1,3(s1, s2, s3), then f̄(aa1) = f̄(aa3) = (1, 1), f̄(aa2) = (0, 0), f̄(a1ui) = f̄(a2vj) =

f̄(a3wk) = (1, 0) and f̄(uia2) = f̄(vja3) = f̄(wka1) = (0, 1), where integers i ∈ [1, s1], j ∈ [1, s2] and

k ∈ [1, s3];
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(c). If G ∼= J(m, l), then f̄(uw) = f̄(ww′′) = f̄(w′′w′) = (0, 0), f̄(uvi) = f̄(wuj) = (0, 1) and

f̄(viw
′′) = f̄(ujw

′) = (1, 0), where integers i ∈ [1,m] and j ∈ [1, l];

(d). If G ∼= J ′(m, l), then f̄(x′w′′) = (0, 0), f̄(w′′w′) = f̄(xw′′) = (1, 1), f̄(xvi) = f̄(wx) =

f̄(wuj) = (1, 0), f̄(vix
′) = f̄(wx′) = f̄(ujw

′) = (0, 1), for i ∈ [1,m] and j ∈ [1, l].

One may check that there is no Z2
2-flow (D, f) of G such that f(e) ̸= f̄(e) for each e ∈ E(G), for

any G ∈ {K2,l,K1,3(s1, s2, s3), J(m, l), J ′(m, l)}, which derives contradictions. Thus, as asserted,

each nontrivial graph in F is neither Z4-connected nor Z2
2-connected.

B Program used in Theorem 1.6

The implementation for checking whether a graph is Z4-connected or Z2
2-connected is referring to [6]

R. Hušek, et al. (https://gitlab.kam.mff.cuni.cz/radek/group-connectivity-pub). And the pseudo-

code1 of checking the group connectivity of all graphs with given degree sequences is as follows,

where f(G) is designed to check if G is Z4-connected and non-Z2
2-connected.

Algorithm 1: Programm for Theorem 1.6

1 from groupConnectivity import ∗
2 from sage.graphs.connectivity import edge connectivity

3 def f(G)

4 for v in G.vertex iterator() do

5 if not testGroupConnectivity(G, “Z2 2”, useSubgraphs = False) and

testGroupConnectivity(G, “Z4”, useSubgraphs = False) then

6 return True

7 else

8 return False

9 for seq in Table 3 do

10 print [g.graph6 string() for g in graphs(|V (G)|, degree sequence = seq) if

g.is connected() and f(g)]

1The pseudo-code is based on Python with Sage libraries.
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